用户名: 密码: 验证码:
激光诱导击穿光谱中的等离子体发射光谱增强方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱(Laser-induced breakdown spectroscopy,简称为LIBS)是采用聚焦的高能量脉冲激光入射到样品的表面产生等离子体,通过分析该等离子体的辐射光谱,从而推导出样品的元素组成成分及含量。LIBS技术具有很多显著优点:能够探测所有元素,可同时检测多种元素,无需真空,样品制备简单或无需制备,被分析样品几乎无损,可以实时分析,原位探测和远程探测等。因此自出现以来,LIBS技术就引起大家的广泛注意,并成为极有实用价值的光谱分析技术之一。目前该技术已成功应用于高危险的化学和生物分析、地质勘探、艺术品的检测以及深空探测等众多领域。
     但是,探测极限差、分析精度低,导致LIBS的探测灵敏度低已成为该技术发展的瓶颈问题,如何进一步提高探测灵敏度也是未来LIBS技术的主要研究方向。本论文的主要研究工作分别采用新型的空间约束装置、将磁场和空间约束相结合、双脉冲激发,以及双脉冲激发和空间约束相结合等技术手段来进一步提高激光等离子体的发光强度和分析精度,从而实现进一步提高LIBS的探测灵敏度。经过大量的研究工作,取得的主要研究成果和创新点如下:
     (1)首次采用新型的铝制半球形腔约束装置应用于单脉冲LIBS分析中,实现了激光诱导冲击波对等离子体的三维均匀压缩效果。该半球形腔空间约束装置不仅可以增强样品中高含量元素的原子光谱,也能增强样品中低含量的元素的原子光谱谱线强度。采用圆筒管型二维约束机构可以使得等离子体强度最佳增强倍数为9倍,而采用该半球形腔三维空间约束装置的最佳光谱增强效果可达12倍,增强效果明显。
     (2)首次在国内外提出磁场约束与空间约束相结合的LIBS光谱增强方案,设计并研制了磁镜与半球形腔空间约束相结合的磁-空双重约束装置。实验结果表明,该装置能有效实现最佳磁场约束增强与最佳空间约束效果的叠加,达到磁-空混合增强的效果,其最佳增强效果可达24倍。
     (3)采用双脉冲激发探索了激光双脉冲在不同时间间隔条件下激光等离子体粒子的散射和光谱增强效应,提出了第一束光激发后产生的等离子体冷凝后悬浮于烧蚀坑附近的观点。通过对铝等离子体冷凝后的颗粒再次加热激发后不仅成功改进了A1原子光谱谱线的分辨率,还改进了A1原子谱线线宽,同时,抑制了A1原子光谱谱线的自吸收效应。
     (4)首次提出将空间约束与双脉冲LIBS相结合的增强方案,并成功将平行面板应用于双脉冲激发的LIBS中,在调整平行面板距离后接着调整两激光脉冲之间的时间间隔,从而获得平行面板空间约束条件下,双脉冲LIBS的最佳增强效果。最佳的增强效果可以达到168.6倍。
     本论文所研究开发的半球形空间约束,磁-空双重约束以及空间约束与双脉冲LIBS相结合的混合增强技术对激光等离子体的光谱增强效果显著,设计制作简单,成本低,具有十分广阔的发展空间和应用前景。同时也为提高LIBS探测灵敏度提供了一系列全新的研究方法。
Laser-induced breakdown spectroscopy (LIBS), which uses focusing a powerful pulsed laser beam onto a sample to create a plasma, by spectrally analyzing the optical emission from the plasma, the element composition and content of the sample could be deduced. The significant attributes of LIBS technique are:ability to detect all elements, simultaneous multi-element detection capability, no need to vacuum, little or no sample preparation, non-destructive to the sample, real-time analysis, in situ diagnosis and remote detection. Therefore, since it was appeared, LIBS technique has been drew widespread attention, and it is developing to one of a valuable spectral analysis technique. Now, successful applications of LIBS has been found in many areas, such as chemical and biological hazards analysis, geological survey, artwork detection and space exploration.
     However, the poor limit of detection, low precision of analysis, lead to the low detection sensitivity of LIBS, has become the bottleneck of its further development, how to improve the LIBS detection sensitivity, which has become an important research subject in future. The main study of this thesis is using new-style space confinement, magnetic field and space confinement combination, dual-pulse excitation, and dual-pulse excitation and space confinement combination to further improve the optics emission intensity and accuracy of analysis from laser-induced plasma. After lot of research work, the following achievements and points of innovation:
     (1) The spatial confinement effects using a new-style of aluminium hemispherical cavity in single LIBS analysis were investigated for the first time, for the purpose of realization of three-dimensional uniform compression to the laser-induced plasmas. This hemispherical cavity not only can be used to enhance the atom spectra from high composition elements in the sample, but also used to enhance the low concentration elements. The best enhancement factor for the emission intensities from laser-induced plasmas by using the two-dimensional cylindrical confinement was about9, while a significant enhancement factor of about12was achieved when using three-dimensional hemispherical cavity.
     (2) The spectral enhancement scheme by combination magnetic field and spatial confinements in LIBS was investigated for the first time, both a magnetic mirror and a hemispherical cavity were designed and made as a magnetic and spatial confinement. The experimental results show that this double confinement can be used simultaneously to magnetically and spatially confine plasmas, and the maximum enhancement factor about24was obtained.
     (3) The enhancement effects of optical emission and scattering from laser-induced plasma using double-pulse excitation with different interpulse delay time were investigated, the point of the suspended particles on crater was condensed by the plasmas which excited by the first laser pulse was bring forward. By reheating the aluminium particles which formed by the A1plasmas, not only improve the resolution of Al atomic spectra, but also the self-absorption effect of Al amtomic spectra was disappeared.
     (4) The enhancement scheme of optical emission in Dual-pulse (DP-LIBS) LIBS with spatial confinement was bring forward for the first time, and a pair of plate walls were successfully used to spatially confine the plasmas produced in DP-LIBS, by the optimization of the distance between two Al walls and the interpulse delay time, the maximum enhancement factor about168.6was obtained.
     The OES of the plasma have been significantly enhanced with the aluminum hemispherical cavity, the magnetic-spatial confinement or the DP-LIBS with spatial confinement. These confinement are easy design, making and with low cost, so they Have a very broad space for development and application prospects. The results of this study provide a series of new pathways in improving the sensitivity of LIBS.
引文
[1]G. Kirchhoff and R. Bunsen. Chemische Analyse durch Spectralbeobachtungen. Ann. Phys.,1861,189(7):337-381
    [2]A. G Gaydon. The Spectroscopy of Flames. New York:John Wiley,1957.31-72
    [3]李玉.激光诱导等离子体的动力学研究:[博士学位论文].长春:吉林大学,2009
    [4]谢承利.激光诱导击穿光谱数据处理方法及在煤分析中的应用研究:[博士学位论文].武汉:华中科技大学,2009
    [5]J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom.2004,19:1061-1083
    [6]J. P. Singh and S. N. Thakur. Laser-Induced breakdown Spectroscopy. Oxford: Elsevier Science,2007.1-111
    [7]G Weyl, A. Pirri and R. Root. Laser ignition of plasma off aluminium surfaces. AIAA J,1981,19:460-469
    [8]W. E. Maher, R. B. Hall and R. R. Johnson. Experimental Study of. Ignition and Propagation of Laser-Supported Detonation Waves. J. Appl. Phys.,1974,45:2138
    [9]W.T. Silfvast and O.R. Wood. Comparison of radiation from laser-produced and dc-heated plasmas in xenon. Appl. Phys. Lett.,1974,25:274
    [10]B. Steverding. Ignition of laser detonation waves. J. Appl. Phys.,1974, 45(8):3507-3511
    [11]A. N. Pirri, R. G. Root and P. K. S. Wu. Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA J,1978,16(12):1296-1304
    [12]S. Siano, R. Pini, and R. Salimbeni, et al. A diagnostic set-up for time-resolved imaging of laser-induced ablation. Optics and Lasers in Engineering,1996, 25(1):1-12
    [13]X. Chen, B. M. Bian, and Z. H. Shen, et al. Equations of laser-induced plasma shock wave motion in air. Microw. Opt. Technol. Lett.,2003,38 (1):75-79
    [14]M. Corsi, G. Cristoforetti, and M. Giuffrida, et al. Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochimica Acta Part B:Atomic Spectroscopy,2004,59 (5):723-735
    [15]X. Zeng, X. L. Mao, and R. E. Russo, et al. Experimental investigation of ablation efficiency and laser-induced plasma expansion during femtosecond and nanosecond laser ablation of silicon. Applied Physics A:Materials Science and Processing,2004, 80(2):237-241.
    [16]R. J. Goldston, Paul Harding Rutherford. Introduction to plasma physics. University of California:Institute of Physics Pub.,1995.
    [17]J. A. Aguilera, C. Aragon, and E. Tognoni, et al. Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim. Acta Part B,2009,64(7):685-689
    [18]David W. Hahn and Nicolo Omenetto. Laser-Induced Breakdown Spectroscopy (LIBS), Part Ⅰ:Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community. Applied Spectroscopy,2010,64(12):335A-366A
    [19]R. H. Huddlestone and S. L. Leonard. Plasma Diagnostics Techniques. New York: Academic Press,1965.
    [20]A. P. Thorne. Spectrophysics. London:Chapman and Hall,1988
    [21]郑剑杰,基于自由定标法的激光诱导击穿光谱定量化分析技术研究:[硕士学位论文].北京:北京交通大学,2010
    [22]N. Bohr. On the Constitution of Atoms and Molecules. Philosophical Magazine. Series 6,1913,26:1-2526
    [23]H. R. Griem. Plasma Spectroscopy. New York:MgGraw Hill,1964.
    [24]H. R. Griem. Spectral Line Broadening by Plasmas. New York. Academic Press, 1974.
    [25]http://www.fomobio.com/Ai_LA_SP.html
    [26]R. C. Wiens, R. E. Arvidson, and F. P. Seelos, et al. Combined remote mineralogical and elemental identification from rovers:Field and laboratory tests using reflectance and laser-induced breakdown spectroscopy. Geophys. Res.-Planets,2002, 107(E11):8003
    [27]http://msl-scicorner.jpl.nasa.gov/Instruments/ChemCam/
    [28]B. Salle, D.A. Cremers, and R.C. Wiens, et al. Laser-induced breakdown spectroscopy for space exploration applications:Influence of ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochimica Acta B,2005, 60:479-490.
    [29]W. F. Ho, C. W. Ng, and N. H. Cheung. Spectrochemical Analysis of Liquids Using Laser-Induced Plasma Emissions:Effects of Laser Wavelength Applied Spectroscopy. Applied Spectroscopy,1997,51 (1):87-91
    [30]T.H. Maiman. Stimulated Optical Radiation in Ruby. Nature,1960,187(4736): 493-494
    [31]F. Brech and L. Cross. Optical microemission stimulated by a a ruby MASER. Appl. Spectrosc.,1962,16:59-67
    [32]D. A. Cremer and L. J. Radziemski. Laser plasmas for chemical analysis in laser spectroscopy and its application. L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. New York:Marcel Dekker,1987.
    [33]D. A. Cremers and L. J. Radziemski. Detection of chlorine and florine in air by laser-induced breakdown spectroscopy. Anal. Chem.,1983,55:1252-1256
    [34]L.J. Radziemski and D.A. Cremer, Eds., Laser-Induced. Plasmas and Applications. New York:Marcel Dekker.1989.
    [35]D. K. Ottesen, J. C. F. Wang, L.J. Radziemski. Real-time laser spark spectroscopy of particulates in combustion enviroments. Appl.Spectrosc.,1989,43(3):967-976
    [36]W. Sdorra and K. Niemax. Basic investigations for laser microanalysis:Ⅲ. Application of different buffer gases for laser-produced sample plumes. Mikrochim. Acta,1992,107:319-327
    [37]X.Z. Zhao, L.J. Shen, T.X. Lu and K. Niemax, Spatial distributions of electron density in microplasmas produced by laser ablation of solids. Appl. Phys. B,1992, 55:327-330
    [38]A. Ciucci, V. Palleschi, and S. Rastelli, et al. Trace pollutants analysis in soil by a time-resolved Laser Induced Breakdown Spectroscopy technique. Appl. Phys. B, 1996,63:185-190
    [39]JP Singh, H. Zhang, FY Yueh, and KP Carney. Inves- tigation of the effects of atmospheric conditions on the quan- tification of metal hydrides using laser-induced breakdown spectroscopy. Appl. Spectrosc.,1996,50:764-773
    [40]K.Y. Yamamoto, D.A. Cremers, and L.E. Foster, et al. Detection of metals in the environment using a portable laser-induced breakdown Spectroscopy instrument. Appl. Spectrosc.,1996,50(2):222-233
    [41]C. Geertsen, J. L. Lacour, and P. Mauchien, et al. Evaluation of laser optical emission spectrometry for micro analysis in aluminium samples. Spectrochim. Acta PartB, 1996,51:1403-1416
    [42]S. Amoruso, M. Armenante, and V. Berardi, et al. Absorption and saturation mechanisms in Aluminum laser ablated plasmas. Appl. Phys. A,1997,65:265-271
    [43]L.M. Cabalin and J.J. Laserna. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Qswitched laser operation, Spectrochim. Acta Part B,1998,53:723-730
    [44]W. SetiaBudi, W.T. Baskoro, and M. Pardede, et al. Neutral and ionic emission in Q-switched Nd:YAG laser-induced shock wave plasma. Appl. Spectrosc.,1999, 53(11):1347-1351
    [45]M. Capitelli, F. Capitelli and A. Eletskii. Non-equilibrium and equilibrium problems in laser-induced plasmas. Spectrochim. Acta PartB,2000,55:559-574
    [46]G. Colonna, A. Casavola, and M. Capitelli. Modelling of LIBS plasma expansion. Spectrochim. Acta B,2001,56:567-578
    [47]C. Aragon, J. Bengoechea, and J. A. Aguilera. Influence of optical depth on spectral line emission from laser-induced plasma. Spectrochimica Acta Part B,2001, 56(1):619-628
    [48]V. Lazic, R. Barbini, and F. Colao, et al. Self-absorption model in quantitative laser induced breakdownspectroscopy measurements on soils and sediments. Spectrochimica Acta Part B,2001,56:807-820
    [49]L St-Onge, V Detalle, and M Sabsabi. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochimica Acta Part B,2002,57:121-135.
    [50]V. N. Rai, A. K. Rai, and F. Y. Yueh. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt., 2003,42(12):2085-2093
    [51]X. K. Shen, J. Sun, and Y. F. Lu. Spatial confinement effects in laser-induced breakdown spectroscopy. Appl. Phys. Lett.,2007,91(8):081501
    [52]X. K. Shen, H. Wang, and Y. F. Lu. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Appl. Opt.,2009,48(13):2551-2558
    [53]A. M. Popov, F. Colao, and R. Fantoni. Enhancement of LIBS signal by spatially confining the laser-induced plasma. J. Anal. At. Spectrom.,2009,24(5):602-605
    [54]陆同兴,崔执凤,赵献章.激光等离子体镁光谱线Stark展宽的测量与计算.中国激光,1994,21(2):114-119
    [55]陆同兴,赵献章,崔执凤等.用发射光谱测量激光等离子体的电子温度和电子密度.原子与分子物理学报,1994,11(2):120-127
    [56]余亮英,陆继东,张娟等.激光感生击穿光谱及研究现状.激光技术,2004,28(1):103-107
    [57]陈文,陆继东,余亮英等.煤质特性对激光等离子体的影响.应用光学,2006,27(3):216-219
    [58]余亮英,陆继东,陈文等.用激光感生击穿光谱对大气进行定量分析.应用光学,2006,27(2):147-151
    [59]唐晓闩,李春燕,崔执凤等.激光诱导A1等离子体发射光谱特性的实验研究.原子与分子物理学报,2004,21(2):176
    [60]崔执凤,张先燚,姚关心等.铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究.物理学报,2006,55(9):4506-4513
    [61]许洪光,管十成,崔执凤.土壤中微量重金属元素Pb的激光诱导击穿谱.中国激光,2007,34(4):577-581
    [62]Xian-yun Liu, Wei-jun Zhang, Zhen-ya Wang, et al. Time-resolved laser-induced breakdown spectroscopy of aluminum. Optoelectronics Letters,2008,4(5):369-370
    [63]亓洪兴,舒嵘,吕刚等.基于激光诱导离解光谱的物质成分分析技术.激光与红外,2007,37(4):314-317
    [64]亓洪兴,舒嵘.马德敏等.基于激光诱导离解光谱技术的元素识别方法.红外与毫米波学报,2007,26(1):52-55
    [65]孙兰香,于海斌,郭前进等.激光诱导击穿光谱在物质成分定量分析方面的实验研究进展.仪器仪表学报,2008,129(10):2235
    [66]孙兰香,于海斌,辛勇等.基于激光诱导击穿光谱的钢液成分在线监视.中国激光,2011,38(9):0915002
    [67]王建伟,张娜珍,李海洋等LIBS技术在土壤重金属污染快速测量中的应用.化学进展,2008,20(7/8):1165-1171
    [68]张大成,马新文,朱小龙等.激光诱导击穿光谱应用于三种水果样品微量元素的分析.物理学报,2008,57(10):6348-6353
    [69]陆林轩,王自鑫,黎洪坤等.用激光诱导击穿光谱快速分析油漆中的重金属含量.强激光与粒子束,2008,20(11):1827-1831
    [70]袁冬青,周明,沈坚等.激光诱导等离子体技术(LIBS)在金薄膜加工微检测中的应用研究.光谱学与光谱分析,2008,28(10):2232-2236
    [71]林兆祥,吴金泉,龚顺生.延迟双脉冲激光产生的空气等离子体的光谱研究.物理学报,2006,55(11):5892-5898
    [72]李捷,陆继东,林兆祥等.激光感生击穿煤质实验中延迟时间的研究.光谱学与光谱分析,2008,28(4):736-739
    [73]X. K. Shen, J. Sun, and Y. F. Lu,et al. Spectroscopic study of laser-induced A1 plasmas with cylindrical confinement. J. Appl. Phys.,2007,102(9):093301
    [74]F. Docchio and C. A. Sacchi. Shielding properties of laserinduced plasmas in ocular media irradiated by single Nd:YAG pulses of different durations. Invest. phthalmol. Vis. Sci.,1988,29:437-443
    [75]D. A. Cremers, L. J. Radziemski, and T. R. Loree. Spectrochemical analysis of liquids using the laser spark. Appl. Spectrosc.,1984,38:721-729
    [76]R. Sattmann, V. Sturm, and R. Noll. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J. Phys. D,1995,28: 2181-2187
    [77]D. N. Stratis, K. L. Eland and S. M. Angel. Dual-pulse LIBS:why are two lasers better than one?", in Environmental Monitoring and Remediantion Technologies Ⅱ, T. Vo-Dinh and R. L. Spellicy, eds. Proc. SPIE,1999,385:3853
    [78]D. N. Stratis, K. L. Eland and S. M. Angel. Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS. Appl. Spectrosc.,2000,54: 1719-1726
    [79]D. N. Stratis, K. L. Eland, and S. M. Angel. Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma. Appl. Spectrosc.,2001,55:1297-1303
    [80]S. M. Angel, D. N. Stratis, and D. M. Gold, et al. LIBS using dual- and ultra-short laser pulses. Fres. J. Anal. Chem.,2001,369:320-327
    [81]J.Scaffidi, J.Pender, and S.M.Angel, et al. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl.Optics.2003,42:6099-6106
    [82]W. M. Andrzej, P. Vincenzo, S. Israel, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University Press,2006)
    [83]K. Kagawa, K. Kawai, and T. Kobayashi, et al. XeCl excimer laser-induced shock wave plasma and its application to emission spectrochemical analysis. Appl. Spectrosc.,1994,48(2):198-205
    [84]H. Zhang, F. Y. Yueh, and J. P. Singh. Laser induced breakdown spectrometry as a multimetal continuous emission monitor. Appl. Opt.1999,38:1459-1466
    [85]D. A. Cremers, L. J. Radziemski. HandbookofLaser-IndueedBreakdown SPeetroseoPy. JohnWiley&SonsLtd, Chiehester, England,2006.
    [86]R.A. Multari, L.E. Foster, and D.A. Cremers. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Appl. Spectrosc., 1996,50(12):1483-1499
    [87]J. Gruber, J. HeitZ, H. Strasser, et al. Rapid in-situ analysis of liquid steel by laser-induced breakdown speetroscopy. Spectroehimica Acta partB,2001, 56(2):685-693
    [88]R. L. Van der Wal, T. M. Ticich, and P. A. Householder. Trace metal detection by laser-induced breakdown spectroscopy. Appl. Spectrosc.,1999,53(10):1226-1236
    [89]C. F. Su, S. Feng, and J. P. Singh. Glass composition measurement using laser induced breakdown spectrometry. Glass Technol.,2000,41:16-21
    [90]Saggese, S. and R. Greenwall. LIBS Fiber Optic Sensor for Subsurface Heavy Metal Detection. Proceeding of International Society for Optical Engineering (SPIE),1997, 2836:195-205
    [91]M. Z. Martin, N. Labbe, and A. A. Vass, et al. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications. Spectrochim. Acta B,2007,62:1426-1432
    [92]K. K. Ayyalasomayajula, F. Yu-Yueh, and N. H. Cheung. Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples. Applied Optics,2012,51(7):B149-B154
    [93]M.A. Ismail, H. Imam, and M.A. Harith, et al. LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom.,2004,19:489-494
    [94]Y. I. Lee, K. Song, and J. Sneddon, et al. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation. Appl. Spectrosc.,1997,51:959-964
    [95]M. Corsi, G. Cristoforetti, and C. Vallebona, et al. Double pulse, calibration-free laser-induced breakdown spectroscopy:a new technique for in situ standard-less analysis of polluted soils. Appl. Geochem.,2006,21:748-755
    [96]A. M. Popov, F. Colao, and R. Fantoni. Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. At. Spectrom.,2010,25(6):837-848
    [97]H. Kurniawan, T. Kobayashi, and K. Kagawa. The effect of different atmospheres on the excitation process of TEA CO2 laser-induced shock wave plasma. Appl. Spectrosc.,1992,46(4):581
    [98]L. I. Sedov. Similarity and Dimensional Methods in Mechanics. London:Cleaver Hume,1959.
    [99]K. Kagawa, K. Kawai, and T. Kobayashi, et al. XeCl excimer laser-induced shock wave plasma and its application to emission spectrochemical analysis. Appl. Spectrosc.,1994,48(2):198-205
    [100]H. Kurniawan, K. Kagawa, and K. Kagawa, et al. Emission spectrochemical analysis of glass containing Li and K in high concentration using a XeCl excimer laser-induced shock wave plasma. Appl. Spectrosc.,1996,50(3):299-305
    [101]W.S. Budi, H. Suyanto, and K. Kagawa, et al. Shock excitation and cooling stage in the laser plasma induced by a Q-switched Nd:YAG laser at low pressures. Appl. Spectrosc.,1999,53 (6):719-730
    [102]H. C. Liu,X. L. Mao, and R. E. Russo, et al. Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochim. Acta B,1999,54:1607-1624
    [103]C. Th. J. Alkemade, Tj. Hollander, and P. J. Th. Zeegers, et al. Metal Vapors in Flames. Oxford:Pergamon Press,1982.
    [104]C. A. Bye and A. Scheeline. Saha-Boltzmann statistics for determination of electron temperature and density in spark discharges using an Echelle/CCD system. Appl. Spectroscopy,1993,47(12):2022-2030
    [105]G. Asimellis, S. Hamilton, and M. Kompitsas, et al. Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2005,60(7-8): 1132-1139
    [106]L. J. Radziemski and D. A. Cremers. Laser Induced Plasma and Applications. New York:Marcel Dekker,1989.
    [107]H. Zhang, F. Y. Yueh, and J. P. Singh. Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor. Appl. Opt.,1999,38(9):1459-1466
    [108]Yu. P. Razier. Laser-Induced Discharge Phenomena. New York:Consultants Bureau, 1977.
    [109]A. K. Knight, N. L. Scherbarth, and M. J. Ferris, et al. Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration. Appl. Spectrosc.,2000,54(3):331-340
    [110]G. Arca, A. Ciucci, and E. Tognoni, et al. Trace element analysis in water by the laser-induced breakdown spectroscopy techinique. Appl. Spectrosc.,1997,51(8): 1102-1105
    [111]T. X. Phuoc and F. P. White. Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel,2002,81(13):1761-1765
    [112]D. Anglos, V. Zafiropulos, and J. C. Miller, et al. Laser-induced breakdown spectroscopy for the analyses of 150-year old daguerreotypes. Appl. Spectrosc.,2002, 56(4):423-432
    [113]J. Scaffidi, W. Pearman, and S. M. Angel, et al. Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy. Appl. Spectrosc.,2006,60(l):65-71
    [114]J. Scaffidi, J. Pender, and S. M. Angel, et al. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl. Opt.,2003,42(30):6099-6106
    [115]R. E. Russo, X. L. Mao, and S. S. Mao, et al. Femtosecond laser ablation ICR-MS. T. Anal. At. Spectrom.,2002,17(9):1072-1075
    [116]H. Sobral, M. Villagran-Muniz, and A. C. Raga, et al. Temporal evolution of the shock wave and hot core air in laser induced plasma. Appl. Phys. Lett.,2000,77(20): 3158-3160
    [117]L. B. Guo, C. M. Li, and Y. F. Lu, et al. Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl. Phys. Lett.,2011,98(13):131501
    [118]V. N. Rai, M. Shukla, and H. C. Pant. An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma," Pramana J. Phys., 1999,52(1):49-65
    [119]F. F. Chen, Introduction to Plasma Physics. New York:Plenum,1974.
    [120]X. K. Shen, Y. F. Lu, and Y. X. Han. Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys.,2006,100(5):053303
    [121]G. Han and P. T. Murray. Laser-plasma interactions in 532 nm ablation of Si. J. Appl. Phys.,2000,88(2):1184-1186
    [122]F. Colao, S. Pershin, and R. Fantoni, et al. Investigation of the mechanisms involved in formation and decay of laser-produced plasmas. Appl. Surf. Sci.,2002,197-198: 207-212
    [123]F. Colao, V. Lazic, and S. Pershin, et al. A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples. Spectrochim. Acta, B At. Spectrosc.,2002,57(7):1167-1179
    [124]J.Scaffidi, J.Pender, and S.M.Angel, et al. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl.Optics.2003,42:6099-6106
    [125]J. Scaffidi, W. Pearman, and SM Angel, et al. Appl. Optics,2004,43:5243
    [126]M. Corsi, G. Cristoforetti, and C. Vallebona, et al. Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochim.Acta B, 2004,59:723
    [127]L.Caneve, F.Colao, and V.Spizzichino, et al. Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy. Appl Part A,2006, 85:151-157
    [128]A.D. Giacomo, A. M. Dell, and O. D. Pascale, et al. From single pulse to dulble pulse ns-laser induced breakdown spectroscopy under water:Elemental analysis of aqueous solutions and submerged solid samples. Spectrochimica Acta Part B,2007, 62:721-738
    [129]A. D. Giacomo, A. M. Dell, and D. Bruno, Experimental and theoretical comparison of single pulse and double pulse laser iduced breakdown spectroscopy on medical samples. Spectrochimica Acta Part B,2008,63:805-816
    [130]张谦,熊威,李润华等.用双脉冲LIBS技术快速测量中痕量汞元素.光谱学与光谱分析,2011,31:521-524
    [131]J. Uebbing, J. Brust, and K. Niemax, et al. Reheating of a laser-produced plasma by a second pulse laser. Appl. Spectrosc.1991,45:1419-1423
    [132]D. N. Stratis, K. L. Eland, and S. M. Angel et al. Dual-pulse LIBS using a preablation spark for enhanced ablation and emission. Appl. Spectrosc.,2000, 54:1270-1274
    [133]R. E. Russo, X. Mao, and S. S. Mao et al. The physics of laser ablation in microchemical analysis. Anal. Chem.2002,74:70A-77A
    [134]W. B. Lee, J. Y. Wu, and J. Sneddon et al. Recent applications of laser-induced breakdown spectrometry:a review of material approaches. Appl. Spectrosc. Rev., 2004,39:27-97
    [135]K. Song, Y. I. Lee, J. Sneddon. Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl. Spectrosc. Rev.,2002,37:89-117
    [136]S. Pandhija, N. K. Rai, and S. N. Thakur, et al. Contaminant concentration in environmental samples using LIBS and CF-LIBS. Appl. Phys. B,2010,98:231-241
    [137]J. Scaffidi, S. M. Angel, D.A. Cremers. Emission enhancement mechanisms in dual-pulse laser-induced breakdown spectroscopy. Anal. Chem.2006,78:24-32
    [138]U. Panne, R. E. Neuhauser, and R. Niessner. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy. Spectrochim. Acta, B At. Spectrosc., 2001,56(6):839-850
    [139]L. M. Cabalin and J. J. Laserna. Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry. Anal. Chem.2001,73(6):1120-1125
    [140]A. C. Samuels, F. C. DeLucia, and A. W. Miziolek et al. Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein:initial studies of discrimination potential. Appl. Opt.,2003,42(30):6205-6209
    [141]N. J. McMillan, R. S. Harmon, and A. M. Miziolek, et al. Laser-induced breakdown spectroscopy analysis of minerals:Carbonates and silicates. Spectrochim. Acta, B At. Spectrosc.,2007,62B(12):1528-1536
    [142]F. C. De Lucia, Jr., J. L. Gottfried, and A. W. Miziolek, et al. Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection. Opt. Express,2009,17(2):419-425
    [143]F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, and C. Becker, et al. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta, B At. Spectrosc.,2001, 56(6):933-945
    [144]R. Noll, H. Bette, A. Brysch, and V. Sturm, et al. Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry. Spectrochim. Acta, B At. Spectrosc.,2001,56(6):637-649
    [145]R. E. Neuhauser, U. Panne, and R. Niessner. Laser-induced plasma spectroscopy (LIPS):a versatile tool for monitoring heavy metal aerosols. Anal. Chim. Acta,1999, 392(1):47-54(1999)
    [146]B. J. Marquardt, B. M. Cullum, and S. M. Angel, et al. Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas. Proc. SPIE,1997, 3105:203-212
    [147]C. M. Davies, H. H. Telle, and A. W. Williams. Remote in situ analytical spectroscopy and its applications in the nuclear industry. Anal. Bioanal. Chem.,1996, 355(7-8):895-899
    [148]K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, "Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc.,1996,50(2):222-233
    [149]D. Anglos. Laser-induced breakdown spectroscopy in art and archaeology. Appl. Spectrosc.,2001,55(6):186A-205A
    [150]M. Corsi, G. Cristoforetti, and C. Vallebona, et al. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl. Opt.,2003, 42(30):6133-6137
    [151]S. Singha, Z. Hu, and R. J. Gordon. Ablation and plasma emission produced by dual femtosecond laser pulses. J. Appl. Phys.,2008,104(11):113520
    [152]A. De Giacomo, M. Dell'Aglio, and M. Capitelli. From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water:elemental analysis of aqueous solutions and submerged solid samples. Spectrochim. Acta, B At. Spectrosc.,2007, 62(8):721-738
    [153]L. B. Guo, W. Hu, and Y. F. Lu, et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement. Opt. Express, 2011,19(15):14067-14075
    [154]D. K. Killinger, S. D. Allen, and E. L. Dottery, et al. Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse. Opt. Express, 2007,15(20):12905-12915

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700