用户名: 密码: 验证码:
具有形状记忆功能的D,L-聚乳酸基输卵管避孕材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚乳酸大分子二醇为软段,己二异氰酸酯(HDI)和丁二胺(BDA)为硬段形成的聚乳酸基聚氨酯脲(PDLLA-PUU SMP)是一种新型的具有良好形状记忆性能和生物可降解性的智能高分子材料,可望用于加工形状记忆输卵管节育栓,实现无创植入,并随节育栓的降解,输卵管增生纤维组织可完全取代节育栓而阻塞输卵管。以输卵管上皮细胞为模型细胞,全面评价PDLLA-PUU SMP的短期和长期细胞毒性,并考查PDLLA-PUU SMP节育栓的避孕效果对于指导PDLLA-PUU SMP的优化制备,推进节育栓的进一步临床试验是不可缺少的。PDLLA-PUU SMP1K1.1是以数均分子量为2100的聚乳酸大分子二醇为软段,HDI和BDA为硬段,且HDI与大分子二醇摩尔比为1:1.1而合成的PDLLA-PUU。其Tg为38.08℃,在人体生理温度附近,就形状温度而言,非常适合用于加工输卵管节育器。因此,本研究考察了PDLLA-PUU SMP1K1.1的形状记忆性能和体外生物可降解性;以兔输卵管上皮细胞为模型细胞,采用聚合物膜共培养法评价了材料的细胞相容性,采用间接法考查材料降解液的细胞毒性,以评价材料的长期细胞毒性;并以新西兰兔为模型动物初步考查了材料的体内避孕效果。主要研究内容和结论如下:
     (1)体外降解实验表明,对照组PDLLA的失重率和pH值变化存在加速阶段,呈现明显的酸致自催化降解现象;但在降解过程中,失重率以及介质的pH值下降缓慢,酸性环境导致的自催化降解现象减弱,说明PDLLA-PUU SMPs材料在降解过程中释放出的碱性二胺物质能够部分中和降解产物中的酸性物质。
     (2)依次采用刮除法和反复差速贴壁法分离纯化得到了原代输卵管上皮细胞。倒置相差显微镜观察和免疫荧光染色鉴定结果表明,所得细胞具有明显的输卵管上皮细胞的生物学特征,可用于后续细胞实验。
     (3)以PDLLA为对照,将PDLLA-PUU SMP1K1.1膜与兔输卵管上皮细胞复合培养,考察了细胞在材料表面的形态和增殖能力。结果表明,与对照组PDLLA膜相比,输卵管上皮细胞在形状记忆材料薄膜上具更好的形态和细胞增殖能力。
     (4)输卵管上皮细胞在降解液中的培养结果表明:PDLLA-PUU SMP1K1.1在12周降解时间内,输卵管上皮细胞在各种浓度降解液中的增殖活力略低于阴性对照组,材料的细胞毒性为1级,表明PDLLA-PUU SMP1K1.1无明显的长期细胞毒性,是一种安全的生物可降解高分子材料,可用于加工输卵管节育器。
     (5)采用自制模具将PDLLA-PUU SMP1K1.1加工成直径为2mm,长度为10mm的波形节育栓,并将其植入新西兰兔输卵管内。组织学观察结果表明,节育器植入3月后,兔输卵管的粘膜层大部分纤维化,增生纤维堵塞了大部分管腔,这时异物反应已基本完全消失,无明显的充血和水肿现象。而植入6月后,整个管腔几乎完全被增生纤维堵塞,可以完成避孕功能。
A novel poly(DL-lactic acid)-based poly(urethane-urea) (PDLLA-PUU) has been previously designed and prepared using PDLLA-based macrodiol as soft segments, hexamethylene diisocynate (HDI) and butanediamine (BDA) as hard segments. It has been proved of good shape memory properties and biodegradability. These properties make PDLLA-PUU suitable for oviduct contraceptive devices which may be non-invasively implanted into oviducts through vagina and uterus. Moreover, this PDLLA-PUU SMPs based oviduct contraceptive device may induce hyperplastic fibrous tissue with its degrading, and finally the oviduct is blocked by the fibrous tissue instead of the foreign device. Therefore, evaluating the short-term and long-term cytotoxicity by using oviduct epithelial cells as the model cell, and further in vivo examining the contraceptive effects are indispensable to both direct the modification of PDLLA-PUU SMP and push its clinical tests. PDLLA-PUU SMP1K1.1, a PDLLA-PUU with a soft segment of Mn=2100 and molar ratio of the macrodiol to HDI equal to 1:1.1, has a Tg of 38.08℃, which is close to the body temperature and thus suitable for the contraceptive device fabrication. In this study, the shape memory properties and degradability of PDLLA-PUU SMP1K1.1 were firstly determined, and then the short-term cytotoxicity was examined by co-culture of oviduct epithelial cells with PDLLA-PUU SMP1K1.1 films and long-term cytotoxicity by testing the cell viability in PDLLA-PUU SMP1K1.1 degradation products, and finally the contraceptive effect was preliminarily evaluated. The main work and conclusions are listed as follows:
     (1) The weight loss ratio and pH value changes of PDLLA-PUU SMP1K1.1 during 12-week degradation were tested to characterize the in vitro degradation behavior by using PDLLA as controls. The results revealed that the weight loss ratio of PDLLA and pH value change of the medium decreased significantly, exhibiting obvious acid catalyzed auto-accelerating degradation. However, the weight loss ratio and pH value changes of SMPs decreased slowly and the weight loss ratio was less than 30% after degrading for 12-week, which may due to the existence of alkaline BDA during the degradation of SMPs which could partially neutralize the acidic degradation products of PDLLA segments.
     (2) Scratch assay and then repetitive differential attachment methods were established to isolate and purify rabbit oviduct epithelial cells. Observations by inverted fluorescence microscope and identifications by immunofluorescence assays indicated that the obtained cells demonstrated typical morphology and biological characteristics of oviduct epithelial cells.
     (3) The short-term cytotoxicity and cytocompatibility of PDLLA-PUU SMP1K1.1 were evaluated by detecting the cell morphology and viability of oviduct epithelial cells co-cultured on PDLLA-PUU SMP1K1.1 films. PDLLA films were employed as controls. The results indicated that the cells on PDLLA-PUU SMP1K1.1 exhibited much better cell morphology and higher viability, suggesting decreased cytotoxicity and improved cytocompatibility compared to PDLLA films.
     (4) The cell viability of oviduct epithelial cells cultured in PDLLA-PUU SMP1K1.1 degrading products was measured. The results revealed that the viability of the cells cultured in the degrading products of various concentration was slightly lower than that in the negative control. The USP level is level 1, suggesting PDLLA-PUU SMP1K1.1 has no obvious long-term cytotoxicity and is safe for oviduct contraception.
     (5) A series of oviduct contraceptive devices with a diameter of 2mm and a length of 10mm was fabricated from PDLLA-PUU SMP1K1.1 and their contraceptive effect was evaluated by implanting the devices into the isthmus of female New Zealand rabbits. The histopathologic changes of oviduct mucosa were observed. The results indicated that obvious fibrous hyperplasia tissues were induced after implantation of 3 month which blocked most of the oviduct and there was no observable synthetic polymer, and after implantation of 6 month, the oviduct was almost completely blocked. This shows that the PDLLA-PUU SMP1K1.1 based contraceptive devices are effective in oviduct contraception. A longer term in vivo test is on-going.
引文
[1] Curtis KM, Chrisman CE, Peterson HB. Contraception for women in selected circumstances [J]. Obstetrics and Gynecology, 2002, 99(6):1100-1112.
    [2] Kubba A, Guillebaud J, Anderson RA, et al. Contraception [J]. The Lancet, 2000, 356:1913-1919.
    [3] Keder LM. New developments in contraception [J]. J Pediatr Adolesc Gynecol, 2002, 15:179-181.
    [4] Saxena BB, Singh M, Gospin RM, et al. Efficacy of nonhormonal vaginal contraceptives from a hydrogel delivery system [J].Contraception, 2004, 70(3):213-219.
    [5] Peterson HB, Xia ZS, Wilcox LS, et al. Pregnancy after tubal sterilization with silicone rubber band and spring clip application [J]. Obstetrics and Gynecology, 2001, 97(2):205-210.
    [6]王磊光,邱毅,刘静等.镍钛记忆合金硅橡胶可复性输卵管避孕栓的动物实验研究[J].中国计划生育学杂志, 2006, 5(127): 285-286.
    [7]李素香,俞顺明,冯苗,潘萍.放置聚乙烯可复性输卵管避孕栓对新西兰兔输卵管粘膜的影响[J].生殖与避孕, 2007, 27(5):323-325.
    [8] Lendlein A, Langer R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications [J]. Science, 2002, 296: 1673-1676.
    [9] Ferrera DA. Shape memory polymer intravascular delivery system with heat transfer medium [P]. US Patent, 6,224,610, 2001.
    [10] Metcalfe A, Desfaits AC, et al. Cold hibernated elastic memory foams for endovascular interventions [J]. Biomaterials, 2003, 24 (3): 491-497.
    [11] Yakacki CM, Shandas R, Lanning C, et al. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications [J]. Biomaterials, 2007, 28:2255–2263.
    [12] Lendlein A, Kelch S. Shape-memory polymers as stimuli-sensitive implant materials [J]. Clin Hemorheol Micro, 2005, 32:105–116.
    [13] Lendlein A, Kelch S. Shape-Memory Polymers [J]. Angew Chem Int Ed, 2002, 41:2034–57.
    [14] Elahinia MH, Ahmadian M. Design of a Kalman filter for rotary shape memory alloy actuators [J]. Smart Mater Struct, 2004, 13: 691-697.
    [15] Pandit P, Gupta SM, Shape-memory effect in PMN-PT(65/35) ceramic [J]. Solid State Commun, 2004, 131: 665-670.
    [16] Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers [J]. J Mater Chem,2007, 17: 1543–1558.
    [13] Choi NY, Kelch S, Lendlein A. Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates [J]. Adv Environ Res, 2006, 8 (5): 439-445.
    [14] Wang HH, Yuen UE. Synthesis of thermoplastic polyurethane and its physical and shape memory properties [J]. J Appl Polym Sci, 2006, 102(2): 607-615.
    [15] Liu GQ, Zhao XP, Tang T. Stimuli-response of gelatin hydrogel under direct current electric field [J]. Acta Polym Sin, 2003, 3: 398-402.
    [16]秦瑞丰,朱光明,杜宗罡等.电致形状记忆聚己内酯/炭黑复合导电高分子材料的研究[J].中国塑料, 2005, 19 (5):23-28.
    [17] Lendlein A, Jiang H, Junger O, et al. Light-induced shape-memory polymers [J]. Nature, 2005, 434:879-882.
    [18] Nagata M, Yamamoto Y. Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties [J]. J Polym Sci, Part A: Polym Chem, 2009, 47:2422–2433.
    [19] Mohr R, Kratz K, Weigel T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3540-3545.
    [20] Schmidt AM. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles [J]. Macromol Rapid Commun, 2006, 27(14):1168-1172.
    [21] Zheng XT, Zhou SB, Xiao Y, et al. Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles [J]. Colloids Surf B: Biointerfaces, 2009, 71(1):67-72.
    [22] Chen MC, Tsai WH, Chang Y, et al. Rapidly self-expandable polymeric stents with a shape-memory property [J]. Biomacromolecules, 2007, 8(9):2774-2780.
    [23] Lv HB, Liu YJ, Zhang DX, et al. Solution-responsive shape-memory polymer driven by forming hydrogen bonding [J]. Adv Mat Res, 2008, 47(50):258-261.
    [24] Yonggang Li, Yuanliang Wang, Yanfeng Luo. Synthesis and characterization of poly(D,L-lactide)-based shape memory polymers. Advanced Materials Research, 2009,79-82: 271-274.
    [25] Yuanliang Wang, Yonggang Li, Yanfeng Luo, et al. Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer. Materials Letters,2009,63(3-4): 347-349.
    [26] Andreas L, Annette MS, Michael S, et al. Shape-memory polymer networks fromoligo(ε-caprolactone)dimethacrylates [J]. J Polym Sci, Part A: Polym Chem, 2005, 43: 1369-1381.
    [27] Andreas L, Jorg Z, Feng YK, et al. Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers [J]. Biomacromolecules, 2009, 10: 975–982.
    [28] Koji N, Yuichi U, Tatsuro O, et al. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release [J]. Biomacromolecules, 2009, 10: 1789–1794.
    [29] Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. [J] J Appl Biomater, 1993, 4: 13-27.
    [30]俞耀庭,张兴栋.生物医用材料,第一版[M].天津:天津大学出版社, 2000: 54-55.
    [31] Wu XS, Wang N, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. PartⅡ: Biodegradation[J]. J Biomater Sci: Polymer Edn, 2001, 12(1): 21-34.
    [32] Buhi W C,Alvarez I M, Kouba A J. Secreted proteins of t he oviduct [J]. Cells Tissues Organs ,2000,166 (2):165-179.
    [33] Dubeyl R K, Rosselli M, Imt hurn B,et al. Vascular effects of environmental oestrogens : implications for reproductive andvascular health [J].Hum Reprod Update,2000,6 (4):351-363.
    [34] Reischi J,Prelle K,Schol H,et al.Factor affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cell sinvitro[J]. Cell Tissue Res,1999,296 (2):371-383.
    [35]钟瑜,潘善培,张春雪.原代和传代培养的人输卵管上皮细胞对小鼠胚胎体外发育的影响[J].暨南大学学报,1996,17:100-104.
    [36] Ajonuma L C, Chan L N,Ng E H, et al.Characterization of epithelial cell culture from human hydrosalpinges and effects of its conditioned medium on embryo developmentand sperm motility[J].Hum Reprod,2003,18(2):291-298.
    [37] Briton Jones C, Lok IH,Yuen PM , et al.Human oviductin mRNA expression is not maintained in oviduct mucosal cell culture[J].Fertil Steril,2002,77(3) :576-580.
    [38] Hensten-Pettersen A. Comparison of the methods available for assessing cytotoxicity[J]. I Endod J,1988, 21: 89-95.
    [39] Lefebvre C A. Biocompatibility of visible light-cured resin systems in prosthodontics[J]. Prosthet Dent,1994, 71: 178-184.
    [40] Johnson HJ, Northup SJ, Seagraves PA, et al. Biocompatibility test procedures for materials evaluation in vitro: II. Objective methods of toxicity assessment[J]. J Biomed Mater Res,1985, 19(5): 489-508.
    [41]赵永贞,陈秀荔.发情期家兔输卵管上皮细胞和基质细胞的分离培养与鉴定[J].西北农林科技大学学报,2008,36(2):27-33
    [42] Amy L.Way.Isolation and culture of bovine oviductal epithelial cells for use in theanatomy and physiology laboratory and undergraduate research[J].Adv Physiol Educ,2006(30):237-241
    [43] Zhang SF, Feng YK, Li Z, et al. Novel interpenetrating networks with shape-memory properties[J]. J Polym Sci, Part A: Polym Chem, 2007, 45: 768–775.
    [44] Harmand MF, Bordenave L, Bareille R et al. In vitro study of biodegradation of Co-Cr alloy, a human cell culture mode [J]. J Biomater Sci Polym Ed, 1995, 6(9): 809-814.
    [45]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003: 265-269.
    [46] Lendlein A, Langer R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications [J]. Science, 2002, 296: 1673-1676.
    [47]苏爱华,王远亮,罗彦凤等.新型改性聚乳酸与成骨细胞相容性的研究[J].生物医学工程杂志,2005,22(4):708-710.
    [48]罗彦凤,王远亮,牛旭峰等.二胺改性聚乳酸的合成和表征[J].高分子材料科学与工程,2005,3,21(2)139-146.
    [49]苏爱华,王远亮,罗彦凤等.乙二胺改性聚乳酸对成骨细胞的影响[J].中国临床康复,2004,2,8(5)866-868.
    [50] Lendlein A, Jiang H, Junger O, et al. Light-induced shape-memory polymers [J]. Nature, 2005, 434:879-882.
    [51] Zhang SF, Feng YK.Novel interpenetrating networks with shape-memory properties [J]. Polym Sci Part A: Polym Chem,2007, 45(5):768-775.
    [52]王钜.现代医学实验动物学概述[M].北京:中国协和医科大学出版, 2004,第二章第五节.
    [53]张觇宇,罗彦凤,王远亮等.形状记忆输卵管避孕材料的急性毒性研究[J].重庆医学,2008,37(17):1934-1944.
    [54]张觇宇.基于形状记忆聚合物的输卵管节育器的研究.博士学位论文.第三军医大学,2008,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700