用户名: 密码: 验证码:
铅锌冶炼烟气洗涤含汞污酸生物制剂法处理新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界铅锌第一生产大国,2009年铅、锌产量分别达370.79万吨和435.67万吨。铅锌冶炼过程产生的大量SO2烟气主要用于制硫酸,烟气中还含有汞等重金属烟尘,烟气制酸前在洗涤除尘过程中产生大量高浓度酸性重金属废水(简称污酸)。污酸废水酸度高,其中含有多种重金属离子,且重金属离子浓度高,形态复杂,毒性大。传统的硫化处理方法难以实现稳定达标。污酸若得不到有效的处理而排放入环境,将会给水体带来严重的污染。
     本研究以株洲冶炼集团铅锌冶炼过程烟气洗涤产生的污酸为研究对象,其性质非常复杂。污酸中硫酸的含量在2-4%之间,还溶解了高浓度的SO2酸性气体,主要含有汞、铜、铅、锌、镉、砷等重金属离子,以及高浓度的氟、氯及硫酸根离子。针对目前采用硫化法处理含汞污酸难以稳定达标的现状,研究了污酸的性质,提出了污酸生物制剂法处理新工艺,主要研究成果如下:
     通过研究污酸的性质及其中汞的赋存形态,确定了污酸中汞主要有三种赋存形态:颗粒态、胶体态和离子态;通过研究硫化法处理污酸的热力学,剖析了硫化法处理污酸重金属不能稳定达标的原因,为解决胶体汞去除的难题奠定了理论基础。
     采用电毛细曲线法研究了污酸中汞胶体的结构,建立了污酸中汞胶体结构模型,结果表明原子态汞进入污酸溶液将优先超载吸附HgCl42-形成三电层结构,并对其形成胶体键能进行了分析,发现原子汞表面和HgCl42-之间产生的键能较弱。根据Gouy-Chapman-Stern (GCS)模型对汞胶体的zeta电位进行了推算,并考察了溶液中的金属阳离子对胶体汞稳定性的影响,提出了污酸中胶体汞的破坏方法。
     开发了“生物制剂配合—水解”处理污酸新工艺,研制了处理含汞污酸的生物制剂,并优选了一种高分子阳离子化合物——脱汞剂,通过生物制剂和脱汞剂的协同作用同时深度脱除污酸中的汞及其他重金属离子。生物制剂基于其中含有的多种功能基团脱除污酸中离子态汞和其他重金属离子,实现出水高效净化。脱汞剂主要通过压缩双电层破坏胶体汞的结构,以网捕架桥的作用使胶体汞发生絮凝沉淀。通过单因素和正交试验确定了生物制剂法脱除污酸中汞及其他重金属的最优条件:生物制剂/Hg=16,脱汞剂投加量16mg/L,配合反应时间30min,水解pH值10.0,水解时间30min,处理后出水中各重金属离子浓度均达到《污水综合排放标准》(GB 8978-1996)。
     为了将实验室的研究成果转化为生产力,使化学反应适应实际工业生产,在株冶污酸工段现场进行了污酸(15-30m3/h)生物制剂连续化处理的中间试验。研究开发了多级溢流反应设备,基于计算机模拟优化设计了管道反应器,实现了生物制剂、脱汞剂与污酸中重金属的高效混合反应,并优化工艺参数,确定了工业生产过程中各药剂的投加量和生产参数:生物制剂/汞=40,脱汞剂的投加量为20g/m3,水解pH值10-11。新工艺在株冶原硫化设施上进行了试运行,通过湖南省环境监测站连续48小时的跟踪监测分析,结果表明处理后出水中各重金属离子浓度均达到《污水综合排放标准》(GB 8978-1996)。
     基于污酸中不同形态汞的特征,提出增加均化工序以净化颗粒态汞的新思路。在株冶原硫化处理设施上进行工业试验,为污酸生物制剂处理工艺改造提供设计参数,同时为污酸渣的综合利用提供依据。工业试验结果表明,生物制剂法通过均化、配合、水解三个过程,实现对污酸中的汞以及其他重金属同时深度处理,回收的均化渣和配合渣中汞的质量分数分别为28.31%和45.08%,均可以作为冶炼原料回收其中的重金属。水解渣中重金属含量低,便于安全处置。
     在工业试验的基础上,株冶集团根据生物制剂法处理流程对污酸处理系统进行了全面的升级改造。建成了100m3/h的工程示范,该技术列于2009年度国家先进污染防治示范技术名录,可为国内同类废水处理提供可行技术。
China is the world's largest producer of lead and zinc. The amount of lead and zinc produced in 2009 reached 3.71 and 4.36 million tons, respectively. Lead and zinc smelting process generates a great deal of sulfur dioxide gas, which is mainly used for the production of sulfuric acid. This smelting gas also contains mercury and other heavy metals. High concentration of acidic wastewater containing heavy metals (shorten as acidic wastewater) was generated in the washing process before the production of sulfuric acid. This acidic wastewater has high acidity and contains various toxic heavy metal ions of high concentration and in complex form. The traditional sulfide approach is difficult to achieve stable discharge standard. If acidic wastewater discharged into the environment without effective treatment, it will bring serious pollution to the water system.
     This study was aiming at acidic wastewater generated from the gas washing process of lead and zinc smelting in Zhuzhou Smelter, its character was very complex. The content of sulfuric acid in acidic wastewater was 2-4%. It also dissolved high concentration of acidic SO2 gas, which mainly contains heavy metals such as Hg, Cu, Pb, Zn, Cd, As and high concentration of F, Cl, sulfate ions. Treatment of acidic wastewater containing mercury by sulfide method is difficult to stably meet the discharge standards, thus the properties of acidic wastewater was studied and the novel technique was invented to treat acidic wastewater by biologics. The main results are as follows:
     Based on the properties of acidic wastewater, it can be confirmed that the speciation of mercury in acidic wastewater was complex, which mainly includes three kinds of forms, i.e., granule state, colloid state and ion state. Moreover, thermodynamic studies about treatment of acidic wastewater using sulfide method revealed the reasons why the acidic wastewater treated by sulfide can not meet the emission standards stably. The theoretical foundation was established to solve the difficult problem of removal colloidal mercury from acidic wastewater.
     The structure of colloidal mercury was studied by electrocapillary curve and the model of colloidal mercury in acidic wastewater was established. When the atomic mercury was entered into the acidic wastewater, it preferentially adsorbed HgCl42- to form three-electron-layer structure. Moreover, its colloidal bond energy was analyzed. The result indicated that the bond energy between the surface of mercury and HgCl42- was weak. The zeta potential of colloidal mercury was calculated according to Gouy-Chapman-Stern model. In addition, effect of metal cations in solution and cationic compounds of organic polymer on the stability of colloidal mercury were also investigated. Thus, a new method for destroying the structure of colloidal mercury in acidic wastewater was developed.
     Novel technology of "biologics complex-hydrolysis" for treatment of acidic wastewater containing mercury was invented. Water treatment reagent—biologics and a kind of cationic compounds of organic polymer—demercuration were developed to deeply remove mercury and other heavy metal ions from acidic wastewater. Biologics containing various functional groups can be used to remove ionic mercury and other heavy metal ions by forming complexes. Demercuration was used to destroy the structure of colloidal mercury by compressing double-layer. Demercuration was also used to make colloidal mercury sedimentation in flocculation via fishing and bridging effect. Single-factor experiment combined with orthogonal experiment were carried out to determine the optimal conditions for removing mercury and other heavy metals in acidic wastewater using biologics. Under the following optimal conditions:biologics to mercury ratio was 16, the dose of demercuration was 16mg/L, complexing reaction time was 30min, hydrolysis pH was 10.0 and hydrolysis time was 30min, heavy metals in treated water reached Integrated wastewater discharge standard (GB 8978-1996).
     In order to transfer the laboratory research into productive forces and make the chemical reaction suitable for industrial production, the pilot test (15-30m3/h) was carried out continuously in acidic wastewater section of Zhuzhou Smelter. A multi-level spill response equipment was invented; moreover, the pipe reactor was designed with the help of computer simulation and optimization. The efficient reaction of biologics and demercuration agent with acidic wastewater was realized and the optimal parameters for industrial production were determined as follows: biologics to mercury ratio was 40, the dose of demercuration was 20 g/m3, hydrolysis pH was 10-11. Trial operation of this new technology was carried out in Zhuzhou Smelter based on the original facilities for sulfide method. The results was continuously tracked and monitored for 48 hours by Hunan Environmental Monitoring Station, which indicated that heavy metals in treated water meet Integrated wastewater discharge standard (GB 8978-1996).
     Based on the characteristics of different species of mercury in acidic wastewater, the new idea of increasing the homogenization process to purify particulate mercury was proposed. In order to offer the design parameters for process modification of acidic wastewater treatment by biologics and provide evidence for the comprehensive utilization of the slag generated from the acidic wastewater treatment, industrial experiment was carried out. The results indicated that simultaneous and deep removal of mercury and heavy metals from acidic wastewater was realized via homogenization, complex and hydrolysis processes of biologics method. Moreover, the content of mercury in the recovered homogenization slag and in the recovered complex slag was 28.31% and 45.08%, respectively. Thus, the recovered homogenization slag and the recovered complex slag can be used as raw materials for smelting to recover the heavy metals. However, the low content of heavy metals in the recovered hydrolysis slag led to its safe disposal.
     On the basis of the industrial experiment, the system of acidic wastewater treatment in Zhuzhou Smelter was comprehensively upgraded according to the flow of biologics method. The demonstration project of 100m3/h was established. This technology was listed in the advanced pollution control technology of 2009, which provides an available technology for treating domestic acidic wastewater containing mercury.
引文
[1]黄祥华,董四禄.我国有色金属及烟气制酸振兴规划与发展[J].硫酸工业,2009,(5):1-5
    [2]郭智生,黄卫华.有色冶炼烟气制酸技术的现状及发展趋势[J].硫酸工业,2007,(2):13-21
    [3]齐焉.积极应对当前危机增强行业发展信心努力促进硫酸行业健康发展.2009年中国硫酸行业年会暨硫协会员代表大会工作报告
    [4]余滔.国内有色冶炼低浓度二氧化硫烟气制酸技术的应用进展[J].硫酸工业,2009,(4):8-11
    [5]琚成新,宫玉川,张斌.钼精矿焙烧烟气制酸工艺探索[J].中国钼业,2008,32(2):5-8
    [6]陈南洋.国内有色冶炼低浓度二氧化硫烟气制酸技术的应用进展[J].工程设计与研究,2005,(118):19-23
    [7]屈娜.贵冶硫化中和法除砷工艺探讨[J].铜业工程,2009,(2):16-19
    [8]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003
    [9]刘玉强,刘世和.镍冶炼烟气制酸的酸性废水减排及再利用[J].硫酸工业,2008,(1):28-32
    [10]国家环境保护局.有色金属工业废水治理[M].北京:中国环境科学出版社,2001
    [11]潘庆洋,王锦刚.葫芦岛有色公司硫酸生产现状及展望[J].硫酸工业,2008,(5):18-22
    [12]王学锋,朱桂芬.重金属污染研究新进展[J].环境科学与技术,2003,26(1):54-56
    [13]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究,2004,21(4):54-56
    [14]常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2000,19(1):59-63
    [15]徐承水.环境中有害微量元素对人体健康的影响[J].广东微量元素科学,1999,6(10):1-3
    [16]胡文玉,梅光泉.化工工人体内微量元素积累与健康的关系[J].广东微量元素科学,1998,5(7):6-8.
    [17]胡文玉,梅光泉.微量元素在人体内的化学行为[J].广东微量元素科学,1998, 5(11):17-19
    [18]胡文玉,梅光泉.矿泉水中微量元素对人体健康的影响[J].微量元素与健康研究,1997,14(3):41-43
    [19]龙大祥.铜冶炼含砷污水处理[J].工业用水与废水,2000,31(4):30-32
    [20]李敦顺,易求实,马明兰.烟气制酸中的污酸处理方法[J].化学与生物工程,2006,23(12):55-56
    [21]黎明.中和铁盐法处理高砷污酸废水[J].有色冶炼,2000,29(3):24-26
    [22]尹敬群,田君.石膏化—硫化法处理铜冶炼含酸废水试验研究[J].湿法冶金,2009,28(3):176-179
    [23]杨爱江,陈勤怡.锌精矿焙烧烟气制酸废水治理[J].贵州化工,2005,30(4):31-32
    [24]贾秀芹.高浓度含砷废水处理回用工程[J].硫磷设计与粉体工程,2005,(4):42-44
    [25]蒋少军,俞守业,梅建辉.我国硫酸工业废水处理技术综述[J].硫酸工业,2007,(2):8-12
    [26]蒋剑虹,曾光明,张盼月,等.锌冶炼厂重金属废水处理试验研究[J].工业水处理,2005,25(11):44-46
    [27]瞿建国,张晓旗,夏曙演.高浓度酸性含铁废水处理的试验研究[J].上海环境科学,2001,20(9):441-443
    [28]张学洪,许立巍,朱义年.石灰石和方解石预处理酸性含氟废水的试验研究[J].矿冶工程,2005,25(2):49-51
    [29]李争流,曾光明,李倩.有色金属矿山坑道酸性废水的处理及综合利用研究[J].湖南大学学报(自然科学版),2003,30(6):78-81
    [30]张平民.工科大学化学(上册)[M].长沙:湖南教育出版社,2002
    [31]柳建设,夏海波,王兆慧.硫化沉淀-混凝法处理氧化钴生产废水[J].中南大学学报(自然科学版),2004,35(6):942-944
    [32]李亚林,黄羽,杜冬云.利用硫化亚铁从污酸废水中回收砷[J].化工学报,2008,59(5):1294-1298
    [33]占寿罡.铜陵一冶环保治理工程的设计[J].硫酸工业,2002,(5):42-45
    [34]黎明,武怀建,马燕萍.云铜股份公司废水清污分流探讨[J].有色冶炼,2003,(5):39-43
    [35]王举良,张均杰.炼铜烟气制酸净化污水零排放[J].有色冶炼,2009,(5):41-44
    [36]张洁玉.金昌冶炼厂污酸及废水处理系统的优化[J].环境工程,2001,19(3): 16-17
    [37]张复加.金昌冶炼厂污酸污水处理装置简介[J].硫酸工业,2005,(2):36-40
    [38]曹龙文,黄伟,李波.大冶污酸处理装置的设计和运行[J].硫酸工业,2007,(2):47-49
    [39]康宏宇,王宝刚.高浓度砷氟硫酸废水处理装置的设计与运行[J].硫磷设计与粉体工程,2008,(6):15-17
    [40]杨玉萍.铅冶炼系统污酸水处理工艺的改造[J].吉林师范大学学报(自然科学版),2006,(4):110-111
    [41]赵天从,汪键.有色金属提取冶金手册-锡锑汞[M].北京:冶金工业出版社,1999
    [42]Fujiki M, Tajima S. Pollution of Minamata Bay by mercury[J]. Water Science and Technology,1992,25(11):133-140
    [43]唐宁,柴立元,闵小波.含汞废水处理技术的研究进展[J].工业水处理,2004,24(8):5-8
    [44]尚谦,张长水.含汞废水的污染特征及处理[J].有色金属加工,1997,(5):52-64
    [45]王云彩.汞污染对人体健康的危害[J].生活与健康,2004,3:21-23
    [46]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000
    [47]阳争荣,王洪涛.含汞废水处理研究进展[J].广东水利水电(增刊),2004,(S1)55-57
    [48]黄美荣,王琳,易辉,等.废水中汞离子去除方法的研究进展[J].化工环保,2007,27(2):135-138
    [49]张荣斌.工业废水中汞的处理技术[J].山东化工,2007,36(6):17-22
    [50]张廷安,赵乃仁,张继荣,等.用壳聚糖絮凝剂去除水中汞[J].东北大学学报1997,18(1):68-71
    [51]吴秀英,吴农忠,赵宏远,等.硫化钠处理含汞废水[J].中国环境科学,1995,15(2):128-130
    [52]文海,格根托雅,刘志国.用硫化钠处理含汞废水方法的研究[J].内蒙古石油化工,2000,(26):11-12
    [53]马小强,宋玲凤,李志祥,等.用硫化钠处理含汞工业废水的实验研究[J].2010,25(5):18-19
    [54]Hatfield T L, Kleven T L, Pierce D T. Electrochemical remediation of metal-bearing wastewaters Part Ⅰ:Copper removal from simulated mine drainage waters[J]. Journal of Applied Electrochemistry,1996,26(6):567-574
    [55]朱又春,林建民,林美强.电池厂含汞废水的微电解处理[J].工程与技术,1999,3:12-14
    [56]Barron Zambrano J, Laborie S, Viers P H, et al. Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis[J]. Journal of Membrane Science.2004,229(2):179-186
    [57]刘志刚,石灰中和法处理含重金属离子酸性废水[J].江西冶金,2003,23(6):109-110
    [58]彭长宏,颜蓉,唐谟堂,等.石灰处理共沉淀废水的研究[J].工业水处理,2002,22(5):21-23
    [59]马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-14
    [60]王新文.我国大型冶炼厂酸性废水处理工程概况[J].矿冶,2006,9(2):84-89
    [61]殷志伟.含重金属离子酸性废水石灰法处理后回用技术研究[J].矿冶.2002,11(2):77-80
    [62]李建永.葫芦岛锌厂重金属废水的治理与回用[J].有色金属.2002,54(4):117-119
    [63]盂祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000
    [64]Ritter J A, Bibler J P. Removal of mercury from waste water:large-scale performance of an ion exchange process [J]. Water Science and Technology, 1992,25(3):165-172
    [65]Becker N S C, Eldridge R J. Selective recovery of mercury(II) from industrial wastewaters. I. Use of a chelating ion exchanger regenerated with brine[J]. Reactive Polymers,1993,21(1-2):5-14
    [66]Monteagudo J M, Duran A, Carmona M S, et al. Elimination of inorganic mercury from waste waters using crandallite-type compounds[J]. Journal of Chemical Technology and Biotechnology,2003,78(4):399-405
    [67]Monteagudo J M, Ortiz M J. Removal of inorganic mercury from mine waste water by ion exchange [J]. Journal of Chemical Technology and Biotechnology, 2000,9(75):767-772
    [68]Ku Y, Wu M H, Shen Y S. Mercury removal from aqueous solutions by zinc cementation[J]. Waste Management,2002,22(7):721-726
    [69]张松梅,李立清.谷壳灰吸附水中汞的试验探讨[J].江苏环境科技,1999,12(4):4-6.
    [70]李江,甄宝勤.吸附法处理重金属废水的研究进展[J].应用化工,2005,34(10): 591-594.
    [71]Meena A K, Mishra G K, Kumar S, et al. Low-cost adsorbents for the removal of mercury(Ⅱ) from aqueous solution a comparative study[J]. Defence Science Journal,2004,54(4):537-548
    [72]Kadivelu K, Kavipriya M, Karthika C. Mercury (Ⅱ) adsorption by activated carbon made from sago waste [J]. Carbon,2004,42(4):745-752
    [73]Demirbs A. Adsorption of Co(Ⅱ) and Hg(Ⅱ) from water and wastewater onto modified lignin [J]. Energy Sources, Part A:Recovery, Utilization and Environmental Effects,2007,29(2):117-123
    [74]Nam K H, Gomez-Salazar S, Tavlarides L L. Mercury(Ⅱ) adsorption from wastewaters using a thiol functional adsorbent[J]. Industrial and Engineering Chemistry Research,2003,42(9):1955-1964
    [75]Kennedy Oubagaranadin J U, Sathyamurth N, Murthy Z V P. Evaluation of Fuller's earth for the adsorption of mercury from aqueous solutions:A comparative study with activated carbon[J]. Journal of Hazardous Materials, 2007,142(1-2):165-174
    [76]Cyr P J, Suri R P S, Helming E D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon[J]. Water Research,2002,36(19):4725-4734
    [77]Demirbas A. Adsorption of Co(Ⅱ) and Hg(Ⅱ) from water and wastewater onto modified lignin. Energy Sources, Part A:Recovery[J]. Utilization and Environmental Effects,2007,29(2):117-123
    [78]Di Natale F, Lancia A, Molino A, et al. Capture of mercury ions by natural and industrial materials [J]. Journal of Hazardous Materials,2006,132(2-3):220-225
    [79]Cyr P J, Suri R P S, Helmig E D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon[J]. Water Research,2002,36(19):4725-4734
    [80]Grau J M, Bisang J M. Removal and recovery of mercury from chloride solutions by contact deposition on iron felt[J]. Journal of Chemical Technology and Biotechnology,1995,62(2):153-158
    [81]Nam K H, Gomez S, Sergio, et al. Mercury(Ⅱ) adsorption from wastewaters using a thiol functional adsorbent[J]. Industrial and Engineering Chemistry Research, 2003,42(9):1955-1964
    [82]贾燕,汪洋.重金属废水处理技术的概况及前景展望[J].中国西部科技:学 术版,2007(4):10-13
    [83]张启伟,王桂仙.竹炭对含汞废水吸附处理的研究[J].化学与生物工程,2008,25(1):49-51
    [84]牟淑杰,姚乐,邓书平.改性粉煤灰吸附处理含汞废水的实验研究[J].科学技术与工程,2008,15(8):4416-4417
    [85]王代芝,赵艳萍,周珊.改性膨润土处理含汞废水研究[J].非金属矿,2004,27(3):43-44
    [86]袁笛,王莹,李国宏,等.硅藻土吸附工业废水中汞离子的研究[J].环境保护科学,2005,31(128):27-29.
    [87]李爱阳.氯丙酸改性壳聚糖对Hg的吸附性能研究[J].工业水处理,2009,29(7):28-30
    [88]黄鸣荣,高国玉,何晓弟.含汞废水处理方法的研究[J].化工设计,2010,20(2):33-35
    [89]李新贵,窦强,黄美荣.共聚苯胺吸附剂对含汞废水的处理[J].南方水产,2007,3(6):8-13
    [90]祝惠,阎百兴,李宏伟.松花江沉积物中总汞及汞形态的演化[J].生态与农村环境学报,2010,26(3):210-214
    [91]赵新丽,周军,李春华.含汞废水深度处理技术在电石法PVC汞减排体系中的应用[J].聚氯乙烯,2010,(5):29-30
    [92]王钟慈,朱文伟,孙倬,等.重有色金属冶炼设计手册锡锑汞贵金属卷[M].北京:冶金工业出版社,1995.368-372
    [93]陈冬梅,王强.煤系硫铁矿处理含汞废水的研究[J].洛阳师范学院学报,2005,24(5):43-44
    [94]曾坚贤,叶红齐.聚合物强化超滤过程处理含Hg2+废水[J].化学工程,2008,36(12):58-62
    [95]谢丰.多烯多胺基团螯合絮凝剂的合成与应用研究:[硕士学位论文].西安:长安大学,2007
    [96]Balogh S J, Nollet Y H. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control[J]. Science of The Total Environment,2008,389(1):125-131
    [97]Somerseta V, Petrikb L, Iwuohaa E. Alkaline hydro thermal conversion of fly ash precipitates into zeolites 3:The removal of mercury and lead ions from wastewater [J]. Journal of Environmental Management,2008,87(1):125-131.
    [98]Velicua M, Fu H X, Suri R P S, et al. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater[J]. Journal of Hazardous Materials,2007,148(3):599-605
    [99]Saad S.M, Hassana, Nasser S, etal. Aboterikaa. Removal of mercury(Ⅱ) from wastewater using camel bone charcoal[J]. Journal of Hazardous Materials,2008, 154 (1-3):992-997
    [100]Minh Tri P, Khim K S, Hidajat K, et al. Surface Functionalized Nano-Magnetic Particles for Wastewater Treatment:Adsorption and Desorption of Mercury[J]. Journal of Nanoscience and Nanotechnology,2009,9(2):905-908
    [101]Madhava Raoa M, Kumar Reddya D H K, Venkateswarlua P, et al. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste [J]. Journal of Environmental Management,2009, 90(1):634-643
    [102]Deckwer W D, Becker F U, Ledakowicz S, et al. Microbial Removal of Ionic Mercury in a Three-Phase Fluidized Bed Reactor [J]. Environmental Science and Technology,2004,38(6):1858-1865
    [103]Fortunato R, Crespo J G, Reis M A M. Biodegradation of Thiomersal Containing Effluents by a Mercury Resistant Pseudomonas putida strain[J]. Water Research,2005,39(15):3511-3522
    [104]Leonhauser J, Rohricht M., Wagner-Dobler I, et al. Reaction Engineering Aspects of Microbial Mercury Removal[J]. Engineering in Life Sciences,2006, 6(2):139-148
    [105]Gluszcz P, Zakrzewska K, Wagner-Doebler I, et al. Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon [J]. Chemical Papers,2008,62(3):232-238
    [106]Mohan D, Gupta V K, Srivastava S K, et al. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,177(2-3):169-181
    [107]Zhang F S, Nriagu J O. Itoh H, et al. Mercury removal from water using activated carbons derived from organic sewage sludge [J]. Water Research,2005, 39(2-3):389-395
    [108]Kadirvelu K, Kavipriya M, Karthika C, et al. Mercury (Ⅱ) adsorption by activated carbon made from sago waste[J]. Carbon,2004,42(4):745-752
    [109]Yavuz H, Denizli A, Gungunes H, et al. Biosorption of mercury on magnetically modified yeast cells[J]. Separation and Purification Technology,2006,52(2): 253-260
    [110]Knocke W R, Hemphill L H. Mercury(II) sorption by waste tyre rubber[J]. Water Research,1981,15(2):275-282
    [111]Yavuza H, Denizlia A, Giingunes H, et al. Biosorption of mercury on magnetically modified yeast cells[J]. Separation and Purification Technology, 2006,52(2):253-260
    [112]Goncalves A R, Benar P. Hydroxymethylation and oxidation of organosolve lignins and utilization of the products[J].Bioresource Technology,2001,79(2): 103-111
    [113]Lanza M R V, Bertazzoli R. Removal of Zn2+ from chloride medium using a porous electrode:current penetration within the cathode[J]. Journal of Applied Electrochemistry,2000,30(1):61-70
    [114]Kim D S. The removal by crab shell of mixed heavy metal ions in aqueous solution[J]. Bioresource Technology,2003,87(3):355-357
    [115]Navarro R R, Sumi K, Fujii N, et al. Mercury removal from wastewater using porous cellulose carrier modified with polyethylene mine[J]. Water Research, 1996,30(10):2488-2494
    [116]Leonhauser J, Rohricht M, Wagner-Dobler I, et al. Reaction engineering aspects of microbial mercury removal[J]. Engineering in Life Sciences,2006,6(2): 139-148
    [117]Von C H, Li Y, Timmis K N, Deckwer W D, et al. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain[J]. Applied and Environmental Microbiology,1999,12(65):5279-5284
    [118]Schneider M, Deckwer W D. Kinetics of mercury reduction by Serratia marcescens mercuric reductase expressed by Pseudomonas putida strains[J]. Engineering in Life Sciences,2005,5(5):415-424
    [119]Wagner D I, Von C H, Li Y, et al. Removal of mercury from chemical wastewater by microorganisms in technical scale[J]. Environmental Science and Technology,2000,34(21):4628-4634
    [120]Takeuchi F, Sugio T. Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1[J]. Environmental Science,2006, 13(6):305-316.
    [121]Monteagudo J M, Duran A, Carmona M S, et al. Elimination of inorganic mercury from waste waters using crandallite-type compounds[J]. Journal of Chemical Technology and Biotechnology,2003,78(4):399-405
    [122]Leonhauser J, Rohricht M, Wagne-Dobler I, et al. Reaction engineering aspects of microbial mercury removal[J]. Engineering in Life Sciences,2006,6(2): 139-148
    [123]Green-Ruiz C. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary[J]. Bioresource Technology,2006,97(15): 1907-1911
    [124]郑杨春,邓旭,李清彪,等.高选择性重组菌在含Hg2+环境中的生长富集Hg2+耦合及其连续处理Hg2+废水[J].厦门大学学报:自然科学版,2005,44(B06):98-101
    [125]Glancer S M. Granulated mixed microbial culture suggesting successful employment of bioaugmintation in the treatment of process wastewaters[J]. Chemical and Biocchemical Engineering Quarterly,2001,15(3):87-94
    [126]Ansari M H, Deshkar A M, Kelkar P S, et al. Mercury removal from wastewater by steamed hoof powder[J]. Water Science and Technology,1999,40(7): 109-116
    [127]Sirianuntapiboen S, Unskapraeatcha O. Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor(SBR) and granular tivated carbon-SBR(GAC-SBR) systems [J]. Boresource Technology,2007,98(14):2749-2757
    [128]Oliver L, Henning R. Atmospheric mercury—a review[J]. Tellus,1985,378: 136-159
    [129]袁倬斌,朱敏,韩树波.汞的形态分析研究进展[J].岩矿测试,1999,18(2):150-156.
    [130]栗旸,段志敏,沈其萍,等.水中汞分析研究进展[J].环境与健康,2005.12(5):399-400
    [131]刘迎晖,郑楚光,游小清,等.氯元素对烟气中汞的形态和分布的影响[J].环境科学学报,2001,21(1):69-73
    [132]Hall B, Schager P, Weesmaa J. The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash[J]. Chemosphere,1995,30(4):611-627
    [133]Frandsen F, Erickson T A, Kuhnel V, et al. Equilibrium speciation of As, Cd, Cr, Hg, Ni, Pb, and Se in oxidative thermal conversion of coal-a comparison of thermodynamic packages[J]. High temperature Gas Clean,1996,462-473
    [134]Agarwal H, Romero C E, Stenger H G. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species[J]. Fuel Processing Technology, 2007,88(7):723-730
    [135]Xu M H, Yu Q, Zheng C G, et al. Modeling of homogeneous mercury speciation using detailed chemical kinetics[J]. Combustion and Flame,2003,132(1-2): 208-218
    [136]Richardson C, Machalek T, Miller S, et al. Effect of NOX control process on mercury speciation in utility flue gas[J]. Journal of the Air and Waste Management Association,2002,52(8):941-947
    [137]Frandsen F, Dam Johansen K, Rasmussen P. Trace elements from combustion and gasification of coal-an equilibrium approach[J]. Progress in Energy and Combustion Science,1994,20(2):115-138
    [138]Hall B, Lindqvist O, Lungstrom E. Mercury chemistry in simulated flue gases related to waste incineration conditions[J]. Environmental Science and Technology,1990,24(1):108-111
    [139]Laudal D L, Brown T D, Nott B R. Effects of flue gas constituents on mercury speciation[J]. Fuel Processing Technology[J].2000,12 (65-66):157-165
    [140]Agarwal H, Stenger H G, Development of a predictive kinetic model for homogeneous Hg oxidation data[J]. Mathematical and Computer Modelling, 2007,45(1-2):109-125
    [141]王泉海,邱建荣,吴昊.硫元素对烟气中汞的形态和分布的影响[J].燃烧科学与技术,2003,9(2):135-138
    [142]Zic M. Zero charge potential of a dropping mercury electrode drop determined by chronocoulometry [J]. Journal of Electroanalytical Chemistry,2005,584(2): 215-218
    [143]Park K S, Seo Y C, Lee S J, et al. Emission and speciation of mercury from various combustion sources[J]. Powder Technology,2008,180(1-2):151-156
    [144]王泉海.煤燃烧过程中汞排放及其控制的实验及机理研究:[博士学位论文].武汉:华中科技大学,2006
    [145]Sliger R N, Kramlich J C, Marinov N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Processing Technology,2000,65-66(1):423-438
    [146]高洪波.模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究:[博士学位论文].杭州:浙江大学,2004
    [147]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究:[博士学位论文].杭州:浙江大学,2003
    [148]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究:[博士学位论文].杭州:浙江大学,2007
    [149]彭苏萍,王立刚.燃煤飞灰对锅炉烟道气的吸附研究[J].煤炭科学技术,2002,(9):33-36
    [150]沃茨,沃斯滕霍姆.表面分析(XPS和AES)引论[M](吴正龙).上海:华东理工大学出版社,2008
    [151]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)[M]1版.长沙:国防工业出版社版,1992
    [152]姚青松.平衡理论在化学法处理重金属废水中的作用[J].污染防治技术,1994,(12):10-12
    [153]JAMES N B. Ionic Equilibrium:A Mathematical Approach[M].1st edition. Inc, U S:Addison-wesley educational publishers,1964
    [154]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985
    [155]李梦龙.化学数据速查手册[M].北京:化学工业出版社,2004
    [156]郑忠.胶体科学导论[M].北京:高等教育出版社,1989
    [157]沈钟,王果庭.胶体与表面化学[M].2版.北京:化学工业出版社,1997
    [158]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1985
    [159]李狄.电化学原理第三版[M].北京:航空航天大学大学出版社,2008
    [160]查全性.电极过程动力学导论[M].3版.北京:科学出版社,2002
    [161]舒余德.电化学研究方法原理[M].长沙:中南工业大学冶化教研室,1988
    [162]龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1997
    [163]张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社,2000
    [164]赵成大、潘道凯、郑载兴.物质机构[M].3版.北京:高等教育出版社,2002
    [165]李琦,黄元河,陈光巨.结构化学[M].北京:北京师范大学出版社,2008
    [166]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版杜,1989
    [167]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005
    [168]张涤明.计算流体力学[M].广州:中山大学出版社,1991
    [169]菲尼莫,弗朗茨尼.流体力学及其工程应用[M](钱翼稷,周玉文).第10版.北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700