用户名: 密码: 验证码:
餐厨垃圾制沼及膜法沼气提纯一体化系统设计及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球每年消费能源总量的85%以上来自于煤炭、石油与天然气三种主要化石燃料。据专家估计,按现在的能源消费速度,全球石油、天然气、煤炭现有蕴藏量分别只能再开采大约四十多年、六十多年和二百多年。由此可见,人类生产和生活所依赖的主要化石能源日趋枯竭,急需发展各种新能源来补充。同时,我国使用化石燃料的C02排放总量已居全球之首,这与我国确立的清洁发展、可持续发展和和谐发展的方针严重相悖。另外,我国是一个人口大国,也是一个餐饮消费大国,每年有数亿吨的餐厨垃圾需要进行科学利用和无害化处理。因此,研究和发展将餐厨垃圾沼气化、进而制成天然气级的提纯沼气,一举实现垃圾的科学处理和资源化,弥补我国能源不足,具有重要的现实意义、环保意义和能源战略意义。
     普通沼气热值比较低,且含有大量C02和其他的无用成分,因此,很难作为工业能源进行销售和使用,其市场基本限定在农村生活领域。
     本文针对我国能源短缺、餐厨垃圾需要科学处理、普通沼气品味低、不能进入工业领域应用的现实情况,研究和探讨了:基于气体分离膜的沼气除杂、提纯技术,以丰富的餐厨垃圾为原料的制沼及沼气除杂、提纯一体化方法和相关理论,以及其技术系统如何实现等相关问题,并做了以下主要研究工作:
     提出并设计了一种基于两相厌氧发酵制沼和以膜分离C02为主的餐厨垃圾制沼及沼气提纯一体化技术系统,并对其中的主要装置进行了设计与理论分析;
     在深入研究和探讨气体分离用膜材料、分离机理、主要特性、组件构造方法及特点的基础上,制作出了适用于高效去除沼气中CO2的膜组件,研究、提出了基于该膜组件的单级膜沼气提纯的工艺流程和实施方案,经实验室沼气提纯试验研究表明,采用适当的膜材料制造膜组件并按本文提出的流程构建沼气提纯技术系统是可行的。
     利用本文所构建的沼气提纯系统进行沼气提纯试验研究发现:当膜组件进口压力在0.2~0.8 Mpa范围内,随着膜压力的增加,渗余气侧C02的含量呈逐渐下降趋势,CH4的含量呈逐渐升高趋势;当膜组件进口压力增至0.6 MPa时,CH4的含量达到81.99%;当压力增至0.8 MPa时,CH4的含量可达到83.90%。这意味着在单级膜组件的条件下,当膜组件的入口压力在0.6MPa以上时,即可获得CH4含量为80%以上的提纯沼气。
     在分析我国餐厨垃圾主要成分和主要元素含量的基础上,推导出了我国餐厨垃圾的近似分子式,进而根据巴斯维尔-穆勒(Buswell-Mualler)公式估算了单位餐厨垃圾的可能产气量和可能经济效益,同时探讨了用沼渣、沼液制沼肥的可能经济效益和提纯沼气的效益。分析结果表明餐厨垃圾中蕴含了大量的生物质能源,用餐厨垃圾制沼并进行提纯,具有重要意义和推广应用前景,可为保障我国能源安全提供一定支持和帮助。
     确定出了餐厨垃圾两相厌氧发酵制沼与膜分离提纯中试系统的工艺路线和总体方案,进行了厌氧发酵工艺和发酵罐选择;设计了产酸发酵罐与产甲烷发酵罐及其搅拌装置;对其中的低压储气罐进行了理论分析和设计。
     本论文研究结果,可为在我国利用餐厨垃圾规模化生产沼气、并一举将所生产的沼气提纯成具有工业应用价值的天然气级新能源产品提供了可行的方法、可参考的数据、产业化开发的思路和借鉴。
Fossil fuels-coal, oil and gas, used as energy now are more than the total 85%. It is estimated that the world oil reserves can be mined for only forty years, gas can be exploited for more than sixty years and coal can be used more than 200 years. We can see that fossil energy sources which human beings rely on are turning out. Searching for renewable energy seems no time to delay. Furthermore, the use of fossil fuel causes CO2 emissions in our country's ranking first in the world. It is against current national requirements of the clean, sustainable and harmonious development. China is a country with large population, generates several million tons of food waste every year which should be disposed Scientifically without any pollution. Therefore, it has important practical, environmental and strategic significance to research and develop on purifying the food waste gas into natural gas, achieving waste treatment and resource science, and making up our Energy shortage,
     Ordinary biogas with low heat value contains a lot of CO2 and other unwanted ingredients. So it is difficult for sales and use as industrial energy and its market is limited in the rural areas. In this paper, according to the reality of China's energy shortage, the problems that food waste requires scientific treatment and difficulties that ordinary biogas is difficult to apply in the industrial field because of low heat value, we researched and discussed the method to get biogas basing on advanced membrane technology combining with other gas purification technology, theoretical integration method of biogas production and purification by large amount of food waste, how to achieve the technology systems and other related issues. Main research achievements include following points:
     We proposed and designed a technology system based on the technology system which integrated two-phase anaerobic fermentation to methane, biogas production using CO2 membrane separation and membrane biogas purification. Then, we designed and analyzed the theory of the main device.
     Basing on in-depth study and exploration of gas separation membrane materials, separation mechanism, the main characteristics, construction methods and characteristics of component construction, we developed a membrane which can efficiently remove CO2 out from biogas, and proposed technological process and experiment plan of single-stage membrane biogas purification..Through the gas purification experiments in laboratory, it showed it is feasible to construct biogas purification system by using appropriate membrane.
     Basing on biogas purification experiments by purification system developed by this paper, we found following conclusion:when the pressure changes between 0.2 and 0.8 MPa, with the increase of film pressure, the content of residual CO2 decreased gradually, but the content of CH4 increased gradually. When the pressure reaches 0.6 MPa, CH4 content can be 81.99%. When the pressure is increased to 0.8 MPa, CH4 content reached the highest level of 83.90%. It means that under the condition of the single-stage membrane module, if Pressure is more than 0.6MPa, we can get purified biogas which CH4 content is over 80%.
     Basing on analysis of major components and element distribution of food waste, we derived its approximate formula, and then estimated the potential gas production and food waste possible economic benefits by using Buswell-Mualler formula. At the sane time, we discussed the potential economic benefits of biogas production and purification. The results show that the food waste contains a large amount of biomass energy and it is meaningful and valuable to product and purify biogas by food waste. So it can be a useful complement for China's energy security.
     We determined the overall technology plan for two-phase anaerobic fermentation by food waste and the purification test system. We also choose the anaerobic fermentation and the fermentation tank and design fermentation tank for acid production, the Biogas fermentation tank and the mixing device and block board. At last, we design and analyze the low-pressure Biogas tank which plays a key role in the total process system..
     In this paper,, we provide the feasible method that food waste can be used in large-scale production of biogas and purified into valuable new energy products like natural gas, datas for referring, idears and experience of industrial development.
引文
[1]张兰英.世界首列“沼气火车”启程.太阳能,2005,(6):62
    [2]郝继华,王志,王世昌.CO2/CH4醋酸纤维素分离膜的制备.高分子材料科学与工程1997,13(4):64-68
    [3]Suzuki T, Yamada Y. Physical and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes. Polymer Bulletin,2005,53(2):139-146
    [4]Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewski AG., Applicati on of polyimide membranes for biogas purification and enrichment. Journal of Ha zardous Materials,2007,144(3):698-702
    [5]Jizhong Ren, Tai-Shung Chung, Dongfei Li, Rong Wang, Ye Liu, Development of a symmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation:1. The influence of dope rheology on the morphology and performance of hollow fiber me mbranes, Journal of Membrane Science,207(2002) 227~240
    [6]滕一万,武法文,王辉,李磊,张志炳.CO2/CH4高分子气体分离膜材料研究进展.化工进展,2007,26(8):1075-1079
    [7]高洁,郭斌,周建斌.膜法分离二氧化碳研究现状及发展趋势.河北化工,2006,29(10):8-10
    [8]叶振华.化工吸附分离过程. 北京:中国石化出版社,1992
    [9]王海涛. 沼气灌装工艺及集成装备技术研究. 广西大学硕士学位论文,2009.5
    [10]魏星,黄维菊,陈文梅.国内外膜分离法天然气脱水研究现状. 过滤与分离,2007,17(4):37-41
    [11]杨爱军,张丽红,孙丽萍,程俊.膜技术在天然气分离中的应用.辽宁化工,2008,37(4):245-248
    [12]杨毅,李长俊,刘恩斌.膜技术在天然气分离中的应用研究.西南石油学院学报,2005,27(5):68-71
    [13]蔡培,王树立,孙超群,赵书华,赵会军. 多级膜吸收天然气脱硫的试验研究.应用化工,2008,37(5):475-480
    [14]赵会军,张庆国,王树立,赵书华. 膜分离法脱除天然气中H2S的试验研究. 西南石油大学学报(自然科学版),2009,31(1):121-124
    [15]http://heilongjiang. dbw. cn/system/2011/01/22/052949519. shtml
    [16]刘晓英.餐厨垃圾特性及厌氧发酵产沼性能研究.北京化工大学硕士学位论文,2010.6
    [17]邵琳,朱光灿.餐厨垃圾厌氧发酵工艺的影响与优化.环境科技,2008,21(6):56-59
    [18]Zhang RH, El-Mashad HM, Liu GQ, et al. Characterization of food waste as fe edstock foranaerobic digestion. Bioresource Technology,2007,98(4):929-935
    [19]成喜雨,庄国强,苏志国.沼气发酵过程研究进展.过程工程学报,2008,(6):607-615
    [20]陈坚,童晓庆.两相厌氧工艺的研究现状及其应用.环境科技,2009,22(4):65-69
    [21]高艳娇,赵树立,刘舰.两相厌氧工艺的研究进展.工业安全与环保,2006,32(1):24-266
    [22]Yeoh BG. Two phase anaerobic treatment of anemo lasses alcohol stillage. Procee dings of the 8th International Conference on Anaerobic Digestion.1997, (2):208-215
    [23]张仁江,张振家.糖蜜酒精废水两相UASB处理有机物去除特征.城市环境与城市生态,2000,13(4):23-25
    [24]王伟,韩洪军,马文成,何春华. 有机负荷冲击下两相厌氧工艺的稳定性研究.中国给水排水,2008,24(17):56-63
    [25]李白昆,等.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究.环境科学学报.1997(10),459-463
    [26]管运涛,等.两相厌氧膜-生物系统处理造纸废水.环境科学,2000,(4):52-56.
    [27]Dong-Ha Kim, Yun-Chul Chang. Development of Two Phase Anaerobic Reactor wi th Membrane Filter [A]. Proc.8thInternational Conf. on Anaerobic Digestion [C].1997,(2):77-78.
    [28]竺建荣.二相升流式厌氧污泥床工艺微生物学特性的研究.北京:清华大学,1990.
    [29]祁佩时,陈业钢,李欣,程树辉,王其侠.一体化两相厌氧发酵罐处理抗生素废水研究.给水排水,2001,27(7):49-51
    [30]浦跃武,郭梅君,刘族安.一体化两相厌氧处理猪场废水的启动研究. 华南理工大学学报(自然科学版),2009,37(10):145-149
    [31]周雪飞,任南琪,王爱杰,陈漫漫,田文军.一体化两相厌氧反应器处理高浓度有机废水的性能研究,哈尔滨建筑大学学,2000,33(6):62-65
    [32]马磊,王德汉,谢锡龙等.接种量对餐厨垃圾高温厌氧发酵的影响.农业工程学报,2009,1,9):53-56
    [33]蒲贵兵,王胜军,孙可伟.接种量对泪脚发酵产氢余物甲烷化的强化研究.中山大学学报.2009,48(1):87-92
    [34]王延昌,袁巧霞,谢景欢. 餐厨垃圾厌氧发酵特性的研究.环境工程学报,2009,(9):1677-1683
    [35]徐衣显,田书磊,王伟.餐厨垃圾半干式高温厌氧发酵快速启动试验.环境卫生工程,2008,(12):56-58
    [36]Gunaseelan V. Biochemecal Biogas potential of fruit and vegetable solid waste Fee dstocks. Biomass and Bioenergy,2004,26(4):389-399
    [37]赵杰红,张波,蔡伟民.发酵液回流比与有机负荷率对餐厨垃圾厌氧发酵的影响.环境科学,2006,(8):1682-1686
    [38]Converti A,DelBorghi A,Zilli M,Arni S,DelBorghi M. Anaerobic digestion of the ve getable fraction of municipal refuses:mesophilic versus thermophilic conditions. Bi oprocess Eng.1999; 21:371-376
    [39]曹先艳,袁玉玉,赵由才,牛东杰.温度对餐厨垃圾厌氧发酵产氢的影响.同济大学学报(自然科学版),2008,36(7):942-950
    [40]刘广青,张瑞红,El-Mashad HM.批式与两相高温厌氧发酵厨余与杂草废弃物对比研究.中国农业大学学报,2006,11(6):111-115
    [41]Forster-Carneiro T, Pe'rez M, Romero LI. Influence of total solid and inoculum c ontents on performance of anaerobic reactors treating food waste. Bioresource Tech nology,2008,99(15):6994-7002
    [42]张波,蔡伟民,何品晶.pH调节方法对厨余垃圾两相厌氧发酵中水解和酸化过程的影响. 环境科学学报,2006,21(1):45-49
    [43]Gumersindo Feijoo, Manuel Soto, Ramon Mendez. Juan M. Lema. Sodium inhibi tion in the anaerobic digestion process:Antagonism and adaptation on phenomena [J],Enryme and Microbial Technology,1995,17:180-188
    [44]Spiece R. E., Li Y. X., Anaerobic biotechnology for industrialwastewaters. Beiji ng:Architecture&Building Press,2001:194-225
    [45]王星,王德汉.发酵液回流比与有机负荷率对餐厨垃圾厌氧发酵的影响.环境污染与防治,2006,(10):748-752
    [46]Ledakowicz S,Kaczarek K. Laboratory simulation of anaerobic digestion of municip al solidwaste[J]. Solid Waste Manangement and Technologies for DevelopingCountr y,2002,6(2):39-46
    [47]张波,史红钻,张丽丽等.pH对厨余废物两相厌氧发酵中水解和酸化过程的影响.环境科学学报.2005,25(5):665-669
    [48]赵明星,严群,阮文权等.pH调控对厨余物厌氧发酵产沼气的影响.生物加工过程.2008,6(4):45-49
    [49]蒋彬.餐厨垃圾中温厌氧发酵工艺性能及特征影响因素研究.东南大学博士学位论文,2009,9
    [50]李明.餐厨垃圾厌氧发酵制氢产甲烷一体化工艺及设备开发.同济大学博士学位论文,2008,8
    [51]梁素钰,王述洋,李二平.基于TRIZ的沼气生产精制压缩储运的系统研究[J].化工进展,2008,27(增刊):319~323
    [52]陈勇,王从厚,吴鸣编著.气体分离膜技术与应用.北京:化学工业出版社,2004,3
    [53]Mulder,M.著(荷兰),李琳译.膜技术基本原理.-2版.北京:清华大学出版社1997,5
    [54]时钧,袁权,高从锴,主编.膜技术手册.北京:化学工业出版社,2001,1
    [55]郑曼英,叶晓玫. 垃圾各组分中重金属对环境二次污染的贡献值. 环境卫生工程,2003,11(1):31-32
    [56]PENG Xu-ya, PAN Jian. Physico-chemical characters and disposal technology of f ood wastesin Chongqing. Journal of Central South University of Technology,200 7,14(S3):313-318
    [57]Association of German Engineers. VDI 4630:Fermentation of organic materials-Characterisation of the substrate, sampling, collection of material data, fermentatio n tests. Apr.2006
    [58]陈炳和,许宁.化学反应过程与设备.北京:化学工业出版社,2003
    [59]裘晖,吴振强,梁世中.通用发酵罐结构的改进[J].机械与设计.2003(5):29-30
    [60]刘冬,张学仁.发酵工程.高等教育出版社.2007.136
    [61]《压力容器安全技术监察规程》,1999
    [62]《GB 150-1998钢制压力容器标准》,1998
    [63]王莉,刘晓英,李秀金,董李荣平,葛亚军,王奎升,李秀金,庞云芝.餐厨垃圾特性及其厌氧发酵性能研究.可再生能源,2010,28(1):76-80
    [64]王星,王德汉.李俊飞.餐厨垃圾的厌氧消化技术现状分析.中国沼气,2006,24(2)35-38
    [65]袁玉玉.曹先艳.牛冬杰.餐厨垃圾特性及处理技术[J].环境卫生工程2006,12:46-49
    [66]刘应宗.城市餐厨垃圾分级回收处理模式探索.西北农林科技大学学报(社会科学版),2009,9(3):110-114
    [67]刘会友,王俊辉,赵定国.厌氧消化处理餐厨垃圾的工艺研究.能源技术,2005,8:150-154
    [68]李东,孙永明,袁振宏.食物垃圾和废纸联合厌氧消化产甲烷.环境科学学报,2009,3:577-582
    [69]朱英等.污泥填埋场气体产量的预测方法研究.中国环境科学,2010,30(2):204-208
    [70]石方军,薛君,王利娟.河南省农村生态沼气项目经济与社会效益评价.中国沼气,2008,26(5):45-47
    [71]曾宪波,潘存林,蒲祖锋,杨波,段美华.水稻施用沼肥效益分析.耕作与栽培,2010,(2):53
    [72]刘叶志.户用沼气能源温室气体减排的环境效益评价.长江大学学报(农学卷),2009(1):81-84
    [73]仁杰,肖勇,马欣欣. 北京市餐厨垃圾产生状况及厌氧发酵产气潜力分析.可再生能源,2009,27(4):61-65
    [74]任南琪,王爱杰等.厌氧生物技术原理与应用.化学工业出版社.2004:18-45 73-130
    [75]刘荣厚.生物质能工程[M].北京:化学工业出版社.2009:22-24
    [76]周梦津.沼气使用技术[M].北京:化学工业出版社.2006:18-23
    [77]沈剑山.生物质能源沼气发电[M].北京:中国轻工出版社.2009:12-13
    [78]Copp J B, Bella E, Snowling S, et al. Anaerobic Digestion:A NewModel for P lant-wide Wastewater Treatment Process Modeling. Water Sci. Technol,2005,52 (10):1-11
    [79]Batstone D J, Keller J, Angelidaki S V, et al. The IWA AnaerobicDigestion Mo del No.1 (ADM 1). Water Sci. Technol.,2002,45(10):65-73
    [80]Bemard O. For a Bioprocess:Theory and Example of the AnaerobicDigestion Proc ess. Water Sci. Technol.,2006,53(1):85-92
    [81]Bestamin O, Ahmet D, Sinan B M. Neural Network PredictionModel for the Met hane Fraction in Biogas from Field-scale LandfillBioreactors. Environmental Modelli ng Software,2006,25:1-8
    [82]Guwy A J, Hawkes F R, Wilcox S J, et al. Neural Network andOn-off Control of Bicarbonate Alkalinity in a Fluidised-bedAnaerobic Digester. Water Res.,199 7,31(8):2019-2025
    [83]周晓臣.城镇有机垃圾厌氧发酵中有机酸及氨氮抑制效应研究.重庆大学硕士学位论文
    [84]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:16-39
    [85]钱小青,童桂风,何成达,李俊涛,赵由才.泔脚废物资源化处置技术现状与研究进展.环境卫生工程,2005,13(6):12-15
    [86]Sauayama S, Inoue S, Tsukahara K, et al. Anaerobic treatment of liquidized orga nic wastes. Renewable Energy,1999,16(1-4):1094-1097
    [87]钱小青.泔脚废物厌氧两相发酵工艺及其矿化垃圾协同生物产氢过程研究.同济大学博士学位论文,2006.1
    [88]林英姿.一体化折板式两相厌氧污水处理工艺研究.吉林大学硕士学位论文,2006.5
    [89]凡广生,李多松.两相厌氧发酵工艺的研究进展及其应用.水科学与工程技术,2006, (2):7-9
    [90]罗伟.城镇有机垃圾序批式两相厌氧发酵工艺试验研究.重庆大学硕士学位论文,2006.5
    [91]陈坚,童晓庆.两相厌氧工艺的研究现状及其应用.环境科技,2009,22(4):65-69
    [92]张兴庆,罗伟,罗博,刘国涛,袁荣焕,彭绪亚. 城镇有机垃圾两相厌氧发酵中有机物水解溶出试验. 中国沼气,2009,27(5):10-14
    [93]刘存芳,袁兴中,曾光明等.城市有机垃圾间歇厌氧发酵pH控制动力学研究环境科学,2006,27(8):1687-1690.
    [94]乔玮,曾光明,袁兴中,等.厌氧发酵处理城市垃圾多因素研究.环境科学技术,2004,27(2):3-4
    [95]Lay J J. Analysis of environmental factors affecting methane production from high-solid organic waste. Water Science and Technology,1997,36(6):493-500
    [96]张波,杨中平,李星恕,等.环境对生活垃圾厌氧发酵处理的影响与控制.农机化研究,2004, (2):112~114.
    [97]张波. 城市生活垃圾厌氧发酵处理技术研究.硕士学位论文.西北农林科技大学.2004:10-11.
    [98]郭亚丽,何惠君,赵由才.常温厌氧发酵技术处理城市生活有机垃圾的中试研究.环境污染与防治,2001,23(4):168-171
    [99]付胜涛,于水利,严晓菊.初沉污泥和厨余垃圾的混合中温厌氧发酵.给水排水,2006,32(1):24-28
    [100]张碧波,曾光明,张盼月,等.高温厌氧发酵处理城市有机垃圾的正交试验研究[J]. 环境污染与防治,2006,28(2):87-89
    [101]吴满昌,孙可伟.温度波动对城市有机生活垃圾高温厌氧发酵工艺影响.环境科学,2006,27(4):805-809
    [102]吴满昌,孙可伟,李如燕,等.温度对城市生活垃圾厌氧发酵的影响.生态环境,2005,14(5):683~685
    [103]Killilea JE. Establishing procedures for design, operation and maintenance of sew age sludge anaerobic treatment plants. Water Science and Tchnology,2000,41(3): 305-312
    [104]陈庆今,刘焕彬,胡勇有.连续流新型厌氧发酵罐处理固体有机废物研究.环境科学与技术.2004,27(3),57-58.
    [105]刘一威.不同工艺条件下硫酸盐还原反应器微生物群落动态分析.哈尔滨工业大学硕士学位论文,2006
    [106]Maibaum C,Kuehn V. Thermophilic and mesophilic together with organic residual substances[J]. Wat. Sci. Technol,1999,40(1):231-236
    [107]张波.城市生活垃圾厌氧发酵处理技术研究.硕士学位论文. 杨林:西北农林科技大学.2004.10-11
    [108]李建政等·产酸相最佳发酵类型工程控制对策.中国环境科学,1998(3):398-102
    [109]张海东. 城市生活垃圾厌氧发酵过程产生沼气的净化及利用.硕士学位论文.昆 明理工大学.2005:14-16
    [110]秦文娟.餐厨垃圾厌氧发酵的试验研究.硕士学位论文.西南交通大学.2009:5-17
    [111]Hunik JH, Hamelers HVM, Koster IW. Growth-rate inhibition of acetoclastic me thanogens by ammonia and pH in poultry manure digestion. Biological Wastes,19 90,32(4):285-297
    [112]Killilea J E. Establishing procedure for design, operation andmaintenace of sewa ge sludge anaerobic treatmentplants. Water Science and Technology,2000,41(3): 305-312
    [113]Koster IW. Ammonia inhibition ofmaximum growth rate(μm) of hydrogenotrophic methanogens at various pH-levels and tem-peratures[J]. ApplMicrobiolBiotechno,l 1998,28:500-505
    [114]Jizhong Ren, Rong Wang, Hongyan Zhang, Zhansheng Li, Development of asymmetric poly(vinylidene fluoride) (PVDF) hollow fiber membranes for CO2 capture technology, Journal of Membrane Science,281 (2006) 334~344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700