用户名: 密码: 验证码:
羧基功能化离子液体的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,离子液体作为一种性能优良的液液萃取新介质被广泛的应用于污水处理、金属的回收利用、核燃料后处理、矿物质的加工与处理、香料的合成及其他工业领域,离子液体具有一系列特有的优良性质,比如较低的熔点、低蒸汽压、良好的溶剂化性能、粘度可调性及其作为溶剂能够溶解多种无机化合物及金属离子。目前,通过在离子液体的阳离子或阴离子上引入具有高配位能力的官能团,制备对金属离子具有选择性溶解的功能化离子液体引起了人们的关注。作为一种新型的“绿色溶剂”,功能化离子液体具有完全不同于传统溶剂的特点以及溶解机理,相比传统的分子溶剂来说,功能化离子液体因具有较低的蒸汽压,从而不会在空气中挥发甚至发生爆炸;从溶解机理上来说,功能化离子液体从水溶液中萃取金属离子时能够形成络合配体而具有很大的分配系数。所以环境友好的功能化离子液体做溶剂来萃取分离环境中的金属离子必然会引起越来越广泛的关注。
     通过对离子液体进行修饰,加入能够与金属发生络合的功能化基团而形成的功能化离子液体能够有效提高离子液体对金属离子的萃取效率。为了能够更加深入的了解功能性离子液体的特殊性质及其对金属离子的萃取机理,对功能化离子液体的性质-结构关系进行系统研究是非常必要的,但是迄今为止对于羧基功能化的离子液体从实验到理论展开的系统研究仍较为少见。本论文利用实验与量子化学计算相结合的方法系统的研究了以双三氟甲磺酰亚胺为阴离子的一系列羧基功能化的离子液体,考察功能化基团对离子液体性质的影响。本论文主要做了以下几方面工作:
     1.利用B3LYP/6-311+G(d, p)方法,优化质子化甜菜碱阳离子和双三氟甲磺酰亚胺阴离子形成的气态阴阳离子对([Hbet][Tf_2N]),得到稳定构型,从几何构型、氢键相互作用能量、AIM、NBO分析计算等方面阐述了双三氟甲磺酰亚胺阴离子与质子化甜菜碱阳离子之间氢键相互作用的本质。
     2.用两步合成法合成1-甲基-3-羧甲基咪唑双三氟甲磺酰亚胺([HbetC_1Im][Tf_2N])离子液体,并初步研究了它与氧化铜的反应;为进一步探究羧酸类离子液体在萃取分离金属离子中的应用,寻找疏水性更强的离子液体,接下来改变了咪唑侧链长度,合成了以1-丁基-3-羧甲基咪唑为阳离子的离子液体([HbetC_4Im][Tf_2N]),并初步研究了它与氧化铜的反应。
     3.为了提高计算效率,利用较小的基组6-31+G(d)的方法研究了离子液体[HbetC1Im][Tf_2N]气态阴阳离子对的氢键作用,探讨咪唑阳离子中官能团以及烷基侧链的变化与氢键相互作用、离子液体的熔点以及离子液体疏水性之间的关系。
     4.为寻求一种对金属离子具有更好的溶解能力的离子液体来提高萃取效率,我们考虑在咪唑阳离子的双侧均加入能与金属离子发生络合作用的羧基基团,设计并合成了咪唑双侧均为羧基取代的离子液体N,N-二羧甲基咪唑双三氟甲磺酰基亚胺([AAIm][Tf_2N])。并利用B3LYP/6-31+G(d)的方法对其在理论上进行了探讨,通过阴阳离子静电作用方式、离子液体中的氢键、相互作用能、NPA自然布局分析、AIM分析等观察烷基侧链改变以后阴阳离子之间发生氢键相互作用的变化情况。
     本论文将实验与计算化学相结合,预测功能离子液体的微观结构和宏观性质的关联,力争实现离子液体在金属萃取方面的功能化设计。这些工作必将为离子液体理论与应用的研究注入新的活力,使离子液体的发展登上一个新的台阶。
Ionic liquids (ILs) are unique solvents that consist entirely of ions. These low-melting organic salts typically contain a large asymmetric cation and a weakly coordinating anion (e.g. BF4-, PF6-, or Tf_2N-) so that efficient packing of the ions in a crystal lattice is disfavored and the coulombic interactions between the cations and the anions are of limited strength. A feature of ionic liquids with weakly coordinating anions is that metal salts are poorly soluble in them, which is a disadvantage for applications like the electrodeposition of metals. A solution to this problem is to attach functional groups to the cationic core. This has recently been illustrated for carboxylate-functionalized ILs. However, up until now the systematic reserches with quantum chemistry calculation and experimental methods for carboxylate-functionalized ILs are quite rare. In this paper, a series of carboxylate-functionalized ILs formed by imidazolium cation and bis(trifluoromethylsulfonyl)imide anions have been experimentally synthetised and theoretically calculated. The main points of this dissertation are summarized as follows:
     1. The interaction mechanisms between the cation and anion in protonated betaine bis(trifluoromethylsulfonyl)imide ionic liquids [Hbet][Tf_2N] were investigated at the B3LYP/6-311+G(d, p) level. Stable isomers of [Hbet][Tf_2N] were optimized and geometrical parameters of them have been discussed in details. Interaction energy, natural population analysis (NPA), natural bond orbital analysis (NBO) and atoms in the molecule calculation (AIM) have been performed to give a deeper insight on the chemical nature of H-bond.
     2. [HbetC1Im][Tf_2N] IL was synthesized with two-steps methods. CuO was selected for studies, which can dissolve in [HbetC1Im][Tf_2N], and should form metal complex. Additionally, carboxylate-functionalized ILs with a longer alkyl chain, [HbetC4Im][Tf_2N], was synthesized, and by B3LYP/6-311+G(d, p) we explored the effect of the alkyl side-chain length on the properties of ILs.
     3. Considering the computational time, the B3LYP/6-31+G(d) method is selected to calculate the [HbetC_nIm][Tf_2N] (n=1-4) systems. Geometrical parameters, interaction energies, natural population analysis (NPA), natural bond orbital analysis (NBO) and atoms in the molecule calculation (AIM) have been performed to give a deeper insight on the chemical nature of H-bond. The preliminary analysis of cation-anion interactions provides some initial hints as to the structural factors contributed to physical properties of the ionic liquids and their selective extraction of metal ions. 4. In order to obtain the stongly coordinating ILs, we synthesized the N,N-bis(carboxymethyl)imide bis(trifluoromethylsulfonyl)imide ([AAIm][Tf_2N]) ILs. Additionally, the optimized structures, energies, natural population analysis (NPA), and the effect of functional groups are presented and analyzed by B3LYP/6-31+G(d).
     In this dissertation, we take a first step in this direction on the physical properties and microscopic mechanisms of carboxylate-functionalized ILs by combining the experiments and theoretical computations. The attention will be focused on the synthesization, geometrical and electronic structures, and their variations across different carboxylate group series, which are the foundation for clearly understanding the application of carboxylate-functionalized ILs on metal extractions.
引文
[1] Wilkes, J. S., Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 965~967.
    [2] Rogers, R. D., Seddon, K. R. Ionic liquids-solvents of the future? Science, 2003, 302: 792~793.
    [3] Nakashima, K., Kubota, F. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind.Eng. Chem. Res., 2005, 44: 4368~4372.
    [4] Huang, J., Jiang, T., Gao, H. X. Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew. Chem. Int. Ed., 2004, 43: 1397~1399.
    [5] Wang, B., Yang, L., Suo, J. Synthesis of aziridines from imines and ethyl diazoacetate in room temperature ionic liquids. Tetrahedron Lett, 2003, 44: 2409~2411.
    [6] Uzagare, M. C., Sanghvi, Y. S. et. al. Application of ionic liquid 1-methoxyethyl-3-methyl imidazolium methanesulfonate in nucleoside chemistry. Green Chem., 2003, 5: 370~372.
    [7]易封萍,孙海洋,潘仙华,含醛基功能化离子液体为载体液相合成氨基醚类化合物.化学学报,2009,67:1237~1242.
    [8] Sugden, S., Wilkins, H. The parachor and chemical constitution Part VII fused metals and salts. J. Chem. Soc., 1929, 1291~1298.
    [9] Hurley, F. H. Electrodeposition of Aluminum[P]. U. S. Pat, 2446331. 1948.
    [10] Robert, A. P. A scaled Particle theory of aqueous and nonaqueous solutions[J]. Chemical review, 1976, 76: 717~726.
    [11] Scheffler, T. B., Hussery, C. L. Molybdenum coloro complexes in room-temperature chloro aluminate ionic liquids: stailaztion of hexachlroromolybdate(2) and hexachloromolybdate(3). Inorg. Chem., 1983, 22: 2099.
    [12] Wilkes, J. S., Levisky, L. A., Wilson, R. A. Dialkyimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem., 1982, 21: 1263.
    [13] Wilkes, J. S., Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J], Chem. Commun. 1992, 13: 965~966.
    [14] Bonhote, P. D., Dias, A. P. Hydrophobic, highly conductive ambient–temperature molten [J]. Inorg. Chem., 1996, 35: 1168~1178.
    [15]杨雅立,王晓化,寇元等.不断壮大的离子液体家族[J].化学进展,2003,15:471~476.
    [16] Kenneth, K. N-(Trifluoromethylsulfonyl)aryloxytrifluoromethylsulfoximines and N-Aryltr -iflimides Ar-N(Tf)2 by Thermal and Photolytic Dediazoniation of [ArN2][BF4] in [BMIM][Tf2N] Ionic Liquid: Exploiting the Ambident Nucleophilic Character of a“Nonnu -cleophilic”Anion. J. Org. Chem., 2007, 72: 6758~6762.
    [17] Visser, A., Swatloski, R., Reichert, W. et. al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 2001, 135~136.
    [18] Visser, A., Swatloski, R., Reichert, W. et. al. Task-Specific Ionic Liquids Incorporating Novel Cations for the Coordination and Extraction of Hg2+ and Cd2+: Synthesis, Characterization, and Extraction Studies. Environ. Sci. Technol., 2002, 36: 2523~2529.
    [19] Gui, J. Z., Deng, Y. Q., Huan, Z. D. et. al. A novel task-specific ionic liquid for Beckmann rearrangement: asimple and efective way for product separation. Tetrahedron Letters, 2004, 45: 2681~2683.
    [20] Jitendra, R. Metal Chelate Formation Using a Task-Specific Ionic Liquid. Inorg. Chem., 2006, 45: 10025~10027.
    [21] Zhang, S. M., Li, J. Preparation and Structural Characterization of Carboxyl-functional Ionic Liquid Modified Pd Nanoparticles. Chinese Journal of Inorganic Chemistry, 2007, 4: 729~732.
    [22] Abbott, A. P., Capper, G., Davies, D. L. et. al. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorg. Chem., 2005, 44: 6497~6499.
    [23] Abbott, A. P., McKenzie, K. J. Electropolishing and Electroplating of Metals Using Ionic Liquids Based on Choline Chloride. ACS Symposium Series., 2007, 13: 186~187.
    [24] Abbott, A. P., Capper, G., Davies, D. L. et. al. Ionic Liquids Based upon Metal Halide/ Substituted Quaternary Ammonium Salt Mixtures. Inorg. Chem., 2004, 43: 3447~3452.
    [25] Abbott, A. P., Capper, G., Davies, D. L. et. al. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data, 2006, 51: 1280~1282.
    [26] Abbott, A. P., Capper, G., Davies, D. L. et. al. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc., 2004, 126: 9142~9147.
    [27] Takashi, M. Microscopic Study of Ionic Liquid-H2O Systems: Alkyl-Group Dependence of 1-Alkyl-3-Methylimidazolium Cation. J. Phys. Chem. B., 2010, 114: 6323~6331.
    [28]孙宁,张锁江,等.离子液体物理化学性质数据库及QSPR分析.过程工程学报,2005,6:698~673.
    [29] Philipp, K. Richard, D. Hydrogen Bonding in the Crystal Structures of the Ionic Liquid Compounds Butyldimethylimidazolium Hydrogen Sulfate, Chloride, and Chloroferrate(II, III) Inorg. Chem., 2004, 43: 2803~2809.
    [30] Gu, Z., Brennecke, J. F. et. al. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data, 2002, 47: 339~345.
    [31]张锁江,吕兴梅等.离子液体—从基础研究到工业应用.北京:科学出版社,2006:60,80,149.
    [32] Bansal, D., Cassel, F., Croce, F. et. al. Conductivities and Transport Properties of Gelled Electrolytes with and without an Ionic Liquid for Li and Li-Ion Batteries. J. Phys. Chem. B., 2005, 109: 4492~4496.
    [33] Papageorgiou, N., Athanassov, Y., Armand, M. The performance and stability of ambienttemperature moltem salts for solar cell applications. Electrochem. Soc., 1996, 143: 3099~3108.
    [34] Endres, F. Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors. Chem. Phys. Chem., 2002, 3: 144~154.
    [35] Earle, M. J. The distillation and volatility of ionic liquids. Nature, 2006, 439: 831~834.
    [36] Yang, Y. L, Kou, Y. D. Etermination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chem Commun, 2004, 2: 226~227.
    [37]李雪辉,张磊等,物理化学学报,1-正丁基-3-甲基咪唑溴化物离子液体TGA-FTIR研究.2006,22:430~435.
    [38] Cai, Y. Q., Zhang, Y. Peng, Y. Q. Carboxyl-Functional Ionic Liquids as Scavengers: Case Studies on Benzyl Chloride, Amines,and MethanesulfonylChloride. J. Comb. Chem., 2006, 8: 636~638.
    [39] Li, J. Z., Peng, Y. Q. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media. Catalysis Letters., 2005. 102: 3~4.
    [40] Li, D. M., Shi, F. Peng, J. J. Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes. J. Org. Chem., 2004, 69: 3582~3585.
    [41]易封萍,彭延庆,宋恭华.功能化离子液体为载体液相合成二氢吡啶酮衍生物.化学学报,2006,64:1145.
    [42] Wu, Y. Zhang, T. T. Structural and Electronic Properties of Amino Acid Based Ionic Liquids: A Theoretical Study. J. Phys. Chem. A., 2009, 113: 12995~13003.
    [43] Domanska, U. Extraction of Metal Ions from Aqueous Solutions Using Imidazolium Based Ionic Liquids. J. Solution Chem., 2009, 38: 739~751.
    [44] Visser, A. E., Swatloski, R. P. Rogers, R. D. et al. Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids, Industrial & Engineering Chemistry Research, 2000, 39: 3596~3604.
    [45] Luo, H. M., Dai, S., Bonnesen, P. V. Solvent Extraction of Sr2+ and Cs+ Based on Room- Temperature Ionic Liquids Containing Monoaza-Substituted Crown Ethers [ J ]. Anal Chem, 2004, 76: 2773~2779.
    [46] Nockemann, P., Deun, R. V., Thijs, B. et al. Uranyl Complexes of Carboxyl-Functionalized Ionic Liquids. Inorg. Chem., 2010, 49: 3351~3360.
    [47] Huddleston, J. G., Rogers. R. D. Room temperature ionic liquids as novel media for clean liquid-liquid extraction. Chem. Commun., 1998, 16: 1765~1766.
    [48] Sudha, S. Y. Evaluating the Interactions of Co2-Ionic Liquid Systems through Molecular Modeling. World Academy of Science, Engineering and Technology., 2009, 539~542.
    [49] Zhang, X. C., Huo, F., Liu, W. H. Absorption of CO2 in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorop. J. Phys. Chem. B., 2009, 113: 7591~7598.
    [50] Marcos, E. Molecular Dynamics Simulations of CO2 at an Ionic Liquid Interface: Adsorption, Ordering, and Interfacial Crossing. J. Phys. Chem. B., 2010, 114: 11827~11837.
    [51] Eleanor, D. CO2 Capture by a Task-Specific Ionic Liquid. J. AM. CHEM. SOC., 2002: 926~927.
    [52] Sung, H, H. Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction Process. Biochemistry, 2010, 45: 1899~1903.
    [53]王均凤,张锁江,陈慧萍.过程工程学报,离子液体的性质及其在催化反应中的应用2003,2:177~185.
    [54] Swatloski, R. P. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc., 2002, 124: 4974~4975.
    [55] McCluskey, A. Ionic Liquids and Metal Ions: From Green Chemistry to Ore Refining. ACS Symp., 2002, 818: 199~212.
    [56] Binnemans, K. Lanthanides and Actinides in Ionic Liquids. Chem. ReV., 2007, 107: 2592~2614.
    [57] Mehdi, H., Bodor, A., Lantos, D. et al. Imidazolium Ionic Liquids as Solvents for Cerium (IV) -Mediated Oxidation Reactions. J. Org. Chem., 2007, 72: 517~524.
    [58] Visser, A. E., Swatloski, R. P., Reichert, W. M.“Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids,”Ind. Eng. Chem. Res., 2000, 39: 3596~3604.
    [59] Davis, J. H. Chem. Task-Specific Ionic Liquids Lett., 2004, 33: 1072~1077.
    [60] Zhao, D. B. Transformation between Diphosphinoamines and Iminobiphosphines: a Reversible P-N-P ? N=P-P Rearrangement Triggered by Protonation/Deprotonation. Inorg. Chem., 2004, 43: 2197~2205.
    [61] Ouadi, A., Gedenne, B., Hesemann, P. Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem., 2007, 9: 1160~1162.
    [62] Lombardo, M. Task-specific ionic liquids as reaction media for the cobalt-catalysed cyclotrimerisation reaction of arylethynes. Green Chem., 2007, 9: 321~322.
    [63] Naik, P. U., McManus, G. J., Zaworotko, M. J. Salicylaldoxime and salen containing imidazolium ionic liquids fro biphasic catalysis and metal extractions. Dalton Trans., 2008, 4834.
    [64] Harjani, J. R. Removal of metal ions from aqueous solutions using chelating task-specific ionic liquids. Dalton Trans., 2008, 34: 4595~4601.
    [65] Fei, Z. F.; Geldbach, T. J.; Zhao, D. B.; Dyson, P. J. Chem. sEur. J., 2006, 12, 2123~2130.
    [66] Nockemann, P., Thijs, B. et al. Task-specific ionic liquid for solubillizing metal oxides. J. Phys. Chem. B., 2006, 110: 20978~20992.
    [67]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007,p3.
    [68] Kohn, W. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140: A1133~A1138.
    [69] Tong, B. Y. Application of a Self-Consistent Scheme Including Exchange and Correlation Effects to Atoms. Phys. Rev., 1966, 144: 1~4.
    [70]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法北京:科学出版社,2009,P470.
    [71] Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev., 1964, 136: B864~B871.
    [72] Frish, M. J. et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh PA, 2003.
    [73] Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 1993, 98: 1372~1377.
    [74] Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 1988, 37: 785~789.
    [75]于宁.质子传导型氨基酸离子液体的结构-性质研究及分子动力学模拟[D].硕士论文,辽宁大学,2010.
    [76] Boys, S. F.; Bernardi, F. Molecular Physics., 1970, 19: 558.
    [77]辛厚文.分子拓扑学.安徽:中国科技大学出版社,1991.
    [78] Hohenberg, P, Kohn, W. Phys. Rev., 1964, 136: 864~871.
    [79] Bader, R. Atom in moleculars. A quantum theory oxford unv, Press: Oxford, 1990.
    [80] Bader, R. F. W, Gough, K. M, Laidig, K. E. et. al. Mol. Phys. 1992, 75: 1167~1189.
    [81]吴阳,张甜甜,于宁.1-乙基-3-甲基咪唑阳离子与天冬酰胺阴离子的相互作用.化学学报,2009,8:1689~1696.
    [82] Jing, S. A Theoretical Study on C-COOH Homolytic Bond Dissociation Enthalpies. J. Phys. Chem. A., 2010, 114: 6263~6272.
    [83] Kitaura, K., Morokuma, K. Polarization effects in molecular interactions. Int. J. Quantum Chem., 1976, 10: 325.
    [84] Epstein, L .M., Shubina, E. S. Coord. Chem. Rev., 2002, 231: 165.
    [85] Kenta, F., Takao, F., Liquid Structure and Preferential Solvation of Metal Ions in Solvent Mixtures of N,N-Dimethylformamide and N-Methylformamide. J. Phys.Chem. B., 2006, 110:8179~8183.
    [86] Maggel, Deetlefs. Liquid Structure of the Ionic Liquid 1,3-Dimethylimidazolium Bis[(trifluoromethyl)sulfonyl]amide. J. Phys. Chem. B., 2006, 110: 12055~12061.
    [87] Ben Thijs. leuven, Univ. of Katholieke, 2007.
    [88] Dong, K, Zhang, S, Wang, D. Hydrogen Bonds in Imidazolium Ionic Liquids. J. Phys. Chem. A., 2006, 110: 9775~9782.
    [89] Turner, E. A. Use of ab Initio Calculations toward the Rational Design of Room Temperature Ionic Liquids. J. Phys. Chem. A., 2003, 107: 2277.
    [90]肖小华.离子液体及其在分离分析中的应用进展.分析化学,2005,33:569~574.
    [91]吴阳,张甜甜,李静蕊.半胱氨酸阴离子与咪唑阳离子间相互作用的理论研究.化学学报,2009,67:1851~1858.
    [92] Tsuzuki, H. Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids: Relationship with Ionic Conductivity. J. Phys. Chem. B., 2005, 109: 16474~16481.
    [93] Wu, Y., Z, T. T. Structural and Electronic Properties of Amino Acid Based Ionic Liquids: A Theoretical Study. J. Phys. Chem. A., 2009, 113: 12995~13003.
    [94] Ryutaro, S. Glass-Liquid Transition, Crystallization, and Melting of a Room Temperature Ionic Liquid: Thin Films of 1-Ethyl-3-methylimidazolium Bis[trifluoromethanesulfonyl] -imide Studied with TOF-SIMS. J. Phys. Chem. B., 2008, 112: 15349~15354.
    [95] Abbott, A. P. Model for the Conductivity of Ionic Liquids Based on an Infinite Dilution of Holes. Chem. Phys. Chem. , 2005, 6: 2502 ~2505.
    [96] Hunt, P. A. The simulation of imidazolium-based ionic liquids Molecular Simulation. Chem. Eur. J., 2006, 12: 6762.
    [97] Buhl, M., Chaumont, A. Ab Initio Molecular Dynamics of Liquid 1,3-Dimethylimidazolium Chloride. J. Phys. Chem. A., 2005, 109: 18591~18599.
    [98]蒋栋,王媛媛,刘洁.咪唑类离子液体结构与熔点的构效关系及其基本规律.化学通报, 2007,5:371~374.
    [99]兰州大学,复旦大学.《有机化学实验》[M].高等教育出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700