用户名: 密码: 验证码:
热解技术处理废弃印刷线路板的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热解法作为一种较新的线路板处理技术不仅实现线路板中有机组分转化为高品质能源——可燃气、可燃油,同时实现线路板中金属组分与非金属组分的高效分离,最终实现线路板环境友好型资源化回收目的。但是基础数据的缺乏减缓了大型设备研发进程,进而阻碍了热解技术推广应用。针对这一现状,本文选取了两种典型的废弃印刷线路板(FR4板和Teflon板)作为实验对象,开展了如下工作:
     利用差热热重分析仪,在N2气氛下考察了两种线路板的热解特性,获得了热解温度、最大热解速率温度、热失重率等重要参数并研究了升温速率对热解参数的影响。着重考察了升温速率、颗粒大小、热解终温对热解残余物性状的影响。研究结果表明:FR4板500℃热解终温,Teflon板700℃热解终温可保证两种线路板中有机组分热解完成,同时实现线路板金属与玻璃纤维很好的分离效果,分离金属片表面干净。而FR4板在320~360℃,Teflon板在560~620℃温度区间达到最大热解速率,在工程设计中可考虑物料在此温区滞留时间。
     采用蔡式温度积分近似式,Levenberg-Marqurdt优化非线性回归方法实现了线路板的热解动力学参数的计算,并建立热解模型,所建模型与实验结果拟合良好。可应用该模型预测热解过程中任意温度下原始物样质量随温度变化情况,以指导和优化反应器的设计和运行。
     自行设计了固定床热解实验装置,实现了两种线路板热解气体、液体、固体产物的收集,并利用GC-MS(气-质联用)、FTIR(红外光谱)、SEM(扫描电镜)等多种分析测试手段实现了三种产物的定性分析。FR4板中溴元素主要存在于气体产物中,气体产物主要为CO、CO2、丙烯、2-甲基丙烯、溴甲烷以及其他小分子烯烷烃产物,气体产物可通过除溴无害化处理作可燃气回收;液体产物中含有8.333%的水和油质成分。油质成分主要为苯,苯酚,苯和苯酚烷基取代等芳香族化合物,热值可高达30000kJ/kg,可作燃料油回收。Teflon热解气体产物主要为八氟环丁烷以及其他小分子碳氟氢烷烃化合物。两种线路板固体产物主要是由玻璃纤维和金属构成。制作过程中镀金的金属片热解后含有铜、镍、金以及附着在上面未清除干净的碳;而未镀金的金属片仅有铜和附着的碳。
     本文还进行了热解技术处理两种线路板的能耗分析。FR4、Teflon型线路板热解反应热分别为19.692MJ/kg和11.374MJ/kg。对于FR4板来说,回收的热解油作为燃料回收,热量仅为反应热的1/4,不足以维持热解反应的持续进行。
Pyrolysis, as a new technique to recycle waste printed circuit boards (PCB), makes the organic fractions of PCB convert to flammable gas and oil which are high-quality energy sources, also leads to the effective seperation of metallic and glassfibre fractions of PCB. Pyrolysis technique achieves the aim of environment- friendly, resource reclamation of PCB. However, the scarce of basic information prevents the large-scale equipment development process; furthermore baffles the application and popularization to recycling PCB with pyrolysis technique. Aiming at these questions, two typical kinds of PCB, called FR4 and Teflon PCB, were chosen as experimental materials and the following studies had been done in the paper:
     Pyrolysis characteristics of two kinds of PCB were investigated with the thermo- gravimetric analyser (TGA) with N2and basic parameters such as the pyrolysis initial and final temperature, the temperature at the maximum pyrolysis rate, thermogravi- metric loss were obtained. The influence of heating rate on the pyrolysis characteristic parameters was studied also. The influence of effective factors of heating rate, particle size, and pyrolysis final temperature on the pyrolysis residue morphology was inves- tigated in detail. The results showed that: the pyrolysis temperatures of 500℃for FR4 PCB and of 700℃for Teflon PCB in engineering design not only ensure the complete decomposition of organic component, but also effective seperation of metallic compo- nent and glassfibre component. Also, the temperature at the maximum pyrolysis rate appeared at the range of 320~360℃for FR4 and of 560~620℃for Teflon PCB. Therefore, the longer residence time at the temperature zone of the feedstocks can be considered in engineering design.
     The method based on CAI-temperature integral approximation and Levenberg- Marquardt nonlinear regression was carried out to calculate the kinetic parameters of two kinds of PCB respectively and corresponding kinetic models were established. The models were in good agreement with the experimental ones at different heating rate. The effect of the original waste PCB with different pyrolysis time or temperature in process could be estimated based on the models, which could effectively direct and optimize design of pyrolysis reactor.
     Pyrolysis gas, liquid, solid products of two kinds of PCB was collected using self-designed fixed-bed pyrolysis experimental device and was analyzed qualitatively with the test methods of GC-MS, FT-IR and SEM. For FR4 PCB, bromide exsited mainly in pyrolysis gas and gas products mainly consisted of CO, CO2, propylene, 2-methacrylate, bromomethane, and a small amount of acetone, C1-C3 halogenation alkyls. The pyrolysis gas could be reclaimed as fules after debromide treatment. Pyrolysis liquid products consisted of 8.333% water and 91.667% oil component.The oil component contained high concentrations of benzene, phenol, alkyl benzene and alkyl phenols, which caloric value was up to 30000kJ/kg and could be reclaimed as fuels.For Teflon PCB, pyrolysis gas contained high concentration of octafluoro- cyclobutane and low concentration of small molecular fluorocarbon-hydrogen compounds. The solid products of two kinds of PCB contained glassfibre and metals. The plated sheet metal after pyrolysis treatment contain copper, nickel, gold and a little carbon; non-plated metal contained copper and carbon attached on the metals.
     Energy consumption was analyzed on the treatment of PCB by pyrolysis technology. Pyrolysis reaction heat was 19.692MJ/kg for FR4 PCB and 11.374MJ/kg for Teflon PCB respectively.
     For FR4, caloric value of pyrolysis oil was about 1/4 of pyrolysis reaction heat value, which was not enough to support the pyrolysis process of FR4 PCB.
引文
[1]祝大同.亚洲印刷电路板也厄现状和发展.电子工艺技术,1997,9:175~178
    [2] Dirk B. Electronic scrap: A growing resource. Precious Metals, 2001(7):21~24
    [3] Waste Management World, November/December, International Solid waste Asso- ciation, Copenhagen, Denmark (2002)20~30
    [4] Onorato D. Japanese Recycling Law Takes Effect. Waste Age, 2001, 32(6): 25~26
    [5]计世网. http://industry.yidaba.com/dzdgdq/dyfx/245247.shtml,2007-08-21
    [6] Chien Y C, Wang H P, Lin K S, et al. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere, 2000, 40(4):383~387
    [7] Brodersen K, Tartler D, Danzer B. Scrap of electronics a challenge to recycling activities. In: IEEE International Symposium on Electronics and the Environment. USA: IEEE, 1994. 174~176
    [8] Linton J. Electronic products at their end-of-life: option and obstacles.Journal of Electronics Manufacturing. 2000, 9(1):29~40
    [9] Theo L. Integrated recycling of non-ferrous metals at Boliden Ltd. Ronnskar Smelter, in: Proceedings of the1998 IEEE International Symposium on Electronics and the Environment. USA: IEEE, 1998.42~47
    [10] Goosey M, Kellner R. Recycling technologies for the treatment of end of life printed circuit boards (PCB). Circuit World, 2003, 29(3):33~37
    [11]甘舸,陈烈强,彭绍洪等.废旧电子电气设备回收处理的研究进展.四川环境,2005,24(3):89~93
    [12]钟非文,李登新,杨涛等.废弃印刷线路板Pb,Cd和Cr的测定.有色金属,2007,59(2):122~123
    [13] Susan D, Landry.电气和电子设备中所使用的阻燃剂HIPS树脂的报废处理选择方案.电机电器技术,2002(6):9~11
    [14]魏金秀.废弃印刷线路板中金回收的试验研究:[硕士论文].上海:东华大学,2005
    [15] Veit H M, Diehl T R, Salami A P, et al. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap, Waste Manage, 2005, 25(1):67~74
    [16]林康.解决电子垃圾污染的几点建议.能源与环境,2007(6):79~80
    [17]王勇,高秋梅,卢逊艳.电子垃圾污染的防治对策. 2006,24(6):62~65
    [18]王景伟,徐金球.欧盟电子废弃物管理法介绍.中国环境管理,2003,22(4):48~51
    [19]汪晓萍.欧盟环保指令对我国机电行业的影响与对策.机电工程技术,2005,34(2):17~19
    [20]陈魁,姚从容.发达国家电子废弃物立法比较及对我国的启示.再生资源研究,2007(6):25~28
    [21]李猛.韩国电子废弃物立法管制综述.节能环保,2008(1):18~21
    [22] Lee J C, Song H T, Yoo J M. Present status of the recycling of waste electrical and electronic equipment in Korea. Resources Conservation and Recycling, 2002(50):380~397
    [23]幸红.电子废弃物回收利用相关法律问题探讨.法律适用. 2007(8):83~86
    [24]李丹.电子废弃物管理立法研究.节能环保,2006(12):13-16
    [25] Setchfield J H. Electronic scrap treatment at Engelhard. In: Proceedings of the Eleventh International Precious Metals Institute Conference, USA: Int Precious Metals Inst, 1987, 147~153
    [26] Reddy R G, Mishra R K. Recovery of precious metals by pyrometallurgical processing electronic scrap. In: Proceedings of the Eleventh International Precious Metals Institute Conference, USA: Int Precious Metals Inst, 1987, 135~146
    [27] Dunning B W. Precious metals recovery from electronic scrap and solder used in electronics manufacture. In: Proceedings of Precious metals recovery from low- grade resource, USA:USBM, 1986, 44~56
    [28]钟非文,李登新,魏金秀.从废弃电子印刷线路板中回收金的试验.有色金属再生与利用,2006,6:25~27
    [29]张潇尹,陈亮,陈东辉.硫氰酸盐法浸出废印刷线路板中的金.贵金属,2008,29(1):11~14
    [30] Oishi T, Koyama K, Alam S, et al. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrome- tallurgy, 2007, 89(1-2): 82~88
    [31] Kologe D M, Larson B. Method of Stripping Silver from a Printed Circuit Board, US Patent, 6783690
    [32] Kargari A, Kaghazchi T, Sohrabi M. Batch extraction of gold (Ⅲ) ions from aqueous solutions using emulsion liquid membrane via acilitated carrier transport.Journal of Membrane Science, 2004, 233:1~10
    [33]刘冰.从废弃电子印刷线路板中提取金的研究:[硕士论文].上海:东华大学,2005
    [34]白庆中,王晖,韩洁等.世界废弃印刷电路板的机械处理技术现状.环境污染治理技术与设备,2001,2(1):84-89
    [35] Feldmann K, Scheller H. Disassembly of electronic products. In: Proceedings of the 1994 IEEE International Symposium on Electronics and the Environment, USA: IEEE, 1994. 81~86
    [36] Feldmann K, Scheller H. The printed circuit board-A challenge for automated disassembly and for the design of recyclable interconnect devices. In: Proceed- ings of the International Conference on Clean Electronics Products&Technology, England:IEEE, 1995.186~190
    [37] Yokoyama S, Iji M. Recycling of printed circuit boards with mounted electronic parts. In: Proceedings of the 1997 IEEE International Symposium on Electronics and The Environment.USA: IEEE, 1997.109~114
    [38]刘志峰,李辉,胡张喜等.废旧家电中印刷电路板元器件脱焊技术研究.家电科技,2007(1):32~34
    [39] Furuuchi M, Yamada C, Gotoh K. Shape separation of particulates by a rotating horizontal sieve drum. Powder Technology, 1993, 75(2):113~118
    [40] Furuuchi M, Gotoh K. Continuous shape separation of binary mixture of granular particles. Powder Technology, 1988, 54(1):31~37
    [41] Ohya H, Endoh S, Yamamoto M. Analysis of particle motion regarding shape separation using an inclined conveyor. Powder Technology,1993,77(1):55~59
    [42]殷进.废弃印刷电路板破碎解离与气流分选研究:[硕士论文].上海:同济大学,2006
    [43] Melchiorre M, Jakob R. Electronic Scrap Recycling. Microelectronicx Jounal, IEEE, 1996,28(8~10):xxii-xxiv
    [44] Zhang S H, Forssberg E, Arvidson B, et al. Aluminum recovery from electronic scrap by High-ForceReddy-current seperators. Resources, Conservation and Recycling,1998,23(4):225~241
    [45]路洪洲.破碎废弃印刷电路板的高压静电分选:[硕士论文].上海:上海交通大学,2007
    [46] Veit H M, Diehl T R, Salami A P, et al. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Management,2005, 25(1):67~74
    [47] Li J, Xu Z M, Zhou Y H. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. Journal of Electrostatics, 2007, 65(4):233~238
    [48] Wu J, Li J, Xu Z. Electrostatic Separation for Multi-size Granule of Crushed Printed Circuit Board Waste Using Two-Roll Separator. Journal of Hazardous Materials (2007), doi: 10.1016/j. jhazmat.2008.02.013
    [49] Lu H Z, Li J, Guo J, et al. Movement behavior in electrostatic separation: Recycl- ing of metal materials from waste printed circuit board, Journal of Materials Pro- cessing Technology, 2008, 97(1~3): 101~108
    [50] Zhang S L, Forssberg E. Mechanical separation-oriented characterisation of electronic scrap. Resources, Conservation and Recycling, 1997, 21(4):247~269
    [51] Veit H M, Pereira D C, Bernardes A M. Using mechanical processing in recycling printed circuit boards, Journal of Material, 2002,45~47
    [52] Biddulph M W. Design of vertical air classifiers for municipal solid waste. Cana- dian Journal of Chemical Engineering, 1987, 65(4):571~580
    [53] Eswaraiah C, Kavitha T, Vidyasagar S, et al.Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chemical Engineering and Processing, 2008,47: 565~576
    [54] Zhang S L, Forsserg E. Intelligent Liberation and classification of electronic scrap. Powder Technology, 1999, 105(1~3):295~301
    [55]柴晓兰,曹亦俊,王春彦等.机械处理废弃印刷线路板.中国资源综合利用,2003(2):23~26
    [56] Yokoyama S, Iji M. Recycling of printed wiring board waste. In: Proceedings of 1993 IEEE/Tsukuba. International Work Shop on Advanced Robotics, USA: IEEE, 1993, 55~58
    [57] Guo J, Rao Q L, Xu Z M. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound. Journal of Hazardous Materials, 2008, 153(1~2):728~734
    [58] Mou P, Xiang D, Duan G H. Products made from nonmetallic materials Reclai- med from Waste Printed Circuit Boards. Tsinghua Science and Technology, 2007, 12(3):276~283
    [59]赵明.阻燃性酚醛树脂印刷线路板粉碎处理中热解污染的试验研究.矿冶,2006,15(4):78~83
    [60]叶璀玲,万玲娟.废弃印刷线路板热解试验气体产物分析.中国资源综合利用,2004,6:7~9
    [61]温雪峰.物理法回收废弃电路板中金属富集体的研究:[博士论文].江苏:中国矿业大学,2004
    [62]叶晓江.电子废弃物回收利用良方.环境导报,1997,4:33
    [63] Zhang H C, Xi O Y. A Binary Solvent Process for Printed Circuit Board Recycl- ing. Annals of the CIRP, 2006, 55(1)
    [64]胡可喜.基于超临界流体技术的印刷线路板回收实验及机理研究:[硕士论文].安徽:合肥工业大学,2007
    [65] Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 2001, 59(2-3):319~326
    [66] Hahn M S, Willscher S, Stranbe G. Copper leaching from industrial wastes by heterotrophic microorganisms. In:Proceedings of the International Biohydro- metallurgy Symposium, USA Warrendale, The Minerals, Metals and Material Society, 1993,99~108
    [67] Bosecker K. Microbial recycling of mineral waste products. Acta Biotechnology, 1987, 7:487~497
    [68]邓娜,张于峰,谢慧等.城市固体废弃物热解气化处理气化段模型.天津大学学报,2006,39(4):463~468
    [69] Williams P T, Williams E A, Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J.Anal.Appl.Pyrolysis, 1999, 51 (1-2): 107 ~ 126
    [70]陆王琳,金余其,池涌等.废轮胎热解制油技术及油品应用前景.化工进展, 2007,26(1):13~17
    [71]邓娜.医疗废物热解特性及动力学模型研究:[博士论文].天津:天津大学,2005
    [72] Senneca O, Salatino P, Chirone R. A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 1999, 78(3):1575-1581
    [73] Milne B J, Behie L A, Berruti F. Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 1999, 51(1-2):157~166
    [74] Meier D, Faix O. State of the art of applied fast pyrolysis of ignocellulosic materials-a review. Bioresource Technology.1999, 68(1):71~77
    [75] Day M, Cooney J, Barrette C, et al. Pyrolysis of mixed plastics used in the electronics industry. Journal of Analytical and Applied Pyrolysis, 1999, 52(2): 199 ~224
    [76] Guido G, Masaaki F, Akitsugu O, et al. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards, Chemosphere, 2008, 71 (5): 872~878
    [77] Cornelia V, Mihai A B, Tamer K, et al. Feedstock recycling from plastics and thermosets fractions of used computers.Ⅱ.Pyrolysis oil upgrading. Fuel, 2007, 86(4):477~485
    [78] BlazsóM, Czéqény Z, Csoma C. Pyrolysis and debrominated of flame retarded polymers of electronic scrap studied by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002, 64(2):249-261
    [79] Chien Y C, Wang H P, Lin K S. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere, 2000, 40(5): 383-387.
    [80] Bockhorn H, Hornung H, Hornung U, et al. Dehydrochlorination of plastic mixtures. Jounal of Analytical and Applied Pyrolysis, 1997, 49(1):97~106
    [81] Hornung A, Donner S, Balabanovich A, et al. Polypropylene as a reductive agent for dehalogenation of brominated organic compounds. Journal of Cleaner Production, 2005, 13(5):525~530
    [82] Hall W J, Williams P T. Separation and recovery of materials from scrap printed circuit boards. Resources, Conservation &Recycling, 2007, 51(3):691~709
    [83]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究:[博士论文].湖北武汉:废弃印刷线路板的热解机理及产物回收利用的试验研究,2004
    [84]谭瑞淀,王同华,檀素霞等.微波辐射热解废印刷电路板产物的分析研究.环境污染与防治,2007,29(8):599~601
    [85]张怀武.现代印刷电路原理与工艺.北京:机械工业出版社,2006,6~7,22
    [86]沈锡宽.印制电路技术.北京:科学出版社,1987,??
    [87]李乙翘.印制电路.北京:化学工业出版社,2007,16~17
    [88]孙忠贤.电子化学品.北京:化学工业出版社,2002,292~294
    [89] Angerer G, Batcher K. Recyclilng of electronics scrap: Status of technology and research. Erich Schmidt Verlag Gmbh&Co., Germany, 1993
    [90]梁志立.高频微波通信少不了的聚四氟乙烯印制板.印刷电路信息,2002(1):15~17
    [91] Tzeng G. S, Chen H J, Wang Y Y, et al. Direct metallization of Teflon-based printed circuit boards, Surface and Coatings Technology, 1997, 90:71-74
    [92]王艳.城市生活垃圾中低温热解特性研究:[博士论文].天津:天津大学,2005
    [93] Colak N, Akgun A, Investigation of the thermal decomposition kinetics of poly(propylene oxide) using thermogravimetric analysis, Polymer of plastic Technology Engineering, 1999,38(4):647~658
    [94] Sφrum L, Grφnli M G, Hustad J E, Pyrolysis characteristics and kinetics of muni- cipal solid wastes, Fuel, 2001, 80(9):1217~1227
    [95] Mehl M, Marongiu A, Faravelli T, et al. A kinetic modeling study of the thermal degradation of halogenated polymers, Jounal of Analytical and Applied Pyrolysis, 2004, 72(2): 253 ~ 272
    [96] Claudia U, Gordon A L, Garcia X et al. Distribution of activation energy model applied to the rapid pyrolysis of coal blends, Jounal of Analytical and Applied Pyrolysis,2004,71(2):465~483
    [97]蔡正千.热分析.北京:高等教育出版社,1993,1~6
    [98]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985,9
    [99]马洪亭,张于峰,邓娜等.影响医疗垃圾热解特性的主要因素.化工进展,2007,26(12):1783~1789
    [100]胡荣祖,史启桢.热分析动力学[M].北京:科学技术出版社,2001, 2~4
    [101] Chen H, Liu N,New procedure for derivation of approximations for temperature integral,AIChE Journal,2006,52(12):4181~4185
    [102] Pérez-Maqueda L A, Sánchez-Jiménez P E, Criado J M. Kinetic analysis of solid-state reactions:Precision of the activation energy calculated by integral methods. International Journal of Chemical Kinetic,2005,11(37):658~666
    [103] Cai J M, Liu R H, Huang C X. Kinetic analysis of nonisothermal solid-state reactions:Determination of the kinetic parameters by means of a nonlinear regression method. Journal of Mathematical Chemistry, 2007, doi:10.1007/s10910-007-9328-5
    [104] Szekely T, Varhegyi G, Till F, et al. Effects of heat and mass transport on the results of thermal decomposition studies: part 2. Polystyrene, Polytetrafluoroethylene and Polypropylene, Jounal of Analytical and Applied Pyrolysis, 1986, 11(10):83~92
    [105]邓娜.医疗废物热解特性及动力学模型研究. [硕士论文].天津:天津大学,2005
    [106]王清,王绪科,王伯勇等.从电路板废料中回收苯酚及异丙基苯酚.山东科学,2000,13(3):57-60
    [107]赵瑶兴,孙祥玉.光谱解析与有机结构鉴定.合肥:中国科学技术大学出版社,1992. 132~159
    [108]中西香尔,索罗曼P H.红外光谱分析100例.北京:科学工业出版社,1987. 18
    [109]董庆年.红外光谱法.北京:石油化学工业出版社,1977. 99
    [110] Cullis C F, Hirschler M M. The combustion of organic polymers. England, Oxf- ord: Clarendon Press,1981.110~115
    [111] Williams P T,Nugranad N. Comparison of Products from the Pyrolysis and Catalytic Pyrolysis of Rice Husks. Energy,2000,25(6):493~513
    [112] Kim J S,Kaminsky W,Schlesselmann B. Pyrolysis of a fraction of mixed plastic wastes depleted in PVC. Journal of Analytical and Applied Pyrolysis,1997,40~41(5):365~372
    [113]朱宜,汪裕萍,陈文雄.扫描电镜图象的形成处理和显微分析.北京:北京大学出版社,1989,3~8
    [114]廖乾初,蓝芬兰等.扫描电镜分析技术与应用.北京:机械工业出版社,1990,180~181
    [115] Oishi T, Koyama K, Alam S, et al. Recovery of high purity copper cathode from printed circiut boards using ammoniacal sulfate or chloride solutions. Hydromet- allurgy, 2007, 89(1~2):82~88
    [116] Marco I, Leqarreta J A, Laresqoiti M F. Recycling of the products obtained in the pyrolysis of fibre-glass polyester SMC. Journal of Chemical Technology and Biotechnology, 1997, 69(2):187~192
    [117] Cunliffe A M, Williams P T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis. Fuel, 2003, 82(18):2223~2230
    [118] Watt D F, Xu J Z. On the use of pyrolysed SMC as a concrete additive.In: Proceedings of the Annual ASM/ESD Advanced Composites Conference, Detroit USA, 1991:615
    [119] Hudec P P. Reduction of alkali reactivity and de-icing salt damage in concrete by additions of pyrolysed sheet moulding compound. In: Proceedings of the Annual ASM/ESD Advanced Composites Conference, Detroit USA, 1991
    [120] Morisaki S. Simultaneous thermogravimetry-mass spectrometry and pyrolysis -gas chromatography of fluorocarbon polymers.Thermochimica Acta, 1978, 25(2):171-183
    [121] Pinaki S B, Sapna S, Mamta S, et al.Flash pyrolysis of polytetrafluoroethylene (teflon) in a quartz assembly. Journal of Analytical and Applied Pyrolysis, 2007, 78(2):288~290
    [122] Simon C M, Kaminsky W. Chemical recycling of polytetrafluoroethylene by pyrolysis. Polymer Degradation and Stability, 1998,62(1):1-7
    [123] Meissner E, Wróblewska A, Milchert E.Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polymer Degradation and Stability, 2004, 83(1):163-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700