用户名: 密码: 验证码:
热成因天然气生成动力学模拟及其地质应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何定量研究天然气形成、运移和聚集是当前天然气地球化学研究的一个热点。
    天然气生成动力学模拟以干酪根(煤或原油)热解实验为基础,借助生烃动力学模
    型和碳同位素动力学模型,结合具体盆地演化史,能定量地预测地质历史时期盆地
    天然气组分和碳同位素组成,恢复天然气的成藏史。本研究利用黄金管限定体系对
    四类不同类型有机质(正十八烷、煤、泥岩、碳酸盐岩)进行了生烃动力学模拟,
    并结合具体地质条件探讨了天然气的生成过程。
     限定体系下正十八烷裂解动力学研究显示,大量的气态烃并非直接来源于正十
    八烷的裂解,而是主要来源于中间产物的二次裂解,裂解残余正构烷烃与初始正十
    八烷相比存在较大的碳同位素分馏;正十八烷在相对低温条件下的裂解和聚合作用
    与高温阶段导致轻烃和多环芳烃生成的歧化反应可能是造成热解实验中普遍存在
    的气态烃碳同位素组成发生倒转的主要原因;甲烷生成动力学研究显示,由正构烷
    烃裂解生成甲烷的最低门限在170℃,大量生成要到200℃,说明在地质条件下,
    饱和烃是很难转化成气的。
     鄂尔多斯盆地古生界两套烃源岩的热解实验表明,上古生界煤系烃源岩和下古
    生界海相碳酸盐岩都具有较强的生气能力,烃源岩热解气中以干气为主(甲烷占
    90%以上),其中二叠系煤的生气能力最强,甲烷最高产率约为270 mL/g TOC。经
    动力学计算,二叠系煤的甲烷生成活化能分布范围为40-63 kcal/mol,频率因子为
    1.01×10~11s~-1:二叠系泥岩的甲烷生成活化能分布范围为40-64 kcal/mol,频率因子
    为1.51×10~11S~-1:奥陶系灰岩的甲烷生成活化能分布范围为39-63 kcal/mol,频率因
    子为6.51×10~10S~-1,并在此基础上计算了样品生成甲烷的碳同位素动力学参数。
     结合盆地具体埋藏史的动力学研究表明,二叠系煤系烃源岩的主生气期集中在
    晚侏罗-早白垩世末期;盆地中部奥陶系灰岩主生气期集中在中侏罗-早白垩世末
    期。在抬升过程中,二叠系煤系源岩在一定的时段内仍有一定量的气体生成。中部
    气田C-P层位天然气为煤成气,源岩为C-P的煤系地层;奥陶系风化壳气藏属混源
    气,以石炭一二叠系煤成气为主,奥陶系油型气为辅,定量计算表明,在中部气田大
    部分地区,石炭.二叠系来源的天然气比例大于70%。
It is presently a hot spot to quantificationally study the formation, migration and accumulation of natural gas. The kinetic simulation of natural gas generation, based on pyrolysis experiments and by means of hydrocarbons generation kinetics and carbon isotope kinetics, can quantificationally predict the compositions of gas components and stable carbon isotope and reveal the history of gas accumulation according to the evolution history of a basin. Recently it is widely applied in the geochemical study of natural gas. In this paper kinetic pyrolyses on four types of organic matter (n-octadecane, coal, mudstone, carbonate rock)were carried out in gold tube confining-system, and the behaviour of natural gas generation are discussed combined with the geological condition.The kinetic study on the pyrolysis of n-octadecane shows that secondary cracking of pyrolysates from n-octadecane largely contributes to the amount of methane generation, much more than primary cracking of n-octadecane. The large shift in the carbon isotope values of the residual alkanes from the initial n-octodecane precursor indicates that the δ~(13)C values of over mature solid bitumen thermally generated in paleo-oil reservoir should not be directly used for oil and source rock correlation. Cracking and polymerization in the relatively low temperatures and disproportionation reactions leading to light hydrocarbons and polyaromatic hydrocarbons at high temperatures are probably causes for the carbon isotope reversal of gaseous hydrocarbons which is commonly observed in pyrolysis experiments. The kinetic study of methane generation implicates that methane from n-alkane hydrocarbons cracking begins to generate at 170 ℃ and the main peak of the generation is at 200 ℃ in sedimentary basins.
    Pyrolysis experiments on two type of Paleozoic source rock in Ordos Basin show that both the Upper Paleozoic coal-measure source rock and Lower Paleozoic marine carbonate source rock have larger gas producing capacity. Pyrolysis gases of the source rocks are dominated by dry gases (methane accounts for over 90% of the total gases). Among them the Permian coal have the biggest gas producing capacity with the highest yield of 270 mL/g TOC. Pyrolysis yields were used to model methane generation with a series of parallel, first-order reactions with activations energies between 40 and 63 kcal/mol and a single frequency factor of 1.01 X 1011 s"1 for Permian coal, activations energies between 40 and 64 kcal/mol and a single frequency factor of 1.51 X 10n s"1 for Permian mudstone and activations energies between 39 and 63 kcal/mol and a single frequency factor of 6.51 X 1010 s"1 for Ordovician limestone. Based on these kinetic parameters, the carbon isotope kinetic parameters were calculated for methane.Extrapolating these parameters to the geological condition in Ordos Basin, hydrocarbon generation history of different source rocks were simulated through hydrocarbon-generating kinetic calculation. Results show that the Permian coal-measure source rock in Ordos Basin entered the "main gas window" between the Late Jurassic and the Early Cretaceous, while Ordovician limestone in the center of Ordos Basin entered the "main gas window" between the Middle Jurassic and the Early Cretaceous. The Permian coal-measure source rock can still generate a significant amount of gas in the process of tectonic uplifting. Natural gases in C-P reservoir are coal-formed gas derived from the C-P coal-measure source rock. The gases in the Ordovician weathering crust are mixed gases which were mainly derived from Upper Paleozoic coal-measure source rock. The quantificational calculation result implicates that over 70% of gas in the weathering crust in the Central gas field is from Carboniferous-Permian beds.
引文
1.陈安定,论鄂尔多斯盆地中部气田混合气的实质,石油勘探与开发,2002,29(2):33~38
    2.程克明,关德师,陈建平等,烃源岩产烃前的热压模拟实验及其在油气勘探中的应用,石油勘探与开发,1991,5:1-10
    3.戴金星,裴锡古,戚厚发.(1992)中国天然气地质学.北京:石油工业出版社.
    4.戴金星,戚厚发.我国煤成烃气的δ~(13)C-Ro关系.科学通报,1989,34(9):690-692.
    5.戴金星,长庆气田奥陶系风化壳气藏气源研究,见戴金星编:天然气地质和地球化学论文集(卷二),北京:石油工业出版社,2000,247~255
    6.付少英,彭平安,张文正等,鄂尔多斯盆地上古生界煤的生烃动力学研究,中国科学(D辑)2002,32(10):812~818
    7.耿新华,耿安松,熊永强等,海相碳酸盐岩烃源岩热解动力学研究—全岩和干酪根的对比。地球化学(待刊)。
    8.关德师,张文正,裴戈,鄂尔多斯盆地中部气田奥陶系产层的油气源,石油与天然气地质,1993,14(3):191~199
    9.胡国艺,鄂尔多斯盆地奥陶系天然气成藏机理及其与构造演化关系,博士学位论文,2003,广州:中国科学院广州地球化学研究所
    10.黄第藩,熊传武,杨俊杰等,鄂尔多斯盆地中部气田气源判识和天然气成因类型,天然气工业,1996,16(6):1~5
    11.惠宽洋,鄂尔多斯盆地煤成气与油型气成因类型鉴别模式研究,矿物岩石,2000,20(2)43~48
    12.蒋助生,胡国艺,李志生等,鄂尔多斯盆地古生界气源对比新探索,沉积学报,1999,17(增刊):820~823
    13.李贤庆,胡国艺,李剑等,鄂尔多斯盆地中部气田天然气混源的地球化学标志与评价,地球化学,2003,32(3):282~290
    14.李贤庆,天然气生烃动力学研究与应用——以塔里木盆地前陆区为例,博士后研究工作报告,2004,广州:中国科学院广州地球化学研究所
    15.李贤庆,肖贤明,米敬奎等,塔里木盆地库车坳陷烃源岩生成甲烷的动力学参数及其应用.地质学报,2005,79(1):133~142
    16.李延钧,陈义才,杨远聪等,鄂尔多斯下古生界碳酸盐烃源岩评价与成烃特征,石油与天然气地质,1999,20(4):349~353
    17.李振铎,胡义军,谭芳,鄂尔多斯盆地上古生界深盆气研究,天然气工业,1998,18(3):10~16
    18.刘德汉,张惠之,戴金星等.煤岩显微组分的成烃实验研究与评价.科学通报,2000;45(4):346~352
    19.刘德汉,郑聪彬,肖贤明等,鄂尔多斯盆地奥陶系盐下碳酸盐岩生烃研究,内部报告,2002,广州
    20.刘金钟,干酪根生烃动力学研究及其地质应用,梁狄刚,黄第藩主编,有机地球化学研究新进展:第八界全国有机地球化学学术会议论文集,北京:石油工业出版社,2002,343~351
    21.刘金钟,唐永春,用干酪根生烃动力学方法预测甲烷生成量之一例,科学通报,1998,43(11):1187~1191
    22.刘金钟,向同寿.少量/微量烃类气体的收集、定量分析及碳同位素分析方法.石油实验地质,2003;25(5):492~497
    23.刘新社,席胜利,付金华等,鄂尔多斯盆地上古生界天然气生成,天然气工业,2000,20(6):19~23
    24.卢家烂.干酪根成烃模拟实验及其应用.见:傅家谟,秦匡宗编.干酪根地球化学.广州:广东科技出版社,1995:471~519
    25.卢双肪,付晓泰,陈昕等,原油族组分成气的化学动力学模型及其标定.地质学报,1997,71(4):367~373
    26.卢双肪,付晓泰,李启明等,塔里木盆地熟化有机质成烃动力学模型原始参数的恢复及意义.地质论评,2000,46(5):556~560
    27.卢双肪,李吉军,薛海涛等,有机质成气过程中同位素分馏的Rayleigh模型和动力学研究的比较研究,第十界全国有机地球化学学术会议论文摘要汇编,2005,238~240
    28.米敬奎,鄂尔多斯盆地上古生界天然气藏的运聚特征,博士学位论文,2003,广州:中国科学院广州地球化学研究所
    29.米敬奎,李新虎,刘新华等,利用生烃动力学研究鄂尔多斯盆地抬升后上古生界源岩生气作用结束时间,地球化学,2004,33(6):561~566
    30.闵琪,杨华,付金华,鄂尔多斯盆地的深盆气,天然气工业,2000,20(6):11-15
    31.钱家麟,王剑秋,吴肇亮,干酪根热解动力学,见:傅家谟,秦匡宗编.干酪根地球化学.广州:广东科技出版社,1995:543~568
    32.钱吉盛,陈一平,反应温度、时间对腐泥型干酪根热解成油规律初探,石油与天然气地质, 1991,13(2):207~216
    33.任战利,赵重远,张军等,鄂尔多斯盆地古地温研究,沉积学报,1994,12(1):56~45
    34.任战利,利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史,地球物理学报,1995,38(3):339~349
    35.任战利,鄂尔多斯盆地热演化史与油气关系的研究,石油学报,1996,17(1):17~24
    36.沈平,申歧祥,王先彬等.气态烃同位素组成特征及煤型气判别.中国科学(B辑),1987,6,647-656.
    37.帅燕华,天然气组分及碳同位素动力学研究于地质应用,博士学位论文,2004,广州:中国科学院广州地球化学研究所
    38.帅燕华,邹艳荣,彭平安,天然气甲烷碳同位素动力学模型与地质应用新进展,地球科学进展,2003,18(3),405-411
    39.孙旭光,秦胜飞,罗建等,煤岩显微组分的活化能研究,地球化学,2001,30(6):599~604
    40.夏新宇,赵林,戴金星等,鄂尔多斯盆地中部气田奥陶系风化壳气藏天然气来源及混源比计算,沉积学报,1998,16(3):75~79
    41.夏新宇,赵林,李剑锋等,长庆气田天然气地球化学及奥陶系气藏成因,科学通报,1999,44(10):1116~1119
    42.解启来,范善发,周中毅等,压力对烃源层演化及产烃影响的模拟实验,矿物岩石地球化学通报,1996,15(2):91~93
    43.熊永强,耿安松,王云鹏等.干酪根二次生烃动力学模拟实验研究.中国科学(D辑),2001:31:315~320
    44.熊永强.热模拟实验结合GC-IRMS测定在有效气源岩研究中的应用.博士论文.2001.广州:中国科学院广州地球化学研究所.
    45.熊永强,耿安松,刘金钟等,生烃动力学模拟实验结合GC-IRMS测定在有效气源岩判识中的应用.地球化学,2002,31(1):21~25
    46.熊永强,耿安松,潘长春等,陆相有机质中单体烃的氢同位素组成特征,石油勘探与开发,2004,31(1):60~63
    47.熊永强,耿安松,张海祖等.油型气的形成机理及其源岩生烃机理恢复.天然气工业,2004:24(2):11~13
    48.熊永强,张海祖,耿安松,热演化过程中干酪根碳同位素组成的变化,2004,26(5):484~487
    49.徐永昌,天然气成因理论及应用,北京:科学出版社,1994,182~356
    50.杨俊杰,裴锡古主编,中国天然气地质学(第四卷):鄂尔多斯盆地,第1版,北京:石 油工业出版社,1996,104~112
    51.赵孟军,张水昌,廖志勤,原油裂解气在天然气勘探中的意义,石油勘探与开发,2001,28(4):47~56
    52.赵文智,刘文汇等编著,天然气地质与气藏经济开发理论基础,北京:地质出版社,2004
    53.张海祖,耿安松,熊永强等.正十八烷的裂解动力学研究(Ⅰ):气态烃组分及其碳同位素演化特征.地质学报(待刊)
    54.张士亚,鄂尔多斯盆地天然气气源及勘探方向,天然气工业,1994,14(3):1~4
    55.张文正,李剑峰,鄂尔多斯盆地上古生界深盆气形成的气源条件研究,低渗透油气田,1998,3(2):13~23
    56.邹艳荣,帅燕华,孔枫.煤成甲烷碳同位素演化的数学模型与应用.天然气地球科学,2003;14(2):92~96
    57.邹艳荣,帅燕华,孔枫.油气生成过程实验研究的思考与展望.石油实验地质,2004;26(4):375~382
    58. Andresen B., Johansen H. and Johansen I. Thermal cracking of light hydrocarbons: implications for natural gas stable isotope composition. The 20th International Meeting on Organic Geochemistry, Nancy, France, Sept 10-14, 2001
    59. Baylis S A., Hall K., and Jumeau E J. The analysis of the C_1-C_5 components of natural gas samples using gas chromatography-combustion-isotope ratio mass spectrometry. Org. Geochem. 1994, 21: 777~785
    60. Behar F, Kressmann S, Vandenbroucke M, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking. Org. Geochem., 1991.19:173~189
    61. Behar F., Kressman S., Rudkiewicz J L., et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking. In: Eckardt, C. B., Maxwell, J.R., Larter, S.R., Manning, D.A.C. (Eds.), Advances in Organic Geochemistry, 1992, Vol. 19, pp. 173~189
    62. Behar F., Vandenbroucke M., Teermann S. C., et al. Experimental simulation of gas generation from coals and a marine kerogen, Chem. Geol., 1995, 126(3-4): 247~260
    63. Behar F, Vandenbroucke M. Experimental determination of the rate constants of the n-C_(25) thermal cracking at 120, 400, and 800 bars: Implications for high-pressure/high-temperature prospects. Energy Fuels, 1996. 10:932~940
    64. Behar F, Vandenbroucke M, Tang Y, et al. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org. Geochem., 1997. 26(5/6): 321~339
    65. Behar F, Budzinski H, Vandenbroucke M, Tang Y. Methane generation from oil cracking: kinetics of 9-methylphenanthrene cracking and composition with other pure compounds and oil fractions. Energy & Fuels. 1999. 471~481
    66. Behar F., Lorant F., Budzinski H., et al. Thermal stability of alkylaromatics in natural systems: kinetics of thermal decomposition of dodecylbenzene, Energy & Fuels, 2002, 16, 831~841
    67. Berner U. and Faber E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Org. Geochem. 1988, 13, 67~72
    68. Berner U., Faber E. and Stahl W. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chem. Geol. 1992,94, 315~319
    69. Berner U., Faber E., Scheeder G, et al. Primary cracking of algal and landplant kerogens: kinetic models of isotope variations in methane, ethane and propane. Chem. Geol. 1995, 126, 233~245
    70. Bjor(?)y M., Williams J A., Dolacater D L., et al. Variation in hydrocarbon distribution in artificially matured oils, Organic Geochemistry. 1988, 13, 901~913
    71. Braun R L. and Burnham A K. Mathematical model of oil generation, degradation and expulsion. Energy Fuels. 1990,4, 132~146
    72. Burnham A K., Gregg H R., Ward R L., et al. Decomposition kinetics and mechanism of n-hexadecane-1, 2- I3C_2 and dodec-1, 2- I3C2 doped in petroleum and n-hexadecane. Geochimica et Cosmochimica Acta, 1997,61: 3725~3737
    73. Clayton C. Carbon isotope fractionation during natural gas generation from kerogen. Mar. Pet. Geol. 1991,8,232~240
    74. Cramer, B., Krooss, B.M. and Littke, R., Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chem. Geol. 1998, 149: 235~250
    75. Cramer B., Faber E., Gerling P. and Krooss B M. Reaction kinetics of stable carbon isotopes in natural gas - insights from dry, open system pyrolysis experiments. Energy & Fuels, 2001, 15, 517~532
    76. Dahl J E., Moldowan J M., Peters K E., et al. Diamondoid hydrocarbons as indications of natural hydrocarbon cracking. Nature, 1999,399:54~57
    77. Dieckmann V, Fowler M, Horsfield B. Predicting the composition of natural gas generated by the Duvernay Formation (Western Canada Sedimentary Basin) using a compositional kinetic approach. Organic Geochemistry, 2004; 35: 845~862
    78. Domine F., Kinetics of hexane pyrolysis at very high pressures. 1. Experimental study. Energy and Fuels 1989. 3, 89~96
    79. Domine F., High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane. Is pressure and important geochemical parameter? Organic Geochemistry 1991.17,619~634
    80. Espitalie J., Ungerer P., Irwin I., et al. Marquis Primary cracking of kerogens. Experimenting and modelling C_1, C_2-C_5, C_6-C_15 and C_15+ classes of hydrocarbons formed, Organic Geochemistry, 1988, 13(4-6), 893~899
    81. Evans R J., and Felbeck G T Jr., High temperature simulation of petroleum formation. 1. The pyrolysis of Green River shale. Organic Geochemistry, 1983, 4: 135~144
    82. Frank D J, Sackett W M. Kinetic isotope effects in the thermal cracking of neopentane. Geochimica et Cosmochimica Acta. 1969, 33: 811~820
    83. Frank D J, Gormly J R, Sackett W M. Revaluation of carbon-isotope compositions of natural methanes. AAPG. 1974, 58: 2319~2325
    84. Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology, 1988, 71: 77~95
    85. Hill R J., Tang Y., and Kaplan I R., Insights into oil cracking based on laboratory experiments, Organic Geochemistry, 2003, 34, 1651~1672
    86. Horsfield B, Schenk H J, Mills N, et al. An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperture pyrolysis. Org. Geochem. 1992. 19: 191~204
    87. Huizinga B J., Tannembaum E., Kaplan I R. Role of minerals in thermal alteration of organic matter-Ill: Generation of bitumen in laboratory experiments. Organic Geochemistry, 1987; 71(11): 591~604
    88. Jackson K J., Burnham A K., Braun R L, et al. Temperature and pressure dependence of n-hexadecane cracking, Org. Geochem, 1995,23(10): 941~953
    89. James, A. I. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components, AAPG Bulletin, 1983,67: 1176~1191
    90. Jenden P. D., Drazan D. J. and Kaplan I. R. Mixing of thermogenic natural gases in northern Appalachian basin. Am. Assoc. Petr. Geol. Bull., 1993, 77,980~998
    91. Jerry J S, Alan K B, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics, AAPG, 1990,74(10): 1559~1570
    92. Lorant F, Behar F, Vandenbroucke M. Methane generation from methylated aromatics: kinetic study and carbon isotope modeling. Energy & Fuels. 2000, 14: 1143~1155
    93. Lorant F., Prinzhofer A., Behar F., et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chem. Geol. 1998, 147: 249~264
    94. Lorant F. and Behar F. Carbon isotopic characterization of late methane. The 20th International Meeting on Organic Geochemistry, Nancy, France, Sept 10-14, 2001
    95. Mango F D, Elrod L W. The carbon isotope composition of catalytic gas: A comparative analysis with natural gas. Geochimica et Cosmochimica Acta, 1999; 63(7/8): 1097~1106
    96. Michael A. Serio G, David G, et al. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory, Energy & Fuels, 1987, 1(2): 138~152
    97. Monin J C, Connan J., Oudin J L., and Durand B., Quantitative and qualitative experimental approach of oil and gas generation: Application to the North Sea source rocks, 1990, Organic Geochemistry, 16: 133~142
    98. Mycke B., Hall K., and Leplat P. Carbon isotopic composition of individual hydrocarbons and associated gases evolved from micro-scale sealed vessel (MSSV) pyrolysis of high molecular weight organic material. Org. Geochem. 1994, 21, 787~800
    99. Pepper A S., Dodd T A. Simple kinetic models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology 1995, 12, 321~340
    100. Price L C. Thermal stability of hydrocarbons in nature: limits, evidence, characteristics and possible controls, Geochim. Cosmochim. Acta, 1993, 57, 3261~3280
    101. Price L C. Origins, characteristics, controls, and economic viabilities of deep-basin gas resources. Chem. Geol. 1995, 126, 335~349
    102. Prinzhofer A A. and Huc A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281~290
    103. Prinzhofer A A. and Pernaton E. Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem. Geol., 1997,142,193~200
    104. Reynolds J G. and Bumham A K. Comparison of kinetic analysis of source rocks and kerogen concentrates. Organic Geochemistry, 1995,23(1), 11~19
    105. Rooney M A. Claypool G E and Chung H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol. 1995, 126, 219~232
    106. Sackett W M. Nakaparksin S., and Dalrymple D. Carbon isotope effects in methane production by thermal cracking. In Advances in Organic Geochemistry, 1966 (eds. G. D. Hobson and G. C. Speers), 1968, 37~53. Pergamon Press
    107. Sackett W M. Carbon isotope composition of natural methane occurrences. AAPG 1968, 52: 853~857
    108. Sackett W M Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochimica et Cosmochimica Acta, 1978, 42:571~580
    109. Saxby J D and Riley K W., Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin, Nature, 1984, 308: 177~179
    110. Schaefer R. G, Galushkin Y. I., Kolloff A., et al. Reaction kinetics of gas generation in selected source rocks of the West Siberian Basin: implications for the mass balance of early-thermogenic methane. Chem. Geol. 1999, 156,41~65
    111.Schenk H J., Primio R DI and Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis, Organic Geochemistry, 1997, 26,467~481
    112. Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 1980,44,649-661
    113. Schoell M Genetic characterization of natural gases. AAPG Bull. 1983, 67, 2225-2238
    114. Stahl W J. and Carey B D Jr. Source-rock identification by isotope analyses of natural gas from fields in the Val Verde and Delaware Basins. West Texas Chem. Geol. 1975, 16, 257~267
    115. Sundberg K R. and Bennett C R. Carbon isotope paleothemometry of natural gas. In: Bjor(?)y M., Albrecht P., Cornford C. et al. (editors), Advances in organic geochemistry, 1981. Wiley, Chichester, 769~774
    116. Sweeney J J, Burnham A K. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG. 1990. 74(10): 1559~1570
    117. Tang Y., Jenden P D., Nigrini A. et al. Modeling early methane generation in coal, 1996, Energy & Fuels, 10,659~671
    118. Tang Y, Perry J K, Jenden P D, Schoell M. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochimica et Cosmochimica Acta, 2000. 64: 2673~2687
    119. Tannembaum E, Huizinga B J, Kaplan I R. Role of minerals in thermal alteration of organic matter- II. A material balance. AAPG, Bull., 1986, 70(9): 1156~1165
    120. Tsuzuki, N., Takeda, N., Suzuki, M., et al. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments. International Journal of Coal Geology. 1999, 39, 227~250
    121.Tissot B P., Welte D H. Petroleum formation and occurrence, 2nd ed., Springer- Verlag: Berlin, 1984
    122. Ungerer P, Pelet R. Extrapolation of oil and gas formation kinetics from laboratory experiments to sedimentary basins. Nature, 1987. 327: 52~54
    123. Ungerer P, Behar F, Villalbe M, et al. Kinetic modeling of oil cracking. Org. Geochem., 1988. 13: 857~868
    124. Ungerer P. State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 1990, 16, 1~25
    125. Vandenbroucke M, Behar F., Rudkiewicz J L., Kinetic modeling of petroleum formation and cracking: implications from the high pressure/high temperature Elgin Field (UK, North Sea), Organic Geochemistry. 1999,30, 1105~1125
    126. Wang Jianqiu, Qian Jialin. Kinetic study of hydrocarbon forming pyrolysis of Fushun and Maoming oil shale. Preprints, Div. of Fuel Chemistry, American Chemical Society, St. Louis Meeting, 1984, 143~147
    127. Waples D W, The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Organic Geochemistry, 2000, 31: 553~576
    128. Waples D W. and Tornheim L. Mathematical models for petroleum-forming processes: carbon isotope fractionation. Geochimica et Cosmochimica Acta. 1978, 42: 467~472
    129. Xiong Y Q., Geng A S., Wang Y P., et al. Kinetic simulating experiment on the secondary hydrocarbon generation of kerogen. Science in China (Series D). 2001,31(4): 315~320
    130. Xiong, Y Q., Geng A S., Liu J Z. Kinetic simulating experiment combined with GC-IRMS analysis: Application to identification and assessment of coal-derived methane from Zhongba Gas Field (Sichuan Basin, China). Chemical Geology. 2004, 213(4): 325~338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700