用户名: 密码: 验证码:
透明质酸粘多糖的分子表征、流变学性质及其物理凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘多糖是广泛存在于动物体内的一类多糖,动物体内的多糖除了作为能量代谢的糖元外,基本上都属于粘多糖。透明质酸是粘多糖中最具代表性的一种,因为透明质酸被认为是唯一几乎存在于从细菌到人类所有动物体之中的粘多糖。透明质酸具有多样的生理功能和优良的物化性质,同时也是我国卫生部公布的第一批新资源食品之一,已被广泛应用于医药、食品、化妆品等领域。随着对透明质酸研究的深入,透明质酸在组织工程、纳米材料等领域也显示出了巨大的应用潜力。
     透明质酸由葡萄糖醛酸和乙酰氨基葡萄糖双糖重复单元组成,其分子量可高达上百万,透明质酸的生理功能和应用特性与其分子量、分子量分布等分子参数密切相关;此外,粘弹性也是透明质酸重要的特性之一,透明质酸在体内所发挥的维持组织形态、润滑关节和缓冲应力等作用均与其粘弹性密切相关;凝胶化作用是一些多糖大分子最主要的特性之一,在制备透明质酸凝胶时如何保持其天然的生物相容性同时提高其应用的安全性是相关研究的焦点问题。本论文利用多种技术手段对透明质酸的分子参数进行了详细的表征,并对透明质酸的流变学性质及其冷冻解冻物理凝胶进行了系统的研究,主要内容及结论如下:
     对一系列透明质酸样品的分子参数(分子量、分子量分布、分子尺寸及分子构象等)的多手段表征进行了系统性的对比研究。结果显示,对于Mw低于约2×106的样品来说,粘度法、CG-MALLS、SEC-MALLS、AFlFFF-MALLS和AGE法均能给出准确的表征结果,表征结果所存在的略微差异是由于过滤过程应用于不同的表征手段。对于Mw高于约2×106的样品来说,粘度法、CG-MALLS、SEC-MALLS、AFlFFF-MALLS给出了低于AGE法的Mw表征结果,这是由于透明质酸溶液中存在大尺寸的分子缔合或聚集所引起的,而这种分子聚集体无法用粘度法和静态光散射法进行准确的表征,但是可以反映在AGE法的表征结果中,此外,对于透明质酸在溶液中分子构象的表征,所有表征手段均给出了一致的结果。通过对透明质酸的经验刚性参数B的比较分析可以得到,透明质酸在水溶液中呈半刚性构象,并且低分子量透明质酸比高分子量透明质酸的刚性更加显著,通过对AGE法所得分子量分布的峰态参数的分析可知,低分子量的透明质酸比高分子量的透明质酸的分子间相互作用或缔合能力更强,这与其分子更具刚性的结果相吻合。通过构象图的分析得出透明质酸存在于θ溶剂(0.1 M NaCl)中,成无扰线团构象。通过蠕虫状链圆筒模型得到透明质酸在0.1 M NaCl溶液中的单位围长摩尔质量ML为750 nm-1,持久长度q为20.8 nm,分子链直径d为1.03 nm。以上结果表明,在所研究的分子量范围内,透明质酸在0.1 M NaCl中为蠕虫状链,更加确切为分子链呈半刚性线团构象。至于透明质酸的分子量分布,SEC-MALLS和AFlFFF-MALLS可以对Mw < 1×106的样品进行准确的表征,并且升高分离温度可以提高SEC-MALLS法对Mw > 1×106的样品的分离效果,但是多分散系数的表征结果显示AGE法要优于上述两种表征手段。此外,对于Mw < 1×106的样品来说,SEC-MALLS和AFlFFF-MALLS法表征的分子量分布曲线的形态与AGE法一致。
     采用线性Maxwell本构粘弹模型以及非线性Phan-Thien Tanner (PTT)和Giesekus粘弹本构模型对透明质酸溶液的线性和非线性粘弹性行为分别进行了数值模拟。结果表明,三种模型的理论模拟值均能与实验数据很好地吻合,上述模型能够定量描述透明质酸溶液的流变学行为。此外,透明质酸溶液体系的松弛行为具有浓度依赖性,随透明质酸浓度的降低,体系平均松弛时间减小。在所研究的浓度范围内,透明质酸溶液均符合Cox-Merz规则,此时PTT和Giesekus两模型均能定量描述透明质酸溶液的剪切变稀行为。
     盐离子可以影响透明质酸溶液的流变学性质。当透明质酸溶液中存在1 M具有较强盐析性质的SO_4~(2-)时,溶液的动态模量和稳态粘度比存在等浓度的Cl-或NO3-时要高,符合Hofmeister序列盐的排列顺序,说明SO_4~(2-)可以使溶液中透明质酸分子间产生相对强的相互作用,并推测透明质酸分子具有一定的疏水性。通过触变环实验可知10 mg/ml透明质酸水溶液及其盐溶液不具有触变性。
     发现了透明质酸/玉米纤维胶混合溶液体系中存在协同增粘作用,并申请了专利。此外,利用粘度协同系数对不同配比的透明质酸/玉米纤维胶混合溶液的协同增粘程度进行了定量描述,发现混合溶液的粘度协同系数随着混合溶液中玉米纤维胶浓度的上升而增大,随着剪切速率的增大而减小,即混合溶液的协同增粘效果可以通过改变上述参数进行控制。
     发现当透明质酸浓度为10 mg/ml时,透明质酸/阿拉伯胶混合溶液在阿拉伯胶浓度为30 mg/ml时不会产生相分离,在阿拉伯胶浓度达到60 mg/ml时会产生相分离现象。通过宏观观察、流变和光学显微镜实验确定,透明质酸/阿拉伯胶混合溶液产生相分离后,上层液相为透明质酸富集相,下层液相为阿拉伯胶富集相。透明质酸/阿拉伯胶混合溶液产生相分离的机理可能是因为透明质酸和阿拉伯胶同为聚阴离子,以及溶液混合过程中较小所致。此外,无论透明质酸/阿拉伯胶混合溶液是否产生相分离,溶液的稳态剪切粘度都随着混合溶液中阿拉伯胶含量的增加而降低,通过对比透明质酸/聚酰胺-胺混合溶液可知,溶液粘度的降低主要由阿拉伯胶的分子成球形构象及球形胶束状态所致。
     流变学、偏光显微镜、光学显微镜、SEM、XRD、DSC和FTIR光谱学的实验结果显示,通过冷冻解冻的方法形成的透明质酸冷冻解冻凝胶属于物理凝胶的范畴,凝胶的三维结构由网络结构接合区中的多重的分子间氢键相互作用所稳定。由于冷冻过程中溶液中的水转变成冰使得透明质酸的浓度升高,因此使透明质酸分子链被迫进行排列,进而形成了并排的分子间缔合,这种缔合可以在解冻过程中继续保持,成为冷冻解冻凝胶网络结构的接合区。透明质酸阴离子的质子化对透明质酸分子链间的缔合来说是必需的,此时透明质酸分子链上-COOH和-NHCOCH3基团间的氢键相互作用在这种缔合的形成过程中扮演了重要的角色。尽管没有发现类似于聚乙烯醇冷冻解冻凝胶中的微结晶区的结构,但是在透明质酸冷冻解冻凝胶中氢键相互作用的特征却得到了实验的证实。基于透明质酸分子链间氢键相互作用可能存在的形式,推断透明质酸冷冻解冻凝胶中的分子链缔合是分散的并且缺少形成微结晶区所需的规整性和完善度,因此无法有效地构建出具有可探测性的微结晶区。此外发现了当在初始透明质酸溶液中加入硫酸钠的浓度达到1 M时,溶液调酸后不进行冷冻解冻处理也可形成透明质酸凝胶。
     通过荧光探针法、疏水作用色谱法和疏水吸附法证明了颇具争议的透明质酸疏水性的存在,并且透明质酸分子的疏水相互作用会随着透明质酸溶液浓度的上升而增大。
Mucopolysaccharide is a kind of polysaccharides that widely exists in the animal‘s body. Except the glycogen that is metabolized as the energy, all the polysaccharides in the animal‘s body belong to the mucopolysaccharide. Among them hyaluronan (HA) is the most representative mucopolysaccharide, because the HA was supposed to be the only polysaccharide that exists in almost all animal species, from bacteria to human being. HA has the multiple physiological functions and excellent physicochemical properties. Moreover, HA has been permitted to be used in food by China's Ministry of Health. Nowadays, HA is widely used in medicine, food and cosmetic industry. With the deepening of the research on HA, it also shows a great application potential of HA in the areas of tissue engineering, nanomaterials, etc.
     HA is composed of a repeating disaccharide unit of glucuronic acid and N-acetyl-glucosamine. Its molecular weight can be as high as several millions. The physiological functions and application properties of HA are closely related to its molecular parameters, such as the molecular weight, molecular weight distribution; In addition, the viscoelasticity is also one of the important characteristics of HA. The physiological functions of HA, such as maintaining the shape of organ, lubricating joint and absorbing shock, are closely related to its viscoelastic properties; Gelation property is one of the main characteristics of some polysaccharides. For preparation of HA gel, how to maintain the natural biocompatibility and improve the application safety is the focus of the related research. In this thesis, the molecular parameters of HA were detailedly characterized by using multiple-detection techniques, and the rheological properties and physical cryogel of HA were systematically studied. The main content and the conclusions are as follows:
     A comparative study using different characterization techniques was carried out to measure the molecular weight, molecular weight distribution and conformational properties of HA. The results show that Capillary viscometry, CG-MALLS, SEC-MALLS, AFlFFF-MALLS and horizontal AGE all provided accurate measurements when Mw of HA was below approximately 2×10~6. A small and negligible discrepancy could be accounted for by the effect of filtration applied in respective methods. When Mw > 2×10~6, capillary viscometry, CG-MALLS, SEC-MALLS and AFlFFF-MALLS gave underestimated values of Mw in comparison with AGE technique. This was attributed to the presence of significant amount of large molecular association or aggregates that were not properly measured in the capillary viscometric and light scattering techniques but were reflected in AGE. Moreover, the techniques all provided consistent results on the conformational properties of HA in solution. The comparative analysis of the empirical rigid parameters B shows that HA adopts a semi-rigid conformation in the solution, and the low molecular weight HA shows more rigidity than high molecular weight HA. The analysis of two statistic parameters, skewness and kurtosis, of the molecular distribution of HA from AGE implies that the association ability of low molecular weight HA is stronger than high molecular weight HA, which is in agreement with the result that the low molecular weight HA is more rigid. The analysis of the conformation plot indicates an unperturbed coil conformation of HA inθsolvent (0.1 M NaCl). On the basis of unperturbed wormlike chain models, the molecular parameters of HA were estimated as follows: the molar mass per unit contour length ML is 750 nm-1, persistence length q is 20.8 nm, and molecular diameter d is 1.03 nm. The above results point out a worm-like chain of HA, more appropriately a semi-rigid coil conformation in the studied molecular weight ranges. With respect to the molecular weight distribution, AGE seemed to be superior to other techniques in measuring polydispersity, although SEC-MALLS and AFlFFF-MALLS were capable of measuring the samples with Mw < 1×10~6 and SEC-MALLS showed improved separation at elevated temperatures for Mw >1×10~6. Furthermore, the shape of distribution profiles measured by SEC-MALLS and AFlFFF-MALLS was nearly identical to that measured by AGE when Mw < 1×10~6.
     Three constitutive models, including the linear Maxwell viscoelastic model, non-linear Phan-Thien Tanner (PTT) model and Giseskus model, were employed to describe the linear/non-linear viscoelastic behavior of HA solutions at different concentrations. The calculated results show that all simulated curves calculated from three constitutive model could fit the experiment data quite well, indicating the abovementioned models are competent to describe quantitatively the rheological behavior of HA solution. In addition, the relaxation behavior of HA solution is dependent on the concentration. The average relaxation time shortens with the decreasing concentration of HA solution. It was further found that the HA solutions obeyed the Cox-Merz rule at studied concentration range. Both PTT and Giseskus models are capable of predicting the shear thinning behavior of the concentrated HA solutions.
     Salt ions can affect the rheological properties of HA solution. The dynamic moduli and steady-state viscosity of HA solution in presence of strong salting-out salt (1 M SO42-) is higher than those in presence of same concentration of Cl- or NO3-, which obeys the order of Hofmeister salt sequence. This suggests that SO42- can promote the molecular interaction of HA in solution. The existence of certain hydrophobicity of HA was also presumed. The thixotropic rings experiment shows that 10 mg/ml HA aqueous/salt solution have no thixotropy.
     The interesting viscous synergism was observed in HA/CFG (corn fiber gum) mixture. Based on this discovery, a patent was applied. Moreover, the degree of viscous synergism in different HA/CFG solutions was quantified by using viscosity synergism index. The result shows that the viscous synergism index increases with the increasing concentration of CFG, and decreases with the increasing shear rate. In other words, the synergistic interaction between the mixed HA and CFG components could be effectively modulated by changing the shear rate and the composition of the mixture.
     When the concentration of HA was fixed at 10 mg/ml, the HA/GA (gum arabic) mixture is not phase separated at the GA concentration of 30 mg/ml. However, the phase separation was observed when GA concentration reaches 60 mg/ml. The macroscopic observation, rheological and optical microscopic measurements show that, after the phase separation of HA/GA mixture, the upper phase is the HA enriched phase and the lower phase is GA enriched phase. The phase separation of HA/GA mixture is probably due to the polyanion nature of both HA and GA, and the small in mixing process. In addition, no matter the phase separation occurred or not, the steady-state shear viscosity of HA/GA mixture is reduced with the increasing of GA concentration. Taking into account the rheological properties of HA/PAMAM mixture, the reduction of the viscosity of the HA/GA mixture is mainly caused by the spherical conformation and the formation of spherical micelle of GA molecules.
     Based on the experimental results from dynamic rheometry, polarizing and optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and FTIR spectroscopy, the obtained HA cryogels after the freeze-thawing cycling undoubtedly belong to the category of physically crosslinked gels whose three dimensional structure is stabilized mainly by multiple interchain hydrogen bonds in the junction zones of the polymeric network. Forced alignment of HA chains as the polymer concentration is increased by conversion of water to ice may provide a mechanism for the formation of side-by-side associations, which then remain intact on thawing, as the junction zones of the cryogel.
     Protonation of the polyanion of HA is indispensable to the association of HA chains where hydrogen bonding between groups of -COOH and -NHCOCH3 in HA chains play a crucial role on such bridging. Although cryostructurates in HA cryogels (zones of microcrystallinity) resembling the much more well-studied cryogels on the basis of synthetic polymer, poly(vinyl alcohol) were not found, the feature of hydrogen bonding in HA cryogel were experimentally evident. Based on the different patterns of possible hydrogen bonding between HA chains, it may be reasonable to assume that the intermolecular links in cryogles are discrete, lacking regularity and perfection to form microcrystalline zones, detectable microcrystalline zones thus unable to be constructed effectively.
     A controversial property, hydrophobicity, of HA was evidenced by fluorescence probe, hydrophobic interaction chromatography and hydrophobic adsorption experiments. In addition, it is found that the hydrophobic interaction increases with the increasing HA concentration.
引文
[1] Darzynkiewicz Z, Balazs E A. Effect of connective tissue intercellular matrix on lymphocyte stimulation: I. Suppression of Lymphocyte stimulation by hyaluronic acid[J]. Experimental Cell Research, 1971, 66(1): 113-123.
    [2] Anastassiades T, Robertson W. Modulation of mitogen-dependent lymphocyte stimulation by hyaluronic-acid[J]. Journal of Rheumatology, 1984, 11(6): 729-734.
    [3] Camillieri G, Bucolo C, Rossi S, et al. Hyaluronan-induced stimulation of corneal wound healing is a pure pharmacological effect[J]. Journal of Ocular Pharmacology and Therapeutics, 2004, 20(6): 548-553.
    [4] Slevin M, West D, Kumar P, et al. Hyaluronan, angiogenesis and malignant disease[J]. International Journal of Cancer, 2004, 109(5): 793-794.
    [5]凌沛学,贺艳丽,郭学平,等.透明质酸[M].北京:中国轻工业出版社, 2000.
    [6] Scott J E, Heatley F, Biological properties of hyaluronan are controlled and sequestered by tertiary structures., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 117-122.
    [7] Balazs E A, Denlinger J L. Sodium hyaluronate and joint function.[J]. Journal of Equine Veterinary Science, 1985, 5(4): 217-228.
    [8] Meyer K, Palmer J W. The polysaccharide of the vitreous humor[J]. Journal of Biological Chemistry, 1934, 107: 629-634.
    [9] Weissman B, Meyer K. The structure of hyalubiuronic acid and hyaluronic acid from umbilical cord.[J]. Journal of the American Chemical Society, 1954, 76: 1753-1757.
    [10] Soltes L, Mislovicova D, Sebille B. Insight into the distribution of molecular weights and higher-order structure of hyaluronans and some beta-(1->3)-glucans by size exclusion chromatography[J]. Biomedical Chromatography, 1996, 10(2): 53-59.
    [11] Cowman M K, Matsuoka S. Experimental approaches to hyaluronan structure[J]. Carbohydrate Research, 2005, 340(5): 791-809.
    [12] Villetti M, Borsali R, Diat O, et al. SAXS from polyelectrolyte solutions under shear: Xanthan and Na-hyaluronate examples[J]. Macromolecules, 2000, 33(25): 9418-9422.
    [13] Fouissac E, Milas M, Rinaudo M, et al. Influence of the ionic strength on the dimensions of sodium hyaluronate.[J]. Macromolecules, 1992, 25(21): 5613-5617.
    [14] Ghosh S, Xiao L, Reed C E, et al. Apparent persistence lengths and diffusion behavior of high molecular weight hyaluronate.[J]. Biopolymers, 1990, 30(11-12): 1101-1112.
    [15] Cleland R L, Wang J L. Ionic polysaccharides. III. Dilute solution properties of hyaluronic acid fractions.[J]. Biopolymers, 1970, 9(7): 799-810.
    [16] Cleland R L. Viscometry and sedimentation equilibrium of partially hydrolyzed hyaluronate: Comparison with theoretical models of wormlike chains.[J]. Biopolymers, 1984, 23(4): 647-666.
    [17] Mo Y Q, Kubota K, Nishinari K. Rheological evidence of the gelation behavior of hyaluronan-gellan mixtures[J]. Biorheology, 2000, 37(5-6): 401-408.
    [18] Shiedlin A, Bigelow R, Christopher W, et al. Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord[J]. Biomacromolecules, 2004, 5(6): 2122-2127.
    [19] Kuo J W, Practical aspects of hyaluronan based medical products. 2006, CRC Press, Taylor & Francis Group: New York.
    [20] Laurent T C, Gergely J. Light scattering studies on hyaluronic acid[J]. Journal of Biological Chemistry, 1955, 212(1): 325-333.
    [21] Laurent T C, Ryan M, Pietruszkiewicz A. Fractionation of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine vitreous body.[J]. Biochimica Et Biophysica Acta, 1960, 42(3): 476-485.
    [22] Darke A, Finer E G, Moorhouse R, et al. Studies of hyaluronate solutions by nuclear magnetic relaxation measurements. Detection of covalently-defmed, stiff segments within the flexible chains.[J]. Journal of Molecular Biology, 1975, 99(3): 477-486.
    [23] Takahashi R, Al-Assaf S, Williams P A, et al. Asymmetrical-flow field-flow fractionation with on-line multiangle light scattering detection. 1. Application to wormlike chain analysis of weakly stiff polymer chains[J]. Biomacromolecules, 2003, 4(2): 404-409.
    [24] Scott J E, Tigwell M J. Periodate oxidation and the shapes of glycosaminoglycuronans in solution.[J]. Biochemical Journal, 1978, 173(1): 103-114.
    [25] Heatley F, Scott J E. A water molecule participates in the secondary structure of hyaluronan.[J]. Biochemical Journal, 1988, 254(2): 489-493.
    [26] Scott J E, Heatley F, Hull W E. Secondary structure of hyaluronate in solution. A 1H-n.m.r. investigation at 300 and 500 MHz in [2H6]dimethyl sulphoxide solution.[J]. Biochemical Journal, 1984, 220(1): 197-205.
    [27] Mikelsaar R H, Scott J E. Molecular modelling of secondary and tertiary structures of hyaluronan, compared with electron microscopy and NMR data. Possible sheets and tubular structures in aqueous solution.[J]. Glycoconjugate Journal, 1994, 11(2): 65-71.
    [28] Atkins E D T, Meader D, Scott J E. Model for hyaluronic acid incorporating four intramolecular hydrogen bonds.[J]. International Journal of Biological Macromolecules, 1980, 2(5): 318-319.
    [29] Cowman M K, Hittner D M, Feder-Davis J. 13C NMR studies of hyaluronan: Conformational sensitivity to varied environments.[J]. Macromolecules, 1996, 29(8): 2894-2902.
    [30] Scott J E, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR study[J]. Proceedings of the National Academyof Sciences of the United States of America, 1999, 96(9): 4850-4855.
    [31] Scott J E, Cummings C, Brass A, et al. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer.[J]. Biochemical Journal, 1991, 274: 699-705.
    [32] Scott J E, Cummings C, Greiling H, et al. Examination of corneal proteoglycans and glycosaminoglycans by rotary shadowing and electron microscopy.[J]. International Journal of Biological Macromolecules, 1990, 12(3): 180-184.
    [33] Kobayashi Y, Okamoto A, Nishinari K. Viscoelasticity of hyaluronic acid with different molecular weights[J]. Biorheology, 1994, 31(3): 235-244.
    [34] Mathews M B, Decker L V. Conformation of hyaluronate in neutral and alkaline solutions.[J]. Biochimica Et Biophysica Acta, 1977, 498(1): 259-263.
    [35] Ghosh S, Kobal I, Zanette D, et al. Conformational contraction and hydrolysis of hyaluronate in sodium hydroxide solutions.[J]. Macromolecules, 1993, 26(17): 4685-4693.
    [36] Welti D, Rees D A, Welsh E J. Solution conformation of glycosaminoglycans: assignment of the 300 MHz 1H magnetic resonance spectra of chondroitin-4-sulfate, chondroitin-6-sulfate and hyaluronante, and investigation fo an alkali-induced conformation change.[J]. European Journal of Biochemistry, 1979, 94(2): 505-514.
    [37] Bociek S M, Darke A H, Welti D, et al. The 13C NMR spectra of hyaluronate and chondroitin sulphates. Further evidence on an alkali-induced conformation change.[J]. European Journal of Biochemistry, 1980, 109(2): 447-456.
    [38] Scott J E. Secondary structures in hyaluronan solutions: Chemical and Biological Implications[J]. Ciba Foundation Symposia, 1989, 143: 6-20.
    [39] Kogan G, Soltes L, Stern R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1): 17-25.
    [40] Balazs E A. The role of hyaluronan in the structure and function of the biomatrix of connective tissues[J]. Structural Chemistry, 2009, 20(2): 233-243.
    [41] Fraser J R E, Laurent T C, Laurent U B G. Hyaluronan: Its nature, distribution, functions and turnover[J]. Journal of Internal Medicine, 1997, 242(1): 27-33.
    [42] Toole B P. Hyaluronan-CD44 interactions in cancer: Paradoxes and possibilities[J]. Clinical Cancer Research, 2009, 15(24): 7462-7468.
    [43] Gibbs D A, Merrill E W, Smith K A, et al. Rheology of hyaluronic acid[J]. Biopolymers, 1968, 6(6): 777-791.
    [44] Morris E R, Rees D A, Welsh E J. Conformation and dynamic interactions in hyaluronate solutions[J]. Journal of Molecular Biology, 1980, 138(2): 383-400.
    [45] Tirtaatmadja V, Boger D V, Fraser J R E. The dynamic and steady shear properties of synovial fluid and of the components making up synovial fluid[J]. Rheologica Acta, 1984, 23(3): 311-321.
    [46] Bothner H, Wik O. Rheology of hyaluronate[J]. Acta Otolaryngol Suppl, 1987, 442: 25-30.
    [47] Yanaki T, Yamaguchi T. Temporary network formation of hyaluronate under a physiological condition. 1. Molecular-weight dependence[J]. Biopolymers, 1990, 30(3-4): 415-425.
    [48] Desmedt S C, Dekeyser P, Ribitsch V, et al. Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration[J]. Biorheology, 1993, 30(1): 31-41.
    [49] Ogston A G, Stanier J E. The physiological function of hyaluronic acid in synovial fluid: viscous, elastic and lubricant properties.[J]. Journal of Physiology-London, 1953, 119(2-3): 244-252.
    [50] King R G. A rheological measurement of three synovial fluids[J]. Rheologica Acta, 1966, 5(1): 41-44.
    [51] Palfrey A J, Davies D V. Immediate viscosity of synovial fluid[J]. Journal of Applied Physiology, 1968, 25(6): 672-678.
    [52] Al-Assaf S, Meadows J, Phillips G O, et al. The application of shear and extensional viscosity measurements to assess the potential of hylan in viscosupplementation[J]. Biorheology, 1996, 33(4-5): 319-332.
    [53] Mo Y Q, Nishinari K. Rheology of hyaluronan solutions under extensional flow[J]. Biorheology, 2001, 38(5-6): 379-387.
    [54] Fouissac E, Milas M, Rinaudo M. Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte.[J]. Macromolecules, 1993, 26(25): 6945-6951.
    [55] Krause W E, Bellomo E G, Colby R H. Rheology of sodium hyaluronate under physiological conditions[J]. Biomacromolecules, 2001, 2(1): 65-69.
    [56] Ambrosio L, Borzacchiello A, Netti P A, et al. Rheological study on hyaluronic acid and its derivative solutions[J]. Journal of Macromolecular Science-Pure and Applied Chemistry, 1999, A36(7-8): 991-1000.
    [57] Rwei S P, Chen S W, Mao C F, et al. Viscoelasticity and wearability of hyaluronate solutions[J]. Biochemical Engineering Journal, 2008, 40(2): 211-217.
    [58] Morris E R, Rees D A, Robinson G, et al. Competitive inhibition of interchain interactions in polysaccharide systems[J]. Journal of Molecular Biology, 1980, 138(2): 363-374.
    [59] Welsh E J, Rees D A, Morris E R, et al. Competitive inhibition evidence for specific intermolecular interactions in hyaluronate solutions[J]. Journal of Molecular Biology, 1980, 138(2): 375-382.
    [60] Fujii K, Kawata M, Kobayashi Y, et al. Effects of the addition of hyaluronate segments with different chain lengths on the viscoelasticity of hyaluronic acid solutions[J]. Biopolymers, 1996, 38(5): 583-591.
    [61] Berriaud N, Milas M, Rinaudo M. Rheological study on mixtures of different molecular weight hyaluronates[J]. International Journal of Biological Macromolecules, 1994, 16(3): 137-142.
    [62] Fusco S, Borzacchiello A, Miccio L, et al. High frequency viscoelasticbehaviour of low molecular weight hyaluronic acid water solutions[J]. Biorheology, 2007, 44(5-6): 403-418.
    [63] Meyer F, Lohmann D, Kulicke W M. Determination of the viscoelastic behavior of sodium hyaluronate in phosphate buffered saline with rheo-mechanical and rheo-optical methods[J]. Journal of Rheology, 2009, 53(4): 799-818.
    [64] Calciu-Rusu D, Rothfuss E, Eckelt J, et al. Rheology of sodium hyaluronate saline solutions for ophthalmic use[J]. Biomacromolecules, 2007, 8(4): 1287-1292.
    [65] Lee H G, Cowman M K. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution.[J]. Analytical Biochemistry, 1994, 219(2): 278-287.
    [66] Mengher L S, Pandher K S, Bron A J, et al. Effect of sodium hyaluronater (0.1-percent) on break-up time (NIBUT) in patients with dry eyes[J]. British Journal of Ophthalmology, 1986, 70(6): 442-447.
    [67] Yeung B, Marecak D. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry[J]. Journal of Chromatography A, 1999, 852(2): 573-581.
    [68] Rehakova M, Bakos D, Soldan M, et al. Depolymerization reactions of hyaluronic-acid in solution[J]. International Journal of Biological Macromolecules, 1994, 16(3): 121-124.
    [69] Kwon J H, Hwang E, Cho I H, et al. Depolymerization study of sodium hyaluronate by flow field-flow fractionation/multiangle light scattering[J]. Analytical and Bioanalytical Chemistry, 2009, 395(2): 519-525.
    [70] Deed R, Rooney P, Kumar P, et al. Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan[J]. International Journal of Cancer, 1997, 71(2): 251-256.
    [71] Bucci L R, Turpin A A. Will the real hyaluronan please stand up?[J]. Journal of Applied Nutrition, 2004, 54(1): 11-33.
    [72] Cleland R L. The persistence length of hyaluronic acid: An estimate from small angle X-ray scattering and intrinsic viscosity[J]. Archives of Biochemistry and Biophysics, 1977, 180(1): 57-68.
    [73] Milas M, Rinaudo M, Roure I, et al. Comparative rheological behavior of hyaluronan from bacterial and animal sources with cross-linked hyaluronan (hylan) in aqueous solution[J]. Biopolymers, 2001, 59(4): 191-204.
    [74] Terbojevich M, Cosani A, Palumbo M. Structral properies of hyaluronic acid in moderately concentrated solutions.[J]. Carbohydrate Research, 1986, 149(2): 363-377.
    [75] Takahashi R, Kubota K, Kawada M, et al. Effect of molecular weight distribution on the solution properties of sodium hyaluronate in 0.2M NaCl solution[J]. Biopolymers, 1999, 50(1): 87-98.
    [76] Mendichi R, Schieroni A G, Grassi C, et al. Characterization of ultra-highmolar mass hyaluronan: 1. Off-line static methods[J]. Polymer, 1998, 39(25): 6611-6620.
    [77] Orvisky E, ?oltés L, Al-Assaf S. Concentration effect in hyaluronan analysis by size exclusion chromatography.[J]. Chromatographia, 1994, 39(5-6): 366-368.
    [78] Mendichi R, Schieroni A G, Aqueous SEC, light scattering and viscometry of ultra-high molar mass hyaluronan., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 47-54.
    [79] Mendichi R, ?oltés L, Schieroni A G. Evaluation of radius of gyration and intrinsic viscosity molar mass dependence and stiffness of hyaluronan[J]. Biomacromolecules, 2003, 4(6): 1805-1810.
    [80] Armand G, Fan K, Balazs E A, The heat dependence of hyaluronan conformation., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 99-102.
    [81] Soltes L, Mendichi R, Lath D, et al. Molecular characteristics of some commercial high-molecular-weight hyaluronans[J]. Biomedical Chromatography, 2002, 16(7): 459-462.
    [82] Al-Assaf S, Williams P A, Phillips G O, Molecular characterisation of hyaluronan and hylan using GPC-MALLS and asymmetrical flow FFF-MALLS., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 55-65.
    [83] Lee H, Cho I H, Moon M H. Effect of dissolution temperature on the structures of sodium hyaluronate by flow field-flow fractionation/multiangle light scattering[J]. Journal of Chromatography A, 2006, 1131(1-2): 185-191.
    [84] Moon M H, Shin D Y, Lee N, et al. Flow field-flow fractionation/multiangle light scattering of sodium hyaluronate from various degradation processes[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2008, 864(1-2): 15-21.
    [85] Armstrong S E, Bell D R. Measurement of high-molecular-weight hyaluronan in solid tissue using agarose gel electrophoresis[J]. Analytical Biochemistry, 2002, 308(2): 255-264.
    [86] Cowman M K, Mendichi R, Methods for determination of hyaluronan molecular weight, in Chemistry and Biology of Hyaluronan Hari G. Garg, Charles A. Hales, Editors. 2004, Elsevier: Amsterdam. p. 41-69.
    [87] Li M, Rosenfeld L, Vilar R E, et al. Degradation of hyaluronan by peroxynitrite[J]. Archives of Biochemistry and Biophysics, 1997, 341(2): 245-250.
    [88] Bothner H, Waaler T, Wik O. Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation.[J]. International Journal of Biological Macromolecules, 1988, 10(5): 287-291.
    [89] Wedlock D J, Phillips G O, Davies A, et al. Depolymerization of sodium hyaluronate during freeze drying.[J]. International Journal of Biological Macromolecules, 1983, 5(3): 186-188.
    [90] Ueno Y, Tanaka Y, Horie K, et al. Low-angle laser light scattering measurements on highly purified sodium hyaluronate from rooster comb.[J]. Chemical & Pharmaceutical Bulletin, 1988, 36(12): 4971-4975.
    [91] Al-assaf S, Phillips G O, Deeble D J, et al. The enhanced stability of the cross-linked hylan structure to hydroxyl (OH) radicals compared with the uncross-linked hyaluronan.[J]. Radiation Physics and Chemistry, 1995, 46(2): 207-217.
    [92] Gura E, Huckel M, Mullet P J. Specific degradation of hyaluronic acid and its rheological properties[J]. Polymer Degradation and Stability, 1998, 59(1-3): 297-302.
    [93] Yanaki T, Yamaguchi M. Shear-rate dependence of the intrinsic viscosity of sodium hyaluronate in 0.2 M sodium chloride solution[J]. Chemical & Pharmaceutical Bulletin, 1994, 42(8): 1651-1654.
    [94] Shimada E, Matsumura G. Viscosity and molecular weight of hyaluronic acids.[J]. Journal of Biochemistry, 1975, 78(3): 513-517.
    [95] Preston B N, Davies M, Ogston A G. The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma.[J]. Biochemical Journal, 1965, 96(2): 449-471.
    [96] Mendichi R, Schieroni A G. Fractionation and characterization of ultra-high molar mass hyaluronan: 2. On-line size exclusion chromatography methods[J]. Polymer, 2002, 43(23): 6115-6121.
    [97] Podzimek S, Hermannova M, Bilerova H, et al. Solution properties of hyaluronic acid and comparison of SEC-MALS-VIS data with off-line capillary viscometry[J]. Journal of Applied Polymer Science, 2010, 116(5): 3013-3020.
    [98] Ikegami-Kawai M, Takahashi T. Microanalysis of hyaluronan oligosaccharides by polyacrylamide gel electrophoresis and its application to assay of hyaluronidase activity[J]. Analytical Biochemistry, 2002, 311(2): 157-165.
    [99] Turner R E, Cowman M K. Cationic dye binding by hyaluronate fragments: dependence on hyaluronate chain length.[J]. Archives of Biochemistry and Biophysics, 1985, 237(1): 253-260.
    [100] Min H, Cowman M K. Combined alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution.[J]. Analytical Biochemistry, 1986, 155(2): 275-285.
    [101] Calabro A, Benavides M, Tammi M, et al. Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE)[J]. Glycobiology, 2000, 10(3): 273-281.
    [102] Tawada A, Masa T, Oonuki Y, et al. Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers[J]. Glycobiology, 2002, 12(7): 421-426.
    [103] Kooy F K, Ma M Y, Beeftink H H, et al. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrateelectrophoresis[J]. Analytical Biochemistry, 2009, 384(2): 329-336.
    [104] Hayase S, Oda Y, Honda S, et al. High-performance capillary electrophoresis of hyaluronic acid: Determination of its amount and molecular mass[J]. Journal of Chromatography A, 1997, 768(2): 295-305.
    [105] Hutterer K M, Jorgenson J W. Separation of hyaluronic acid by ultrahigh-voltage capillary gel electrophoresis[J]. Electrophoresis, 2005, 26(10): 2027-2033.
    [106] Hong M F, Sudor J, Stefansson M, et al. High resolution studies of hyaluronic acid mixtures through capillary gel electrophoresis[J]. Analytical Chemistry, 1998, 70(3): 568-573.
    [107] Nishinari K. Hydrocolloids, Part 1: physical chemistry and industrial application of gels, polysaccharides, and proteins. Part 2: Fundamentals and applications in food, biology, and medicine[J]. AE Amsterdam: Elsevier science, 2000.
    [108] Stephen A M. Food polysaccharides and their applications. Marcel Dekker, Inc.: New York[J]. 1995.
    [109] Stok K S, Lisignoli G, Cristino S, et al. Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering[J]. J Biomed Mater Res A, 2010, 93(1): 37-45.
    [110] Dias J C T, Rezende R P, Linardi V R. Biodegradation of acetonitrile by cells of Candida guilliermondii UFMG-Y65 immobilized in alginate, kappa-carrageenan and citric pectin[J]. Brazilian Journal of Microbiology, 2000, 31(1): 61-66.
    [111] Shahidi F, Arachchi J K V, Jeon Y J. Food applications of chitin and chitosans[J]. Trends in Food Science & Technology, 1999, 10(2): 37-51.
    [112] Xin D C, Wang Y, Xiang J N. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: Synthesis, self-assembled property, drug release, and in vitro efficiency[J]. Pharmaceutical Research, 2009, 27(2): 380-389.
    [113] Belluco C, Meggiolaro F, Pressato D, et al. Prevention of postsurgical adhesions with an autocrosslinked hyaluronan derivative gel[J]. Journal of Surgical Research, 2001, 100(2): 217-221.
    [114] Motokawa K, Hahn S K, Nakamura T, et al. Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin[J]. Journal of Biomedical Materials Research Part A, 2006, 78A(3): 459-465.
    [115] Varghese O P, Kisiel M, Martinez-Sanz E, et al. Synthesis of guanidinium-modified hyaluronic acid hydrogel[J]. Macromolecular Rapid Communications, 2010, 31(13): 1175-1180.
    [116] Leach J B, Schmidt C E. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds[J]. Biomaterials, 2005, 26(2): 125-135.
    [117] Wieland J A, Houchin-Ray T L, Shea L D. Non-viral vector delivery fromPEG-hyaluronic acid hydrogels[J]. Journal of Controlled Release, 2007, 120: 233-241.
    [118] Reichenbach S, Blank S, Rutjes A W S, et al. Hylan versus hyaluronic acid for osteoarthritis of the knee: A systematic review and meta-analysis[J]. Arthritis & Rheumatism-Arthritis Care & Research, 2007, 57(8): 1410-1418.
    [119] Leshchiner E, Balazs E A, Larsen N E, et al. Biocompatible viscoelastic gel slurries, their preparation and use[P]. U.S. Patent 5,143,724, 1992.
    [120] Himeda Y, Kaneko H, Umeda T, et al. Effectiveness of a novel hyaluronic-acid gel film in the rat model[J]. Journal of Gynecologic Surgery, 2005, 21(2): 55-63.
    [121] Wang C T, Lin J, Chang C J, et al. Therapeutic effects of hyaluronic acid on osteoarthritis of the knee - A meta-analysis of randomized controlled trials[J]. Journal of Bone and Joint Surgery-American Volume, 2004, 86A(3): 538-545.
    [122] Kroesen S, Schmid W, Theiler R. Induction of an acute attack of calcium pyrophosphate dihydrate arthritis by intra-articular injection of hylan G-F 20 (Synvisc)[J]. Clinical Rheumatology, 2000, 19(2): 147-149.
    [123] Chen J H, Lin C, Gu Q S. Research of cross-linking reagent for producing hyaluronic acid derivative[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2004, 18(1): 70-3.
    [124] Balazs E A. Sediment volume and viscoelastic behavior of hyaluronic acid solutions[J]. Federation Proceedings, 1966, 25(6P1): 1817-1822.
    [125] Okamoto A, Miyoshi T, A biocompatible gel of hyaluronan., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 285-292.
    [126] Miyoshi T, Okamoto A, Biocompatible gel of hyaluronan - medical applications., in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 21-26.
    [127] Himeda Y, Umeda T, Miyata Y, et al. Application of biocompatible gel of hyaluronic acid in adhesion prevention[J]. Journal of Gynecologic Surgery, 2004, 20(2): 39-46.
    [128] Himeda Y, Yanagi S, Kakema T, et al. Adhesion preventive effect of a novel hyaluronic acid gel film in rats[J]. Journal of International Medical Research, 2003, 31(6): 509-516.
    [129] Yokoyama F, Masada I, Shimamura K, et al. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting[J]. Colloid & Polymer Science, 1986, 264(7): 595-601.
    [130] Lozinsky V I, Domotenko L V, Zubov A L, et al. Study of cryostructuration of polymer systems .XII. Poly(vinyl alcohol) cryogels: Influence of low-molecular electrolytes[J]. Journal of Applied Polymer Science, 1996, 61(11): 1991-1998.
    [131] Orrego C E, Valencia J S. Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method[J]. Bioprocess and Biosystems Engineering, 2009, 32(2): 197-206.
    [132] Giannouli P, Morris E R. Cryogelation of xanthan[J]. Food Hydrocolloids,2003, 17(4): 495-501.
    [133] Lozinsky V I, Damshkaln L G, Brown R, et al. Study of cryostructuring of polymer systems. XIX. On the nature of intermolecular links in the cryogels of locust bean gum[J]. Polymer International, 2000, 49(11): 1434-1443.
    [134] Lozinsky V I, Damshkaln L G, Bloch K O, et al. Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates[J]. Journal of Applied Polymer Science, 2008, 108(5): 3046-3062.
    [135] Lozinsky V I, Damshkaln L G, Brown R, et al. Study of cryostructuration of polymer systems. XVI. Freeze-thaw-induced effects in the low concentration systems amylopectin-water[J]. Journal of Applied Polymer Science, 2000, 75(14): 1740-1748.
    [136] Lozinsky V I, Damshkaln L G, Brown R, et al. Study of cryostructuration of polymer systems. XVIII. Freeze-thaw influence on water-solubilized artificial mixtures of amylopectin and amylose[J]. Journal of Applied Polymer Science, 2000, 78(2): 371-381.
    [137] Lazaridou A, Biliaderis C G. Cryogelation of cereal ?-glucans: structure and molecular size effects[J]. Food Hydrocolloids, 2004, 18(6): 933-947.
    [138] Vaikousi H, Biliaderis C G. Processing and formulation effects on rheological behavior of barley ?-glucan aqueous dispersions[J]. Food Chemistry, 2005, 91(3): 505-516.
    [139] Lazaridou A, Vaikousi H, Biliaderis C G. Effects of polyols on cryostructurization of barley ?-glucans[J]. Food Hydrocolloids, 2008, 22(2): 263-277.
    [140] Wu J, Zhang H B, Physically cross-linked hydrogel from carboxymethylated curdlan prepared by freeze-thaw techniques, in "Gums and Stabilisers for the Food Industry 15", P.A. Williams, G.O. Phillips, Editors. 2009, Royal Society of Chemistry: Cambridge, UK. p. 420-426.
    [141] Lozinsky V I, Plieva F M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments[J]. Enzyme and Microbial Technology, 1998, 23(3-4): 227-242.
    [142] Collins M N, Birkinshaw C. Physical properties of crosslinked hyaluronic acid hydrogels[J]. Journal of Materials Science-Materials in Medicine, 2008, 19(11): 3335-3343.
    [143] Adams M E, Lussier A J, Peyron J G. A risk-benefit assessment of injections of hyaluronan and its derivatives in the treatment of osteoarthritis of the knee[J]. Drug Safety, 2000, 23(2): 115-130.
    [144] Schiavinato A, Finesso A, Cortivo R, et al. Comparison of the effects of intra-articular injections of hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbit knee joints[J]. Clinical and Experimental Rheumatology, 2002, 20(4): 445-454.
    [145] Moreland L W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action[J]. Arthritis Research &Therapy, 2003, 5(2): 54-67.
    [146] Balazs E A. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results[J]. Surg Technol Int, 2004, 12: 278-289.
    [147] Arrich J, Piribauer F, Mad P, et al. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: systematic review and meta-analysis[J]. Canadian Medical Association Journal, 2005, 172(8): 1039-1043.
    [148] Balazs E A. Viscoelastic properties of hyaluronic acid and biological lubrication[J]. Univ Mich Med Cent J, 1968: 255-259.
    [149] Balazs E A, Denlinger J L. Clinical uses of hyaluronan[J]. Ciba Foundation Symposia, 1989, 143: 265-280.
    [150] Balazs E A, Viscoelastic properties of hyaluronan and its therapeutic use, in Chemistry and biology of hyaluronan, H. G Garg, Charles A. Hales, Editors. 2004, Elsevier: Amsterdam. p. 415.
    [151] Poulsom R. CD44 and hyaluronan help mesenchymal stem cells move to a neighborhood in need of regeneration[J]. Kidney International, 2007, 72(4): 389-390.
    [152] Kumar A, Sahoo B, Montpetit A, et al. Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2007, 3(2): 132-137.
    [153] Morimoto K, Yamaguchi H, Iwakura Y, et al. Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue[J]. Pharmaceutical Research, 1991, 8(4): 471-474.
    [154] Drobnik J. Hyaluronan in drug delivery[J]. Advanced Drug Delivery Reviews, 7(2): 295-308.
    [155] Lapcik L, Lapcik L, De Smedt S, et al. Hyaluronan: preparation, structure, properties, and applications[J]. Chemical Reviews, 1998, 98(8): 2663-2684.
    [156] Gurny R, Ibrahim H, Aebi A, et al. Design and evaluation of controlled release systems for the eye[J]. Journal of Controlled Release, 1987, 6(1): 367-373.
    [157] Turan Y, Bal S, Gurgan A, et al. Serum hyaluronan levels in patients with knee osteoarthritis[J]. Clinical Rheumatology, 2007, 26(8): 1293-1298.
    [158] Anttila M, Hiltunen E, Tammi R, et al. The serum hyaluronan is a potential marker for epithelial ovarian cancer[J]. Journal of Clinical Oncology, 2005, 23(16S): 470.
    [159]李莎.透明质酸钠应用于食品工业的春天[J].食品工业科技, 2009, (2): 40-41.
    [160] Crescenzi V, Cornelio L, Di Meo C, et al. Novel hydrogels via click chemistry: Synthesis and potential biomedical applications[J]. Biomacromolecules, 2007, 8(6): 1844-1850.
    [161] Weidenbecher M, Henderson J H, Tucker H M, et al. Hyaluronan-based scaffolds to tissue-engineer cartilage implants for laryngotracheal reconstruction[J]. Laryngoscope, 2007, 117: 1745-1749.
    [162] Majima T, Irie T, Sawaguchi N, et al. Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering[J]. Proceedings of the Institution of Mechanical Engineers Part H-Journal ofEngineering in Medicine, 2007, 221(H5): 537-546.
    [163] Wyatt P J. Light scattering and the absolute characterization of macromolecules[J]. Analytica Chimica Acta, 1993, 272(1): 1-40.
    [164] Andersson M, Wittgren B, Wahlund K G. Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments[J]. Analytical Chemistry, 2003, 75(16): 4279-4291.
    [165] Matsuoka S, Cowman M K. Equation of state for polymer solution[J]. Polymer, 2002, 43(12): 3447-3453.
    [166] Fang Y P, Takahashi R, Nishinari K. Rheological characterization of schizophyllan aqueous solutions after denaturation-renaturation treatment[J]. Biopolymers, 2004, 74(4): 302-315.
    [167] Lapasin R., Pricl S, Rheology of industrial polysaccharides: theory and applications. 1995, Aspen Publishers. Inc.,: Maryland. p. 278-281.
    [168] Croguennoc P, Meunier V, Durand D, et al. Characterization of semidilute kappa-carrageenan solutions[J]. Macromolecules, 2000, 33(20): 7471-7474.
    [169] Cowman M K, Slahetka M F, Hittner D M, et al. Polyacrylamide-gel electrophoresis and Alcian Blue staining of sulphated glycosaminoglycan oligosaccharides[J]. Biochemical Journal, 1984, 221(3): 707-716.
    [170] Al-Assaf S, Navaratnam S, Parsons B J, et al. Chain scission of hyaluronan by carbonateand dichloride radical anions: Potential reactive species in inflammation?[J]. Free Radical Biology and Medicine, 2006, 40(11): 2018-2027.
    [171] Al-Assaf S, Meadows J, Phillips G O, et al. The effect of hydroxyl radicals on the rheological performance of hylan and hyaluronan[J]. International Journal of Biological Macromolecules, 2000, 27(5): 337-348.
    [172] Gunning A P, Morris V J, Al-Assaf S, et al. Atomic force microscopic studies of hylan and hyaluronan[J]. Carbohydrate Polymers, 1996, 30(1): 1-8.
    [173] Cowman M K, Li M, Balazs E A. Tapping mode atomic force microscopy of hyaluronan: Extended and intramolecularly interacting chains[J]. Biophysical Journal, 1998, 75(4): 2030-2037.
    [174] Cowman M K, Li M, Dyal A, et al. Tapping mode atomic force microscopy of the hyaluronan derivative, hylan A[J]. Carbohydrate Polymers, 2000, 41(3): 229-235.
    [175] Robinson G, Ross-Murphy S B, Morris E R. Viscosity-molecular weight relationships, intrinsic chain flexibility, and dynamic solution properties of guar galactomannan[J]. Carbohydrate Research, 1982, 107(1): 17-32.
    [176] Bohdanecky M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers[J]. Macromolecules, 1983, 16(9): 1483-1492.
    [177] Bushin S V, Tsvetkov V N, Lysenko Y B, et al. Conformational properties and rigidity of molecules of ladder polyphenylsiloxane in solutions according the data of sedimentation-diffusion analysis and viscometry[J]. Vysokomolekulyarnye Soedineniya Seriya A, 1981, 23(11): 2494-2503.
    [178] Yamakawa H, Fujii M. Intrinsic viscosity of wormlike chains. Determination of the shift factor[J]. Macromolecules, 1974, 7(1): 128-135.
    [179] Kuwata M, Murakami H, Norisuye T, et al. Intrinsic viscosity of poly(hexyl isocyanate) in butyl chloride[J]. Macromolecules, 1984, 17(12): 2731-2734.
    [180] Becker L C, Bergfeld W F, Belsito D V, et al. Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate[J]. International Journal of Toxicology, 2009, 28: 5-67.
    [181] Sato T, Norisuye T, Fujita H. Double stranded helix of xanthan in dilute solutions: evidence from light scattering[J]. Polymer Journal, 1984, 16: 341-350.
    [182] Hoefling J M, Cowman M K, Matsuoka S, et al., Temperature effect on the dynamic rheological characteristics of hyaluronan, hylan A and Synvisc?, in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 103-108.
    [183] Cleland R L. Effect of temperature on the limiting viscosity number of hyaluronic acid and chondroitin 4-sulfate.[J]. Biopolymers, 1979, 18(7): 1821-1828.
    [184] Laurent T C, Laurent U B G, Fraser J R E. The structure and function of hyaluronan: A overview[J]. Immunology and Cell Biology, 1996, 74(2): A1-A7.
    [185] Mo Y, Takaya T, Nishinari K, et al. Effects of sodium chloride, guanidine hydrochloride, and sucrose on the viscoelastic properties of sodium hyaluronate solutions[J]. Biopolymers, 1999, 50(1): 23-34.
    [186] Matteini P, Dei L G, Carretti E, et al. Structural behavior of highly concentrated hyaluronan[J]. Biomacromolecules, 2009, 10(6): 1516-1522.
    [187] Ren Y L, Ellis P R, Sutherland I W, et al. Dilute and semi-dilute solution properties of an exopolysaccharide from Escherichia coli strain S61[J]. Carbohydrate Polymers, 2003, 52(2): 189-195.
    [188] Gorret N, Renard C, Famelart M H, et al. Rheological characterization of the EPS produced by P-acidi-propionici on milk microfiltrate[J]. Carbohydrate Polymers, 2003, 51(2): 149-158.
    [189] Navarini L, Bertocchi C, Cesàro A, et al. Rheology of aqueous solutions of an extracellular polysaccharide from Cyanospira capsulata[J]. Carbohydrate Polymers, 1990, 12(2): 169-187.
    [190] Byars J A, Carriere C J, Inglett G E. Constitutive modeling of beta-glucan/amylodextrin blends[J]. Carbohydrate Polymers, 2003, 52(3): 243-252.
    [191] Thien N P, Tanner R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4): 353-365.
    [192] Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109.
    [193] Neidhofer T, Wilhelm M, Debbaut B. Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions[J]. Journal ofRheology, 2003, 47(6): 1351-1371.
    [194] Verbeeten W M H, Peters G W M, Baaijens F P T. Differential constitutive equations for polymer melts: The extended Pom-Pom model[J]. Journal of Rheology, 2001, 45(4): 823-843.
    [195] Verbeeten W M H, Peters G W M, Baaijens F P T. Viscoelastic analysis of complex polymer melt flows using the extended Pom-Pom model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 108(1-3): 301-326.
    [196] Verbeeten W M H. Non-linear viscoelastic models for semi-flexible polysaccharide solution rheology over a broad range of concentrations[J]. Journal of Rheology, 2010, 54(3): 447-470.
    [197] Morris E R, Cutler A N, Ross-Murphy S B, et al. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions[J]. Carbohydrate Polymers, 1981, 1(1): 5-21.
    [198] Yin W C, Zhang H B, Huang L, et al. Effects of the lyotropic series salts on the gelation of konjac glucomannan in aqueous solutions[J]. Carbohydrate Polymers, 2008, 74(1): 68-78.
    [199] Milas M, Rinaudo M, Characterization and properties of hyaluronic acid (hyaluronan), in Polysaccharides. Structural diversity and functional versatility, S. Dumitriu, Editor. 2005, Marcel Dekker: New York. p. 535-549.
    [200] Pires A M B, Santana M H A. Rheological aspects of microbial hyaluronic acid[J]. Journal of Applied Polymer Science, 2011: DOI: 10.1002/app.33976.
    [201] Roure I, Rinaudo M, Milas M. Viscometric behavior of dilute polyelectrolytes. Role of electrostatic interactions[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1996, 100(6): 703-706.
    [202] Rinaudo M, Roure I, Milas M, et al. Electrostatic interactions in aqueous solutions of ionic polysaccharides[J]. International Journal of Polymer Analysis and Characterization, 1997, 4(1): 57-69.
    [203] Roure I, Rinaudo M, Milas M, et al. Viscometric behaviour of polyelectrolytes in the presence of low salt concentration[J]. Polymer, 1998, 39(22): 5441-5445.
    [204] Kunz W, Henle J, Ninham B W. ?Zur Lehre von der Wirkung der Salze‘(about the science of the effect of salts): Franz Hofmeister's historical papers[J]. Current Opinion in Colloid & Interface Science, 2004, 9(1-2): 19-37.
    [205] Omta A W, Kropman M F, Woutersen S, et al. Negligible effect of ions on the hydrogen-bond structure in liquid water[J]. Science, 2003, 301(5631): 347-349.
    [206] Parsegian V A. Hopes for Hofmeister[J]. Nature, 1995, 378(6555): 335-336.
    [207] Laurent T C. Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives.[M]. London and Miami: Portland press, 1998.
    [208] Knill C J, Kennedy J F, Latif Y, et al., Effect of metal ions on the rheological flow profiles of hyaluronate solutions, in Hyaluronan 2000, J. F. Kennedy, G. O. Phillips, P. A. Williams, et al., Editors. 2002, Woodhead Publishing: Cambridge. p. 175-180.
    [209] Yin D S, Yang W Y, Ge Z Q, et al. A fluorescence study of sodiumhyaluronate/surfactant interactions in aqueous media[J]. Carbohydrate Research, 2005, 340(6): 1201-1206.
    [210] Pauloin T, Dutot M, Liang H, et al. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects[J]. Cornea, 2009, 28(9): 1032-1041.
    [211] Wang Q Q, Li L, Liu E J, et al. Effects of SDS on the sol-gel transition of methylcellulose in water[J]. Polymer, 2006, 47(4): 1372-1378.
    [212] Divine J G, Zazulak B T, Hewett T E. Viscosupplementation for knee osteoarthritis - A systematic review[J]. Clinical Orthopaedics and Related Research, 2007, (455): 113-122.
    [213] Donati I, Haug I J, Scarpa T, et al. Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac)[J]. Biomacromolecules, 2007, 8(3): 957-962.
    [214] Kim J H, Lee J H, Yoon J H, et al. Antiadhesive effect of the mixed solution of sodium hyaluronate and sodium carboxymethylcellulose after endoscopic sinus surgery[J]. American Journal of Rhinology, 2007, 21(1): 95-99.
    [215] Zhao X H, He X W, Xie S Q, et al., Preparation and properties of sodium carboxymethyl cellulose-hyaluronic acid-carboxymethyl chitosan blend, in Information Technology for Manufacturing Systems, Pts 1 and 2, Q. Luo, Editor. 2010. p. 1157-1161.
    [216] Oerther S, Payan E, Lapicque F, et al. Hyaluronate-alginate combination for the preparation of new biomaterials: investigation of the behaviour in aqueous solutions[J]. Biochimica Et Biophysica Acta-General Subjects, 1999, 1426(1): 185-194.
    [217] Gupta D, Tator C H, Shoichet M S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord[J]. Biomaterials, 2006, 27(11): 2370-2379.
    [218] Li X B, Fang Y P, Al-Assaf S, et al. Rheological study of gum arabic solutions: Interpretation based on molecular self-association[J]. Food Hydrocolloids, 2009, 23(8): 2394-2402.
    [219] Doner L W, Chau H K, Fishman M L, et al. An improved process for isolation of corn fiber gum[J]. Cereal Chemistry, 1998, 75(4): 408-411.
    [220] Singh V, Doner L W, Johnston D B, et al. Comparison of coarse and fine corn fiber for corn fiber gum yields and sugar profiles[J]. Cereal Chemistry, 2000, 77(5): 560-561.
    [221] Doner L W, Moreau R A, Hicks K B. Corn fiber yields unique gum and oil products[J]. Cereal Foods World, 1998, 43(7): 551.
    [222] Doner L W, Johnston D B. Isolation and characterization of cellulose/arabinoxylan residual mixtures from corn fiber gum processes[J]. Cereal Chemistry, 2001, 78(2): 200-204.
    [223] Yadav M P, Fishman M L, Chau H K, et al. Molecular characteristics of corn fiber gum and their influence on CFG emulsifying properties[J]. Cereal Chemistry, 2007, 84(2): 175-180.
    [224] Yadav M P, Johnston D B, Hicks K B. Structural characterization of corn fibergums from coarse and fine fiber and a study of their emulsifying properties[J]. Journal of Agricultural and Food Chemistry, 2007, 55(15): 6366-6371.
    [225] Yadav M P, Johnston D B, Hotchkiss A T, et al. Corn fiber gum: A potential gum arabic replacer for beverage flavor emulsification[J]. Food Hydrocolloids, 2007, 21(7): 1022-1030.
    [226] Yadav M P, Johnston D B, Hicks K B. CARB 23-Evaluation of corn fiber gum (arabinoxylan) fractions for their role in oil-in water emulsion stability[J]. Abstracts of Papers of the American Chemical Society, 2008, 236: 23-CARB.
    [227] Yadav M P, Parris N, Johnston D B, et al. Fractionation, characterization, and study of the emulsifying properties of corn fiber gum[J]. Journal of Agricultural and Food Chemistry, 2008, 56(11): 4181-4187.
    [228] Yadav M P, Cooke P, Johnston D B, et al. Importance of protein-rich components in emulsifying properties of corn fiber gum[J]. Cereal Chemistry, 2010, 87(2): 89-94.
    [229] Yadav M P, Parris N, Johnston D B, et al. Corn fiber gum and milk protein conjugates with improved emulsion stability[J]. Carbohydrate Polymers, 2010, 81(2): 476-483.
    [230] Yadav M P, Strahan G D, Mukhopadhyay S, et al. Formation of corn fiber gum-milk protein conjugates and their molecular characterization[J]. Food Hydrocolloids, DOI: 10.1016/j.foodhyd.2011.02.032.
    [231] Simkovic I, Yadav M P, Zalibera M, et al. Chemical modification of corn fiber with ion-exchanging groups[J]. Carbohydrate Polymers, 2009, 76(2): 250-254.
    [232] Hernandez M J, Dolz J, Dolz M, et al. Viscous synergism in carrageenans (κandλ) and locust bean gum mixtures: Influence of adding sodium carboxymethylcellulose[J]. Food Science and Technology International, 2001, 7(5): 383-391.
    [233] Graessley W, The entanglement concept in polymer rheology, in The Entanglement Concept in Polymer Rheology. 1974, Springer Berlin / Heidelberg. p. 1-179.
    [234] Zhang L M, Zhou J F. Synergistic viscosity characteristics of aqueous mixed solutions of hydroxypropyl- and carboxymethyl hydroxypropyl-substituted guar gums[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2006, 279(1-3): 34-39.
    [235] El Ghzaoui A, Trompette J L, Cassanas G, et al. Comparative rheological behavior of some cellulosic ether derivatives[J]. Langmuir, 2001, 17(5): 1453-1456.
    [236] Rojas M R, Muller A J, Saez A E. Synergistic effects in flows of mixtures of wormlike micelles and hydroxyethyl celluloses with or without hydrophobic modifications[J]. Journal of Colloid and Interface Science, 2008, 322(1): 65-72.
    [237] Pellicer J, Delegido J, Dolz J, et al. Influence of shear rate and concentration ratio on viscous synergism. Application to xanthan-locust bean gum-NaCMC mixtures[J]. Food Science and Technology International, 2000, 6(5): 415-423.
    [238] Sovilj V, Petrovic L. Interaction and phase separation in the systemHPMC/NaCMC/SDS[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2007, 298(1-2): 94-98.
    [239] Dolz M, Hernandez M J, Pellicer J, et al. Shear-stress synergism index and relative thixotropic area[J]. Journal of Pharmaceutical Sciences, 1995, 84(6): 728-732.
    [240] Jimenez M M, Fresno M J, Ramirez A. Rheological study of binary gels with Carbopol (R) Ultre (TM) 10 and hyaluronic acid[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(8): 1157-1163.
    [241] Kaletunc-Gencer G, Peleg M. Rheological characteristics of selected food gum mixtures in solutions[J]. Journal of Texture Studies, 1986, 17(1): 61-70.
    [242] Lv R, Luan T, Yu F, et al. Rheological and micro-DSC studies on the aqueous mixtures of methylcellulose and ammonium poly(3-thiophene acetic acid)[J]. Carbohydrate Polymers, 2011, 85(4): 862-868.
    [243] Jefferies M, Pass G, Phillips G O. The potentiometric titration of gum karaya aud some other tree-exudate gums[J]. Journal of Applied Chemistry and Biotechnology, 1977, 27(6): 625-630.
    [244] Te?ak B, Kratohvil S. Interaction between polyelectrolytes and heteropolar precipitates[J]. Journal of Polymer Science, 1954, 12(1): 221-227.
    [245] Bohidar H, Dubin P L, Majhi P R, et al. Effects of protein-polyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum albumin-poly(diallyldimethylammonium chloride) coacervates[J]. Biomacromolecules, 2005, 6(3): 1573-1585.
    [246] Michaels A S. Polyelectrolyte complexes[J]. Industrial & Engineering Chemistry, 1965, 57(10): 32-40.
    [247] Al-Assaf S, Phillips G O, Aoki H, et al. Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUM (TM)): Part 1 - Controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier[J]. Food Hydrocolloids, 2007, 21(3): 319-328.
    [248] Randall R C, Phillips G O, Williams P A. Fractionation and characterization of gum from Acacia senegal[J]. Food Hydrocolloids, 1989, 3(1): 65-75.
    [249] McNamee B F, O'Riordan E D, O'Sullivan M. Emulsification and microencapsulation properties of gum arabic[J]. Journal of Agricultural and Food Chemistry, 1998, 46(11): 4551-4555.
    [250] Huang X, Kakuda Y, Cui W. Hydrocolloids in emulsions: particle size distribution and interfacial activity[J]. Food Hydrocolloids, 2001, 15(4-6): 533-542.
    [251] Street C A, Anderson D M W. Refinement of structures previously proposed for gum arabic and other acacia gum exudates[J]. Talanta, 1983, 30(11): 887-893.
    [252] Li X B, Fang Y P, Zhang H B, et al. Rheological properties of gum arabic solution: From Newtonianism to thixotropy[J]. Food Hydrocolloids, 2011, 25(3): 293-298.
    [253] Karamalla K A, Siddig N E, Osman M E. Analytical data for Acacia senegalvar. senegal gum samples collected between 1993 and 1995 from Sudan[J]. Food Hydrocolloids, 1998, 12(4): 373-378.
    [254] Boyd M J, Hampson F C, Jolliffe I G, et al. Strand-like phase separation in mixtures of xanthan gum with anionic polyelectrolytes[J]. Food Hydrocolloids, 2009, 23(8): 2458-2467.
    [255] Kumar S, Sharma D, Kabir ud D. Role of partitioning site in producing viscoelasticity in micellar solutions[J]. Journal of Surfactants and Detergents, 2005, 8(3): 247-252.
    [256] Kim W J, Yang S M. Microstructures and rheological responses of aqueous CTAB solutions in the presence of benzyl additives[J]. Langmuir, 2000, 16(15): 6084-6093.
    [257] Dar A A, Garai A, Das A R, et al. Rheological and fluorescence investigation of interaction between hexadecyltrimethylammonium bromide and methylcellulose in the presence of hydrophobic salts[J]. Journal of Physical Chemistry A, 2010, 114(15): 5083-5091.
    [258] Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (CMC) solutions[J]. Colloid and Polymer Science, 2008, 286(10): 1173-1180.
    [259] Liu W H, Yu T L, Lin H L. Shear thickening behavior of dilute poly(diallyl dimethyl ammonium chloride) aqueous solutions[J]. Polymer, 2007, 48(14): 4152-4165.
    [260] Frith W J. Mixed biopolymer aqueous solutions - phase behaviour and rheology[J]. Advances in Colloid and Interface Science, 2010, 161(1-2): 48-60.
    [261] Bergfeldt K, Piculell L, Tjerneld F. Phase separation phenomena and viscosity enhancements in aqueous mixtures of poly(styrenesulfonate) with poly(acrylic acid) at different degrees of neutralization[J]. Macromolecules, 1995, 28(9): 3360-3370.
    [262] Tolstoguzov V. Some thermodynamic considerations in food formulation[J]. Food Hydrocolloids, 2003, 17(1): 1-23.
    [263] Piculell L, Lindman B. Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences[J]. Advances in Colloid and Interface Science, 1992, 41: 149-178.
    [264] Bungenberg de Jong H G, Complex colloid systems, in Colloid Science, H. R. Kruyt, Editor. 1949, Elsevier: New York. p. 335-384.
    [265] Stern R, Kogan G, Jedrzejas M J, et al. The many ways to cleave hyaluronan[J]. Biotechnology Advances, 2007, 25: 537-557.
    [266] Tokita Y, Okamoto A. Hydrolytic degradation of hyaluronic acid[J]. Polymer Degradation and Stability, 1995, 48(2): 269-273.
    [267] Tokita Y, Okamoto A. Degradation of hyaluronic acid—Kinetic study and thermodynamics[J]. European Polymer Journal, 1996, 32(8): 1011-1014.
    [268] Tanford C. Protein denaturation[J]. Adv Protein Chem, 1968, 23: 121-282.
    [269] Podorozhko E A, Kurskaya E A, Kulakova V K, et al. Cryotropic structuring of aqueous dispersions of fibrous collagen: influence of the initial pHvalues[J]. Food Hydrocolloids, 2000, 14(2): 111-120.
    [270] Lee S B, Lee Y M, Song K W, et al. Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors[J]. Journal of Applied Polymer Science, 2003, 90(4): 925-932.
    [271] Jin Y, Ling P X, He Y L, et al. Preparation, characterization and anti-Helicobacter pylori activity of Bi3+-hyaluronate complex[J]. Carbohydrate Polymers, 2008, 74(1): 50-58.
    [272] Watase M, Nishinari K. Large deformation of hydrogels of poly(vinyl alcohol), agarose and kappa-carrageenan[J]. Die Makromolekulare Chemie, 1985, 186(5): 1081-1086.
    [273] Watase M, Nishinari K. Rheological and DSC changes in poly(vinyl alcohol) gels induced by immersion in water[J]. Journal of Polymer Science: Polymer Physics Edition, 1985, 23(9): 1803-1811.
    [274] Gilli R, Kacurakova M, Mathlouthi M, et al. FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution[J]. Carbohydrate Research, 1994, 263(2): 315-326.
    [275] Orr S F D. Infra-red spectroscopic studies of some polysaccharides[J]. Biochimica Et Biophysica Acta, 1954, 14(2): 173-181.
    [276] Li L. Thermal gelation of methylcellulose in water: Scaling and thermoreversibility[J]. Macromolecules, 2002, 35(15): 5990-5998.
    [277] Okuyama K, Otsubo A, Fukuzawa Y, et al. Single helical structure of native curdlan and its aggregation state[J]. Journal of Carbohydrate Chemistry, 1991, 10(4): 645-656.
    [278] Tanford C. How protein chemists learned about the hydrophobic factor[J]. Protein Science, 1997, 6(6): 1358-1366.
    [279] Scott J E. Supramolecular organization of extracellular-matrix glycosaminoglycans, invitro and in the tissues[J]. FASEB Journal, 1992, 6(9): 2639-2645.
    [280] Scott J E, Chemical morphology of hyaluronan, in The chemistry, biology and medical applications of hyaluronan and its derivatives, T. C. Laurent, Editor. 1998, Portland Press: London. p. 7-15.
    [281] Ghosh P, Hutadilok N, Adam N, et al. Interactions of hyaluronan (hyaluronic acid) with phospholipids as determined by gel-permeation chromatography, multi-angle laser-light-scattering photometry and 1H-NMR spectroscopy.[J]. International Journal of Biological Macromolecules, 1994, 16(5): 237-244.
    [282] Ghosh P, Hutadilok N, Lentini A. Nuclear magnetic resonance studies of hyaluronan (HA): evidence of competitive inhibition of interchain associations by phospholipids which may result in decreased anti-inflammatory and cartilage protecting properties of HA[J]. Heterocycles, 1994, 38: 1757-1774.
    [283] Gribbon P, Heng B C, Hardingham T E. The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association[J]. Biochemical Journal, 2000, 350: 329-335.
    [284] Gribbon P, Heng B C, Hardingham T E. The molecular basis of the solutionproperties of hyaluronan investigated by confocal fluorescence recovery after photobleaching[J]. Biophysical Journal, 1999, 77(4): 2210-2216.
    [285] Geciova R, Flaibani A, Delben F, et al. Physico-chemical properties of hyaluronan and its hydrophobic derivatives: a calorimetric and viscometric study[J]. Macromolecular Chemistry and Physics, 1995, 196(9): 2891-2903.
    [286] Shen H Q, Yin Y M, Zhang H B. An electrochemical study of the hydrophobic interaction of methylcellulose[J]. Acta Chimica Sinica, 2005, 63(17): 1621-1625.
    [287] Yin Y M, Zhang H B, Nishinari K. Voltammetric characterization on the hydrophobic interaction in polysaccharide hydrogels[J]. Journal of Physical Chemistry B, 2007, 111(7): 1590-1596.
    [288] Matulis D, Baumann C G, Bloomfield V A, et al. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent[J]. Biopolymers, 1999, 49(6): 451-458.
    [289] Mravec F, Peka? M, Velebny V. Aggregation behavior of novel hyaluronan derivatives-a fluorescence probe study[J]. Colloid & Polymer Science, 2008, 286(14): 1681-1685.
    [290] Schellman J A. Temperature, stability, and the hydrophobic interaction[J]. Biophysical Journal, 1997, 73(6): 2960-2964.
    [291] Mancera R L, Buckingham A D. Further evidence for a temperature-dependent hydrophobic interaction: the aggregation of ethane in aqueous solutions[J]. Chemical Physics Letters, 1995, 234(4-6): 296-303.
    [292] Dische Z. A new specific color reaction of hexuronic acids[J]. The Journal of Biological Chemistry, 1947, 167: 189-198.
    [293] Bitter T, Muir H M. A modified uronic acid carbazole reaction[J]. Analytical Biochemistry, 1962, 4(4): 330-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700