用户名: 密码: 验证码:
α-葡聚糖酶的基因工程菌构建、发酵及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡聚糖(Glucan)是以葡萄糖为单体的聚合物的总称。制糖工艺过程出现的葡聚糖主要为α-葡聚糖,又称右旋糖酐(dextran),是以α-D-葡萄糖为单体、以1-6键连接的直链为主链(约占95%以上)形成的高分子聚合多糖,其分子式为(C6Hio05)n。从蔗汁到精制产品,所有制糖工艺过程自始至终存在葡聚糖所引起的不良的影响。葡聚糖的产生和存在使蔗糖损失,明显增大糖液的粘度,降低糖液的过滤性,影响煮糖、结晶与分蜜,增加制炼成本,并且严重影响糖产品的质量。
     本论文针对制糖过程存在的α-葡聚糖的降解、检测的难题,构建并筛选了高效表达α-葡聚糖酶的基因工程菌株,并进行发酵试验研究;对发酵所产α-葡聚糖酶在甘蔗制糖过程α-葡聚糖的分解清除和医药领域微分子右旋糖酐的生产中进行相关的应用研究;成功制备了α.葡聚糖特异性单克隆抗体并研制出α-葡聚糖检测试剂盒。主要实验研究工作如下:
     1、α-葡聚糖酶基因工程菌的构建与筛选
     通过基因工程方法,构建pPICZ a A-DEX重组质粒,将源自青霉的α-葡聚糖酶基因整合进入毕赤酵母基因组,实现了外源α-葡聚糖酶融合蛋白的表达。所构建的X-33/pPICZaA-DEX毕赤酵母工程菌株,以甲醇为诱导物,其外源基因通过醇氧化酶AOX启动子的调控,得以高效转录表达。
     在国际上首次构建以三磷酸甘油醛脱氢酶GAP启动子作为外源基因启动子的pGAPZ a A-DEX重组质粒,进而构建KM71H/pGAPZ a A-DEX毕赤酵母工程菌株。该菌株在表达外源蛋白时,外源基因通过GAP启动子的调控,在以甘油或葡萄糖等为碳源的培养基上无需诱导物的存在就可以表达,产酶量和菌体密度具有较强的趋势一致性。
     2、α-葡聚糖酶基因工程菌的发酵
     对X-33/pPICZaA-DEX毕赤酵母工程菌株产酶培养基进行优化,探讨了温度、溶氧、初始pH、接种量、诱导阶段甲醇浓度和补料间隔时间等对产酶的影响。5L发酵罐流加培养甲醇诱导型工程菌株产酶,在优化的发酵工艺参数条件下,α-葡聚糖酶的活力最高可达1048 U/mL,国内领先,并通过了广东省科技厅组织的技术鉴定;5L发酵罐流加培养KM71 H/pGAPZaA-DEX产酶,在优化的发酵工艺参数条件下,α-葡聚糖酶的活力最高可达398 U/mL。以上两种不同类型的工程菌各有特点,探索完善其相关的发酵工艺,可为大规模工业生产α-葡聚糖酶打下基础。
     3、α-葡聚糖特异性单克隆抗体的制备及其检测试剂盒的研制
     以Dextran T-40-BSA交联物免疫小鼠,用常规方法进行细胞融合,间接ELISA方法筛选阳性克隆,同时采用有限稀释法进行杂交瘤细胞的亚克隆和培养,成功建立了7株杂交瘤细胞株,其效价均大于106;经纯化的抗体其重链分子量为50000,轻链分子量为23000;与BSA、OVA,蔗糖,葡萄糖等无任何交叉反应,证明抗体的特异性。运用获得的单克隆抗体建立α-葡聚糖定量检测免疫比浊法,在国内首次成功研制α-葡聚糖定量检测试剂盒,于2010年7月通过国家质检总局验收并获高度评价,国际先进,解决了α-葡聚糖(右旋糖酐)快速、准确、便捷检测的难题。α-葡聚糖定量检测免疫比浊法有望成为国家标准方法乃至国际统一分析法。
     4、α-葡聚糖酶的酶学性质及其稳定性研究
     研究了α-葡聚糖酶的酶学性质,表明α-葡聚糖酶的最适反应温度为45-50℃,最适反应pH=4.5-5.0;酶的储存稳定性较好,pH=4.5-5.0时葡聚糖酶较稳定,4℃保存,半衰期约为35天。采用葡萄糖作保护剂研究了其对α-葡聚糖酶的稳定性影响,表明葡萄糖可以极大地减少酶活的损失;以蔗糖作为保护剂,在室温下酶活基本没有损失。
     5、α-葡聚糖酶在制糖过程中的应用研究
     在实验室研究中,以降粘率、除色率、葡聚糖去除率等指标为判断依据综合评价α-葡聚糖酶对蔗汁澄清的效果,通过实验确定α-葡聚糖酶的各种使用条件。2009/2010榨季在广东省台山市海宴华侨农场糖厂进行模拟生产工艺试验,在不同清净工艺中对蔗汁的澄清效果试验表明,α-葡聚糖酶对甘蔗制糖过程蔗汁的清净有较大的帮助,对提高澄清汁的纯度尤为明显;α-葡聚糖酶处理低纯度蔗汁后其葡聚糖含量和色值都有较大的下降,表明葡聚糖酶对低纯度蔗汁的效果相当明显。
     6、α-葡聚糖酶在合成微分子右旋糖酐中的应用研究
     创新性地提出肠膜明串珠菌发酵蔗糖产微分子右旋糖酐新工艺,在发酵过程中应用α-葡聚糖酶进行催化水解协同作用,通过控制α-葡聚糖酶的添加量和添加时间控制右旋糖酐的分子量,一步法直接发酵生产微分子右旋糖酐。培养基中13%的蔗糖在24小时内转化率达90%以上,在发酵16小时时添加0.8-1.2 U/mLα-葡聚糖酶,可一步合成分子量为3000-8000Da的右旋糖酐;用超滤膜截留发酵液,可分离提纯得到符合《中华人民共和国药典》要求的右旋糖酐。新工艺解决了传统工艺中右旋糖酐分子量无法控制、酸水解废水污染大以及分离纯化有机溶剂用量大等问题。
Dextran, a kind of bacterial polysaccharides, has been recognized as a serious problem in sugar processing over 100 years. Dextran (C6H10O5)n is synthesized by microorganisms such as Streptococcus, Lactobacillus and Leuconostoc mesenteroides. The glucose monomers are predominantly linked by a(1,6) bonds in their major chains with a variable percentage of a(1,3) and occasional a(1,2) or a(1,4) branched linkages. The presence of dextran is associated with the processing problems from sugar cane juice to refined products. The dextran in sugar factories leads to a falsely high polarization, increased viscosity, lower evaporation rates, elongated crystals and increase of sugar loss to molasses.
     The aim of this work was to determine and eliminate the dextran level during sugar production. A monoclonal antibody against dextran was developed and an assaying kit base on the antibody for the dextran detecting was established. Then engineering strains of Pichia pastoris highly expressing an extracellular a-dextranase were constructed and screened. After fermentation in the optimal conditions, the activity of a-dextranase can reach 1048U/mL. The application of the recombinant dextranase was identified in the removal of dextran from sugar products and also in the production of lower molecular dextran in the medical and pharmacologic field.
     The main work is listed below:
     1. Construction and screening of engineered strains with recombinant plasmid encoding dextranase
     The a-dextranase gene from Penicillium minioluteum was cloned into vector pPICZa A and was expressed in Pichia pastoris under the control of AOX promoter. The engineered strain with recombinant plasmid X-33/pPICZaA-DEX was induced to express a-dextranase by methanol. We also constructed a recombinant plasmid of KM71H/pGAPZa A-DEX, with GAP promoter. The P. pastoris containing this plasmid expressed a-dextranase under the control of GAP promoter, without inductors in the glycerol or glucose medium. It was found that the yield of the a-dextranase is relative to the density of the density of engineered strains.
     2. Optimization of fermentation conditions for the expression of a-dextranase
     The fermentation conditions were optimized for P. pastoris with X-33/pPICZaA-DEX. Impact of temperature, dissolved oxygen, initial pH, inoculation size, methanol level in the induction step and interval time of feed supplement on the production of a-dextranase was analyzed. The dextranase activity from P. pastoris with X-33/pPICZaA-DEX culture and KM71H/pGAPZa A-DEX was determined to be 1048U/mL and 398 U/mL, respectively.
     3. Development of anti-dextran monoclonal antibody and establishment of assaying kit for dextran
     Dextran was conjugated with BSA and then injected into Balb/c mice for the immunization. Cells of spleens and SP2/0 were fused by the hybridoma technology and the growing hybridomas were screened by indirect ELISA for their ability to secret high titer antibody against dextran. After cloning and subcloning by the Limiting Dilution method,7 hybridomas were selected, all of which exhibit titers higher than 1×106 in the culture supernatant. After purification of the culture supernatant, the antibody was analyzed to be specific against dextran, without cross-reacting with BSA, OVA, sucrose and glucose. Based on the newly-generated antibody, an immunonephelometric kit for quantitative detection dextran was developed. The kit passed the inspection and acceptance of the State Quality Inspection Administration of China in July,2010. The kit was proved be a rapid, correct and convenient tool for detecting dextran in raw material, by-products and end-products of sugar. This kit also can be applied to quantify dextran in medical and pharmacological field. The immunonephelometric assay is also respected to be a national standard detecting method, even a unitive analytical approach across the world.
     4. Characterization of the a-dextranase
     Dextranase precipitated from the fermentation broth using ammonium sulfate was analyzed. Results showed that the optimal temperature for dextranase was 47-50℃and the optimal pH was 4.5-5.0. The stability of the a-dextranase was tested and results showed better stability in pH of 4-5. Half time of the dextranase was approximately 35 days when stored at 4℃.
     5. Application of a-dextranase in the sugar-making industry
     The evaluating parameters for the clarification efficiency of a-dextranase on the sugar juice were viscosity reducing rate, color removal rate and dextran removal rate. Sugar juice showed better purity and color when treated with a-dextranase during various clarification process. Content of dextran and value of color of sugar cane juice in low purity decreased significantly after treated with a-dextranase. This indicated that a-dextranase was remarkably efficient on sugar cane juice in low purity.
     6. Application of dextranase in the production of low molecular mass dextran
     Here we also put forward the original technology of producing low molecular mass of dextran from fermentation of sucrose using Leuconostoc mesenteroides. Dextranase was added to hydrolyze the large polysaccharides into smaller ones. The molecular weight of dextran can be controlled by adjusting the a-dextranase adding level and adding time. Dextran with molecular weight of 3000-8000Da can be synthesized in one step when 0.8-1.2U/mL a-dextranase were added into the culture which had been fermented for 16h. The dextran was separated from the broth by ultra-filtration membrane and the obtained dextran meets the criterion of dextran in "Pharmacopoeia of the People's Republic of China". The new technology solved the problems of uncontrolled molecular mass of dextran, severe pollution of wastewater, and large amount of organic solvent used when purifying.
引文
[1]Khalikova E, Susi P, Korpela T. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev,2005,69 (2):306-325.
    [2]Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr,1994,48 (7):465-474.
    [3]Czop JK, Kay J. Isolation and characterization of beta-glucan receptors on human mononuclear phagocytes. J Exp Med,1991,173 (6):1511-1520.
    [4]Miura T, Ohno N, Miura NN, Adachi Y, Shimada S, Yadomae T. Antigen-specific response of murine immune system toward a yeast beta-glucan preparation, zymosan. FEMS Immunol Med Microbiol,1999,24 (2):131-139.
    [5]Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L, Nathans RS, Crowley JJ, Tufts JC, Zimmerman J, Mackin W, Adams DS. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN:evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology,1999,41 (2):89-107.
    [6]Rylander R, Fogelmark B, McWilliam A, Currie A. (1-->3)-beta-D-glucan may contribute to pollen sensitivity. Clin Exp Immunol,1999,115 (3):383-384.
    [7]Maeda YY, Watanabe ST, Chihara C, Rokutanda M. Denaturation and renaturation of a beta-1,6;1,3-glucan, lentinan, associated with expression of T-cell-mediated responses. Cancer Res,1988,48 (3):671-675.
    [8]Eom HJ, Seo DM, Han NS. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int J Food Microbiol, 2007,117(1):61-67.
    [9]Kang HK, Kim YM, Kim DM. Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4. J Microbiol Biotechnol,2008,18 (6):1050-1058.
    [10]Purama RK, Goyal A. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostocmesenteroides NRRL B-640 using statistical approach. Bioresour Technol,2008,99 (15):7108-7114.
    [11]Purama RK, Goyal A. Identification, effective purification and functional characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-640. Bioresour Technol,2008,99 (9):3635-3642.
    [12]Vidal RF, Martinez A, Moulis C, Escalier P, Morel S, Remaud-Simeon M, Monsan P. A novel dextransucrase is produced by Leuconostoc citreum strain B/110-1-2:an isolate used for the industrial production of dextran and dextran derivatives. J Ind Microbiol Biotechnol,2011,38 (9):1499-1506.
    [13]De Bruijn JM. Processing of frost damaged beets at CSM and the use of dextranase. Zuckerindustrie,2000,125 (11):892-902.
    [14]Eggleston G, Mongeb A. Optimization of sugarcane factory application of commercial dextranases Process Biochemistry,2005,40 (5):1881-1894.
    [15]Robyt J, Eklund S. Stereochemistry involved in the mechanism of action of dextransucrase in the synthesis of dextran and the formation of acceptor Bioorg Chem, 1982,11:115-132.
    [16]Imrie F, Tilbury R. Polysaccharides in sugar cane and its products. Sugar Technology, 1972,1:291-361.
    [17]Morel dBP, Wienese S. Enzymatic reduction of dextran in process-Laboratory evaluation of dextranases. Sug Technol Ass,2000,76:435-443.
    [18]James CC, P. and Chou, C.C. (1993) Cane sugar handbook:A manual for cane sugar manufacturers and their chemists.
    [19]Liang D, Zeng, L., Guo, T., Yan, M. and Yu, L. Influence of dextran to sugar industry and their countermeasures. Sugarcane and Cane Sugar,2008,3:28-33.
    [20]覃波,兰芳.一种新的甘蔗蔗糖分测定方法.广西糖业,2008,51(2):30-33.
    [21]孙宝良,李百芳,王建祺.用测定比旋光度的物理学方法来分析D-葡萄糖的变旋光现象[中国医学物理学杂志,2007,24(1):46-47.
    [22]陈骏佳,黄玉南.甘蔗糖厂的“蔗饭”问题及杀菌剂.甘蔗糖业,1996,6:35-40.
    [23]Efrain RJ. The dextranase along sugar-making industry. Biotecnology Application, 2005,22:20-27.
    [24]Keniry JS, Lee, J. B. and Mahoney, V.C. Improvements in the dextran assay of sugar cane materials. Int Sugar J,1969,71:230-233.
    [25]Anon (1994) The determination of dextran in raw sugar by a modified alcohol haze method. In:Department IP (ed)
    [26]Roberts EJ. A quantitative method for dextran analysis. Int Sugar J,1983,85:10-13.
    [27]Saska M, Godshall, M-A. and Day, D.F. (2002) Dextran analysis with polarimetric, immunological,Roberts and Haze methods. Proceedings of the SPRI 2002 Conference on Sugar Processing Research, pp 411-417
    [28]Sarkar DaD, D.F. Dextran analysis:A modified method. J ASSCT,1986,6:102-107.
    [29]范瑞梅,范家恒.葡聚糖的免疫作用及研究进展.甘蔗糖业,2006,6:38-41.
    [30]Day DF, Sarker, D. and Rauh, J. Goats,mice and dextran, the road to a dextran process control test kit. Journal American Society of Sugarcane Technologists,2002, 22:144.
    [31]DeStefano RPal, M. S. Measuring dextran in raw sugars-historical perspective and state of the art. J American Society Sugar Cane Technologists,1986,6:112-120.
    [32]Kubik C, Galas, E. and Sikoro, B. Determination of dextran in raw beet juices by the haze/enzymatic method. Int Sugar J,1994,96 (1149):358-360.
    [33]N.Y. Curtin JHaM, R. J. (1986) Dextran measurement in cane products. Proc 19th Congress ISSCT, pp 755-764
    [34]樊攀,钟桂芳,毛多斌,魏东芝,杨雪鹏.酶法合成右旋糖酐的研究.中国酿造,2011,6:166-169.
    [35]张洪斌,姚日生,朱慧霞,邓胜松,高文霞.发酵法生产右旋糖酐的工艺研究.合肥工业大学学报(自然科学版),2004,27(7)
    [36]伊晓楠.酶工程技术制备右旋糖酐的研究.合肥,合肥工业大学,2010
    [37]张洪斌.酶工程技术制备右旋糖酐的研究合肥,合肥工业大学,2004
    [38]Falconer DJ, Mukerjea R, Robyt JF. Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr Res,2011,346 (2):280-284.
    [39]Kim D, Robyt JF, Lee SY, Lee JH, Kim YM. Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res,2003,338 (11):1183-1189.
    [40]Purama RK, Goyal A. Application of response surface methodology for maximizing dextransucrase production from Leuconostoc mesenteroides NRRL B-640 in a bioreactor. Appl Biochem Biotechnol,2008,151 (2-3):182-192.
    [41]U1 Qader SA, Aman A, Syed N, Bano S, Azhar A. Characterization of dextransucrase immobilized on calcium alginate beads from Leuconostoc mesenteroides PCSIR-4. Ital J Biochem,2007,56 (2):158-162.
    [42]王治业,刘晓凤,魏甲乾,景昶年,周剑平.固定化肠膜状明串珠菌生产右旋糖酐的研究.甘肃工业大学学报,2003,29(3):79-81.
    [43]董明辉.固定化技术制备右旋糖酐及其相对分子质量控制.合肥,合肥工业大学,2007
    [44]Robyt JF, Yoon SH, Mukerjea R. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr Res,2008,343 (18):3039-3048.
    [45]Betancor L, Luckarift H. Co-immobilized coupled enzyme systems in biotechnology. Biotechnol Genet Eng Rev,2010,27:95-114.
    [46]Erhardt FA, Kugler J, Chakravarthula RR, Jordening HJ. Co-immobilization of dextransucrase and dextranase for the facilitated synthesis of isomalto-oligosaccharides: Preparation, characterization and modeling. Biotechnol Bioeng,2008,100 (4):673-683.
    [47]Lee JM, Fox PF. Purification and characterization of Paecilomyces lilacinus dextranase Enzyme and Microbial Technology,1985,7 (11):573-577.
    [48]Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Control Release,2000,69 (1):1-25.
    [49]Mehvar R. Recent trends in the use of polysaccharides for improved delivery of therapeutic agents:pharmacokinetic and pharmacodynamic perspectives. Curr Pharm Biotechnol,2003,4 (5):283-302.
    [50]Caldwell RC, Sandham HJ, Mann WV, Jr., Finn SB, Formicola AJ. The effect of a dextranase mouthwash on dental plaque in young adults and children. J Am Dent Assoc, 1971,82(1):124-131.
    [51]Lobene RR. A clinical study of the effect of dextranase on human dental plaque. J Am Dent Assoc,1971,82 (1):132-135.
    [52]Staat RH, Gawronski TH, Schachtele CF. Detection and preliminary studies on dextranase-producing microorganisms from human dental plaque. Infect Immun,1973,8 (6):1009-1016.
    [53]Larsson AM, Andersson R, Stahlberg J, Kenne L, Jones TA. Dextranase from Penicillium minioluteum:reaction course, crystal structure, and product complex. Structure,2003,11 (9):1111-1121.
    [54]Russell RR, Ferretti JJ. Nucleotide sequence of the dextran glucosidase (dexB) gene of Streptococcus mutans. J Gen Microbiol,1990,136 (5):803-810.
    [55]Hoster F, Daniel R, Gottschalk G. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J Gen Appl Microbiol,2001,47 (4):187-192.
    [56]Kim YM, Kim D. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl Microbiol Biotechnol,2010,85 (3):581-587.
    [57]Massey-Gendel E, Zhao A, Boulting G, Kim HY, Balamotis MA, Seligman LM, Nakamoto RK, Bowie JU. Genetic selection system for improving recombinant membrane protein expression in E. coli. Protein Sci,2009,18 (2):372-383.
    [58]Lee MS, Hseu YC, Lai GH, Chang WT, Chen HJ, Huang CH, Wang MY, Kao JY, You BJ, Lin W, Lien YY, Lin MK. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development. Microb Cell Fact,2011,10:56.
    [59]Vincentelli R, Cimino A, Geerlof A, Kubo A, Satou Y, Cambillau C. High-throughput protein expression screening and purification in Escherichia coli. Methods,2011,
    [60]Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C. Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics,2004,5 (1-2):29-44.
    [61]Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast,2005,22 (4):249-270.
    [62]Gellissen G. Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol,2000,54 (6):741-750.
    [63]樊建勇.毕赤酵母表达系统.国外医学预防、诊断、治疗用生物制品分册,2003,26(5):217-219.
    [64]Pla IA, Damasceno LM, Vannelli T, Ritter G, Batt CA, Shuler ML. Evaluation of Mut+and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol Prog,2006,22 (3):881-888.
    [65]Mizutani K, Yoshioka S, Mizutani Y, Iwata S, Mikami B. High-throughput construction of expression system using yeast Pichia pastoris, and its application to membrane proteins. Protein Expr Purif,2011,77 (1):1-8.
    [66]Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol,2011,77 (11):3600-3608.
    [67]Zhang A-L, Luo J-X, Zhang T-Y, Pan Y-W, Tan Y-H, Fu C-Y, Tu F-z. Recent advances on the GAP promoter derived expression system of Pichia pastoris. MOLECULAR BIOLOGY REPORTS,2009,36 (6):1611-1619.
    [68]Roca H, Garcia B, Rodriguez E, Mateu D, Coroas L, Cremata J, Garcia R, Pons T, Delgado J. Cloning of the Penicillium minioluteum gene encoding dextranase and its expression in Pichia pastoris. Yeast,1996,12(12):1187-1200.
    [69]Chen L, Zhou X, Fan W, Zhang Y. Expression, purification and characterization of a recombinant Lipomyces starkey dextranase in Pichia pastoris. Protein Expr Purif,2008, 58(1):87-93.
    [70]Kang HK, Park JY, Ahn JS, Kim SH, Kim D. Cloning of a gene encoding dextranase from Lipomyces starkeyi and its expression in Pichia pastoris. J Microbiol Biotechnol, 2009,19 (2):172-177.
    [71]Miller GL. Use of dinitrosalicylic acid reagent for the determination of reducing sugars. J Anal Chem,1959,31:426-428.
    [72]Gurramkonda C, Adnan A, Gabel T, Lunsdorf H, Ross A, Nemani SK, Swaminathan S, Khanna N, Rinas U. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris:Application to intracellular production of Hepatitis B surface antigen. Microb Cell Fact,2009,8:13.
    [73]Gao MJ, Zheng ZY, Wu JR, Dong SJ, Li Z, Jin H, Zhan XB, Lin CC. Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-alpha production with an on-line model-based glycerol feeding strategy. Appl Microbiol Biotechnol,2011,
    [74]Surribas A, Stahn R, Montesinos JL, Enfors SO, Valero F, Jahic M. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol,2007,130 (3):291-299.
    [75]Hu XQ, Chu J, Zhang Z, Zhang SL, Zhuang YP, Wang YH, Guo MJ, Chen HX, Yuan ZY. Effects of different glycerol feeding strategies on S-adenosyl-1-methionine biosynthesis by P(GAP)-driven Pichia pastoris overexpressing methionine adenosyltransferase. J Biotechnol,2008,137 (1-4):44-49.
    [76]Wang Z, Wang Y, Zhang D, Li J, Hua Z, Du G, Chen J. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation. Bioresour Technol,2010,101 (4):1318-1323.
    [77]Yun Wang, Zhihao Wang, Qinglong Xu, Guocheng Du, Zhaozhe Hua, Liming Liu, Jianghua Li, Jian Chen. Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochemistry,2009,44 (9):949-954.
    [78]Hohenblum H, Borth N, Mattanovich D. Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol,2003,102 (3):281-290.
    [79]Cregg JM, Cereghino JL, Shi J, Higgins DR. Recombinant protein expression in Pichia pastoris. Mol Biotechnol,2000,16(1):23-52.
    [80]Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D. Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng,2006,94 (2):353-361.
    [81]Goodrick JC, Xu M, Finnegan R, Schilling BM, Schiavi S, Hoppe H, Wan NC. High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnol Bioeng,2001,74 (6):492-497.
    [82]Pal Y, Khushoo A, Mukherjee KJ. Process optimization of constitutive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Appl Microbiol Biotechnol,2006,69 (6):650-657.
    [83]Zhao W, Wang J, Deng R, Wang X. Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol,2008,35 (3):189-195.
    [84]Cos O, Ramon R, Montesinos JL, Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters:a review. Microb Cell Fact,2006,5:17.
    [85]Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol,2010,150 (4):519-529.
    [86]Kato A. Industrial Applications of Maillard-Type Protein-Polysaccharide Conjugates. Food Sci Technol Res,2002,8 (3):193-199.
    [87]Zeng L, Wang, S., Li, Y, Yan, J., Huang, X. and Liang, D. Preparation and purification of anti-dextran polyclonal antibody. Guangxi Journal of Light Industry,2009, 11:4-5.
    [88]Zeng L, Wang, S., Li, Y, Yan, J., Huang, X. and Liang, D. Establishing of anti-dextran polyclonal antibody competitive inhibition ELISA assay. Guangxi Journal of Light Industry,2009,12:11-12.
    [89]Lizana J, Blad E. Immunonephelometry of specific proteins in human seminal plasma. Clin Chem,1983,29 (4):618-623.
    [90]Douwes J, Doekes G, Montijn R, Heederik D, Brunekreef B. Measurement of beta(1-->3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol,1996,62 (9):3176-3182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700