用户名: 密码: 验证码:
倾斜下降管反应器中颗粒运动规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热裂解液化技术是国际上流行的一种生物质废弃物处理和利用技术。下降管式裂解液化装置是国内具有自主知识产权的生物质快速热解液化反应器。在高的升温速率下,生物质在反应管中迅速热裂解为生物质半焦(残炭),因此实质上反应管内是生物质半焦与陶瓷球混合颗粒的换热。
     在下降管内,生物质的热裂解不仅受热裂解动力学控制,而且还要受到颗粒的流动与传热过程影响,因此要研究下降管反应器内生物质的热裂解规律,必须对颗粒的流动规律进行研究。
     本文从实验、理论分析和数值模拟三方面入手对陶瓷球颗粒与生物质半焦粉体颗粒在45°倾斜下降管反应器内的混合流动规律进行了深入的研究。从而揭示下降管反应器内混合颗粒的运动机理,以在理论上指导、优化装置的参数设计,进而提高系统效率。
     设计了45°倾斜下降管颗粒流动冷态实验装置,对实验装置的喂料系统进行了实验研究,结果表明喂料量与喂料时间成线性关系,能够满足实验需要。同时建立了移动误差小于1mm的相机自动控制系统,使实验更加精确、方便和快捷。
     对于PIV系统来说,横截面为方形的管道要比圆形管道测试效果好,为此本文对横截面为方形、半圆半方和圆形三种不同管道进行了对比实验,结果表明在倾斜下降管冷态实验中,不能用方管或半圆半方管来代替圆管进行实验。
     利用“插板法”对倾斜下降管中混合颗粒的浓度分布规律进行了研究,分别获得了陶瓷球颗粒与生物质半焦粉体颗粒的浓度分布规律,为颗粒碰撞模型中的浓度分布参数n的确定提供数据支持。
     利用与PTV相结合的“粒径分析法”、与PIV相结合的“速度方向判别法”和Sommerfeld和Oesterle提出的随机颗粒碰撞理论模型对下降管中陶瓷球颗粒碰撞率f进行了研究,根据实验值对随机颗粒碰撞模型进行了修正。碰撞率的获得可直接计算出生物质热裂解中由碰撞直接传递的热量f·Q。
     利用荧光技术与PIV技术相结合的方法在距入口690mm和1190mm截面上对混合颗粒中陶瓷球颗粒的速度进行了测试,并获得了陶瓷球的速度,证明了此方法的可行性。
     通过对生物质半焦粉体颗粒速度分布规律研究发现,其轴向时均速度分布在整个管道内分为三部分,开始段的流体控制阶段、颗粒/流体协调控制的过渡段和稳定后的颗粒控制阶段;径向时均速度变化不大。
     流体控制阶段的生物质半焦轴向时均速度分布与气体射流分布类似,最大速度在管道中心,随着下降距离的增大,颗粒在管道中的作用越来越明显,最大速度位置下移,向管道底部迁移,最后稳定在大约管底(y/d=0.2)附近;在颗粒控制阶段的管道截面上,从管顶到管底同样分为三部分:靠近管顶(y/d=0.9-1)的属于“牛顿流体”的粘性底层,中间部分(y/d=0.1-0.9)和靠近管底(y/d=0~0.1)的“柱塞流”。
     陶瓷球和生物质半焦速度分布规律的研究得出下降管“Z”字形直管道长度在590mm范围内更加有利于换热。
     对生物质半焦颗粒停留时间研究发现,其受抽气量影响最大,陶瓷球粒径次之,基本不受混和质量比例的影响。颗粒停留时间的研究为管道总长度的设计提供数据支持。
     根据倾斜下降管中生物质半焦和陶瓷球混合颗粒的流动现象及其运动规律,建立了描述下降管反应器颗粒混合流动规律的拉格朗日和欧拉总数学模型,并利用Fluent软件进行了数值模拟。
     在距入口90mm的截面上,实验和模拟的轴向时均速度分布符合较好;在距入口1190mm截面上,由于饱和夹带量的高估,使得实验和模拟的轴向时均速度分布符合较差。
Fast biomass pyrolysis is a popular international technology to process and utilize the biomass waste. The down flow tube reactor heated by ceramic balls solid heat carrier is a new type reactor for biomass pyrolysis and it has been patented in China. In a high heating rate, biomass becomes biomass-char (residual carbon) by fast pyrolysis, so the heat transfer occurs between the biomass-chars and ceramic balls in the reaction tube.
     In the down flow tube reactor, biomass pyrolysis is controlled not only by pyrolysis kinetics but also by the particle flow and heat transfer, so to study the law of biomass pyrolysis in the down flow tube reactor, it must be study the law of particle flow.
     The paper studied the principles of ceramic balls and biomass-char particles mixed flow behavior through experiments, theoretical analysis and numerical simulation in the 45°inclined down flow tube reactor, and revealed the movement mechanism of mixed granular. These studies would contribute to the design and increase system efficiency.
     In this paper, a 45°inclined down flow tube reactor cold experimental apparatus was designed, and the feeding system of the experimental devices were experimentally investigated, results show that the volume of feed and feeding time into a linear relationship, to satisfy the experimental needs. While establishing a camera automatic control system with mobile error of less than 1mm that makes the experiments more precise, convenient and fast.
     For the PIV system, the test results of a pipe with square cross-section are better than a circular pipe. So in this paper, a square, semicircle and a semi circular-square channels were tested and the results showed that a square or semi circular-square tubes could not take place of a circular tube to do experiments in the down flow tube reactor.
     It studies the concentration distribution of mixed particles by the "flapper method" in the inclined down flow tube reactor, and obtains the concentration distribution of ceramic ball and biomass-chars particles. It provides data to support the determination of concentration distribution n in the particle collision model.
     Ceramic balls collision rate is studied by PTV combined with the "particle size analysis," PIV combined with the "direction of velocity discrimination law" and theoretical model of random collisions of particles of Sommerfeld and Oesterle proposed in the down flow tube reactor, and amend the random particle collision model according to the experimental values. Collision can calculate the heat transfer f·Q by the collision in biomass pyrolysis.
     Using fluorescence technique measured the velocity of ceramic balls in the cross-section of 690mm and 1190mm away from entrance and received the speeds, it proves the feasibility of this method.
     Axial mean velocity distribution of biomass-char were divided into three parts in the entire pipeline, the beginning section of the fluid control, transition section of particle/fluid control and the stable section of the particle control; radial mean velocity changed little.
     In the fluid control section, the axial mean velocity distribution of biomass-char is similar to the jet gas, the maximum speed in the center of the tube; with the decline in the distance increases, the role of particles in the pipe more and more obvious, the maximum speed position down, move to the bottom of the pipe, and finally stabilized at around the bottom of the tube (y/d=0.2); In the pipe cross-section of the particle control section, from the top to the bottom of the tube is also divided into three parts:near the top tube (y/d=0.9~1) is the viscous sublayer of "Newtonian fluid", the middle part (y/d=0.1~0.9) and close to the bottom of the tube (y/d=0~0.1) is the "plug flow."
     Studies of the ceramic balls and biomass-char velocity distribution show that the straight pipe length 590mm range is more conductive to heat.
     Residence time of biomass-char granular is affected most by the amount of exhaust, followed by the ceramic particle size, and largely unaffected by the mixed mass ratio. Studies of particle residence time provide data to support the design of the total length of the pipe.
     According to the flow phenomena and motion laws of ceramic ball and biomass-char in inclined down flow tube reactor, established general mathematical model of Lagrange and Euler to describe the mixed particles flow laws of the down flow tube reactor. Using Fluent to simulate flow laws of ceramic ball and biomass-char in inclined down flow tube reactor.
     At the cross-section of 90mm away from entrance, the axial mean averaged velocity distribution of the experimental is closer to the simulated; at the cross-section of 1190mm away from entrance, due to the amount of saturation entrainment is overestimated, making large differences between the experimental and simulated axial mean velocity distribution.
引文
1.毛宗强.2005.氢能--21世纪的绿色能源.北京:化学工业出版社出版发行,1-9.
    2.朱起煌等译.2004.世界能源展望2002.北京:中国石化出版社,1-8.
    3.罗运俊,何梓年,王长贵.2005.太阳能利用技术.北京:化学工业出版社,1-6
    4.吴创之,马隆龙.2003.生物质能现代化利用技术.北京:化学工业出版社,1-7
    5.包建中.1999.中国的白色农业.北京:中国农业出版社,1-9
    6.李俊峰.1999.中国可再生能源技术评价.北京:中国环境出版社,1-8
    7.苏亚欣,毛玉如等.2006.新能源与可再生能源概论.北京:化学工业出版社,1-6.
    8.袁振宏,吴创之,马隆龙等.2005.生物质能利用原理与技术.北京:化学工业出版社.1-10
    9. 王小孟,谭江林,陈金珠.2006.我国生物质能源开发利用的现状.江西林业科技,5:45-57.
    10.宋春财,王刚,胡浩权.2004.生物质热化学液化技术研究进展.太阳能学报.25(2):242-246.
    11.易维明,柏雪源,李志合等.2004.玉米秸秆粉末闪速加热挥发特性的研究.农业工程学报,20(6):246-250.
    12.易维明,柏雪源,李志合等.2003.利用层流炉研究玉米秸秆粉末的快速热解特性.可再生能源,5(1]1):7-11.
    13.修双宁.2006.生物质闪速热解挥发特性的研究.北京:中国农业大学.
    14.赵建辉.2006.生物质快速热解液化传热模型与试验研究.重庆:重庆大学.
    15. Jaccques Lede.Francois.2007. Fatou-Toutie Ndiaye.Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor.Fuel 86:1800-1810.
    16.修双宁,易维明,李保明.2005.秸秆类生物质闪速热解规律的实验研究.太阳能学报,26(4):538-542.
    17.王鹏起,常建民,杜洪双等.2007.喷动流化床在生物质快速热解技术中的应用.北华大学学报(自然科学版),8(1):92-96.
    18.任铮伟,徐清,陈明强,等.2002.流化床生物质快速裂解制液体燃料.太阳能学报,23(14):462-465.
    19.王树荣,骆仲泱,董良杰等.2002.生物质闪速热解制取生物油的试验研究.太阳能学报,23(1):4-10.
    20.杨士春,刘荣厚.2005.流化床生物质快速裂解制液体燃料.河北建筑工程学院学报.23(2):1:4.
    21.米铁,陈汉平,高斌,刘德昌.2005.生物质的流化床热解实验研究.华中科技大学学报(自然科学版),2005,33(9):71-74
    22.董芃,齐国利,王丽,等.2005.生物质快速热解制取生物质油.太阳能学报,28(2):223-226.
    23.朱锡锋,郑冀鲁,陆强,郭庆祥,朱清时.2006.生物质热解液化装置研制与试验研究.中国工程科学,8(10):89-93.
    24.陆强,朱锡锋,李全新.2007.生物质快速热解制备液体燃料.化学进展,2007,19(7,8):1064-1071
    25.柳善建.2008.玉米秸秆粉在在流化床中热解规律的试验研究.山东淄博:山东理工大学.
    26.戴先文,周肇秋,吴创之,陈勇.2000.循环流化床作为生物质热解液化反应器的实验研究.化学反应工程与工艺,16(3):263-269
    27.戴先文,吴创之,周肇秋,等.2001.循环流化床反应器固体生物质的热解液化.太阳能学报,22(2):124-130.
    28.南占东,黄凤洪,杨湄,等.2007.导向喷动流化床生物质快速热解技术.生物质化学工程.41(5):62-66.
    29.刘荣厚,鲁楠,曹玉瑞.1997.旋转锥反应器生物质热解工艺过程及实验.沈阳农业大学学报,28(4):307-311.
    30.徐保江,李美玲,曾忠.1999.旋转锥式闪速热解生物质试验研究.环境工程,17(5):71-76
    31.曾忠.2002.生物质热解液化试验研究.应用科学学报,20(2):215-217.
    32.干述洋,谭文英,陈爱军.2000.用废弃生物质快速生产生物燃油新工艺及旋转锥式裂解装置设计.林业机械与设备,28(5):8-10.
    33.董治国,王述洋,曾其良.2003.ZSR-10生物质闪速热解转化生物油装置的研制.林业劳动安全,16(4):36-37.
    34.曾其良,王述洋,李滨.2005.转锥式生物质热解装置中热载体输送技术的研究.林业劳动安全,18(2):21-30.
    35.姜年勇,王述洋,2006.刘世锋.生物质快速热解装置主反应器的研究现状.林业机械与设备,34(8):]-23.
    36.孔繁霞.2005.流化床生物质热解液化的实验研究.山东淄博:山东理工大学.
    37.董良杰.1999.生物质热裂解制取生物油的研究.杭州:浙江大学.
    38. Reese J., Chen R.C., Fan L.S.1995. Three-dimensional particle image velocimetry for use in three-phase fluidization Exp. In fluids,Vol.19,pp:367-378
    39. Meinhart C.D., Prasad A.K., Adrian R.J.1993 A Parallel Digital Processor System for Particle Imaging Velocimetry Meas.Sci.And Tech.,Vol.4,pp:619-626
    40.赵晓东.2003.循环流化床气固两相流动特性PIV测试.浙江大学硕士论文,杭州:浙江大学.
    41.石惠娴.2003.循环流化床流动特性PIV测试和数值模拟.浙江大学博士论文,杭州:浙江大学.
    42. Dudder T.D., Meynart R., Simpkins P.G.1988. Full-field laser metrology for fluid velocity measurement, Optics and Lasers in Engineering,9:163-199.
    43. Adrain R.1991. Particle-imaging techniques for experimental fluid mechanism, Annu.,Rev.
    44.康琦,申功忻.1997.全场测速技术进展.力学进展,31(11):46-50.
    45. Adrian R J.1991. Particle-Imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics.23:261~304
    46.徐宣国.2004.PIV测试技术的原理与应用.西华大学硕士论文.
    47.刘玥,梁忠生,鲍锋.2010.粒子成像测速—非介入式全场技术.中国科技信息,13:37-38.
    48. Christian Willert, Markus Rafel, Jiirgen Kompenhans, Boleslaw Stasici, Christian Kdhler.1996. Recent applications of particle image velocimetry in aerodynamic research, Flow measuring instrument, Vol.7,No.3/4,pp:247-256.
    49.王勤辉,赵晓东,石惠娴等.2003.循环流化床内颗粒运动的PIV测试.热能动力工程,18(4):378-434.
    50.石惠娴,王勤辉,骆仲泱等.2002.PIV应用于气固多相流动的研究现状.动力工程,22(1):1589-1593.
    51.张东东,许宏庆,何枫.2003.气固两相射流瞬时速度场和浓度场的PIV研究.清华大学学报(自然科学版),43(11):1491-1494.
    52.熊霏,姚朝晖,郝鹏飞等.2004.冲击射流的PIV实验研究.流体力学实验与测量,18(3):68-72.
    53. Kaoru Miyazaki, Gang Chen, Fujio Yamamoto, Jun-ichi Ohta, Kiyoshi Horii.1999. PIV measurement of Particle motion in spiral gas-solid two-Phase flow. Experimental Thermal and Fluid Science, 19(2):194-203.
    54. TSUJI Y.1991. Numerical simulation of gas-solid two-phase flow in a vertical pipe. Gas-Solid Flows ASME,121(2):123-128.
    55.魏名山,马朝臣,李向荣等.2000.用PIV进行静电旋风除尘器流场的测定.北京理工大学学报,20(4):496-499.
    56.苏亚欣,赵丹,杨翔翔.2004.水平矩形管中气固两相流的PDA实验研究.热科学与技术,,3(3):219-223.
    57.张尔东,许宏庆,何枫.2003.气固两相射流瞬时速度场和浓度场的PIV研究.清华大学学报(自 然科学版),43(11):1491-1494.
    58.王吴利,王元.2005.Micro-PIV技术—例子图像测速技术的新进展.力学进展,35(1):1-2.
    59.王静,廖庆喜,田波平等.2007.高速摄影技术在我国农业机械领域的应用.农机化研究,1:184-185.
    60.许联锋,陈刚,李建中等.2003.粒子图像测速技术研究进展.力学进展,33(4):533-540.
    61. Diana T. Matonis.2000. Hydrodynamics simulation of a gas-liquid-solid fluidized bed, Illinois Institute of Technology, Thesis of the degree of Doctor of Philosophy in Chemical Engineering,5.
    62. Lackermeier U., Rudnick C, Werther J., Bredebusch A., Burkhardt H.2001. Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing, Powder Technology,114:71-83.
    63.易维明,张波涛.2005.水平携带床的粒子图像测试技术测试方案.山东理工大学学报(自然科学版),19(2):1-5.
    64.王洪涛,董治宝等.2004.风沙流中沙粒浓度分布的实验研究.地球科学进展,19(5):732-734.
    65. Changfu You, Hailiang Zhao.2004. Experimental investigation of interparticle collision rate in particulate flow. International Journal of Multiphase Flow 30:1121-1138.
    66. S. Fohanno, B. Oesterle.2000. Analysis of the effect of collisions on the gravitational motion of large particles in a vertical duct. International Journal of Multiphase Flow 26:267-292.
    67.李水清,严建华,张志霄等.2002.基于DPIV技术回转圆筒内颗粒流场可视化研究.中国电机工程学报,22(4):56-60.
    68.徐宏庆,何文奇,李良杰等.2003.应用PIV技术对气固两相流粒子浓度场的瞬时测量.流体力学实验与测量.17(3):53-56.
    69.王勤辉,赵晓东,石惠娴等.2003.循环流化床内颗粒运动的PIV测试.热能动力工程,18(4):379-381.
    70. Shi Huixian.2004. PIV measurement of particles movement in a circulating fluidized bed. Chemical Reaction Engineering and Technology,20(4):294-299.
    71. Shi Huixian, Wang Qinhui, Luo Zhongyang, etal.2005. PIV measurement on the effect of clusters on the gas-solid flow pattern in a circulating fluidized bed riser. Chinese Journal of Scientific Instrument, 26(6):582-586
    72. Zhengliang Liu, Ying Zheng, etal,2006.Stereoscopic PIV studies on the swirling flowstructure in a gas cyclone. Chemical Engineering Science,61:4252-4261.
    73. Medina A..1998. Velocity field measurements in granular gravity flow in a near 2D silo. Physics Letters A,250:111-116.
    74. Daniel A. Steingart, JamesW. Evans.2005. Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. Part I:experimental method and results. Chemical Engineering Science,60:1043-1051.
    75.蔡毅,赵海亮,由长福,等.2004.颗粒碰撞率的实验研究.工程热物理学报,25(6):974-976.
    76.高琼.2005.循环流化床内部颗粒流动特性的试验研究,浙江大学博士学位论文.
    77. Kaoru Miyazaki, Gang Chen, Fujio Yamamoto, Jun-ichi Ohta, Kiyoshi Horii.1999. PIV measurement of Particle motion in spiral gas-solid two-Phase flow. Experimental Thermal and Fluid Science. 19(2):194-203.
    78.罗玮,周孝德等.2006.P1V应用于气液两相流的研究现状.传感器与微系统,25(2):1-3.
    79.彭艳,暨穗等.2005.气固两相湍流射流的扩散PIV实验研究.锅炉制造,3:55-59.
    80.石惠娴,王勤辉等.2005.颗粒团影响循环流化床内气固流场的PIV测试.仪器仪表学报,26(6):582-583.
    81.高殿荣,郭明杰,李岩等.2006.变速搅拌混沌混合的PIV试验研究.机械工程学报.42(8):44-49
    82.张波涛.2005.水平携带床内部流动的PIV测量.山东淄博:山东理工大学.
    83.李志合,易维明,王娜娜.2006.水平携带床内玉米秸颗粒速度场的PIV实验研究.实验流体力 学,20(4):94-98.
    84.杨延强.2007.垂直管内颗粒流动的PIV测试.山东淄博:山东理工大学.
    85.殷哲.2009.管内陶瓷球与粉状生物质半焦颗粒流动特性的研究.山东淄博:山东理工大学
    86.王娜娜.2006.闪速加热条件下低灰分生物质热解挥发特性的研究.山东淄博:山东理工大学.
    87.刘珠伟.2010.层流炉内碳粉运动规律的研究及应用.山东淄博:山东理工大学.
    88.杨任刚,张东东等.2005.气固两相自由射流的瞬态流场研究.实验流体力学,19(1):23-25
    89.江涵,刘心洪,黄雄斌.2010用2D-PIV方法研究固-液方形搅拌槽内液相湍流.过程工程学报.10(1):1-8
    90.田立丰,易仕和,赵玉新等.2010.超声速光学头罩流场的PIV研究.实验流体力学.1:26-29
    91. Kato H., Nishino K., Shinshi A., Torii K.1995. Flow visualization and image processing of multiphase systems, ASME., FED-209:115-122.
    92. Kadambi J.R., Martin W.T., Amirthagancsh S., Wernet M.P.1998. Particle sizing using particle imaging velocimetry for two-phase flows. Powder technology.100:251-259.
    93.盛小伟,洛志远等.2009.颗粒材料上运动物体所受摩擦力的数值模拟.计算物理.26(3):403-406
    94. Chapman s.and Cowling T G.1970. The mathematical Theory of Non-Uniform Gases[M]. Cambridge: Univ. Press.3rd.
    95. Bagnold R A.1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, ser. A 225:49-63
    96. Bagnold R A.1956. The flow of cohesionless grains in flows. Phil. Trans. R. Soc. London, Ser. A 249: 235-297
    97. Bagnold R A.1966. The shearing and dilation of dry sand and the'singing' mechanism.. Proc. R. Soc. London, ser. A 295:219-232
    98. Bagnold R A.1973. The nature of salvation and of'ben-load' transport in water. Proc. R. Soc. London, ser. A 332:473-504
    99. Savage S B. and Jeffrey D J.1981. The stress censor in a granular flow at a high shear rates. J. Fluid Mech.,110:255-272
    100. Sinclair J L, Jackson R.1989. Gas-particle flow in a vertical pipe with particle-particle interaction. AIChE J,35(5):1473-1486
    101. Ding J, Gidaspow D.1990. A bubbling fluidization model using kinetic theory of granular flow. AIChE J,36(4):523-538
    102. Nieuwland J J, Annaland M V, Kuipers J A M, van Swaaij W P M.1996. Hydrodynamic modeling of gas/particle flows in riser reactors. AIChE J,42:1569-1582
    103. Tsuo Y P, Gidaspow D.1990. Computation of flow patterns in circulating fluidized beds. AIChE J, 36(6):885-896
    104. Ding J, Gidaspow D.1990. A bubbling fluidization model using kinetic theory of granular flow. AIChE J,36(4):524-538
    105. Enwald H, Feirano E, Almstedt A E.1996. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase Flow,22(suppl.):21-66
    106.77 Takahashi T.1980. Debris flow prismatic open channel. J. Hydi. Div., Proc. A,er. Soc. Civil Engrs., Vol.106, pp:381-396
    107. Ni Jinren and Wang Guangqian.1990. Some aspects of the mechanism of debris flow. In Hydraulics/Hydrology of Arid Lands. ed. By R. H. French. pp:422-427
    108. Ogawa s., Umemura h. and Oshima N.,1980. On the equations of fully fluidized granular materials. ZAMP. Vol.31:483-493
    109. Haff P K.,1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., Vol.134:401-430.
    110. Shen H H. and Ackermann N L.,1982. Constitutive relations for fluid-solid mixtures. J. Eng. Mech. ASCE. Vol.108:748-763.
    111. Shen H H.,1984. Stresses in a rapid flow of spherical solid with two sizes. Part. Sci. Technol. Vol.2:37-56.
    112. Babic M. and Shen H H.,1989. A simple mean free path theory for the stresses in a rapidly deforming granular material. J. Eng. Mech. ASCE. Vol.115:1262-1282
    113. Ogawa S.1978. Multitemperature theory of granular materials. In Proceedings US-Japan Seminars on Continuum-Mechanics and Statistical Approaches to Mechanical Granular Materials, Gukunjuntsu bunken Fukyukai. pp:208-217
    114. Johnson P C. and Jackson R..1987. Frictional-collisional constitutive relations for granular materials with application to plane shearing. J. Fluid Mech., Vol.176. pp:67-93
    115. 钱宁,万兆惠.1986.泥沙运动力学.科学出版社
    116. Hanes D M.1986. Grains flows and bed-load sediment transport: review and extension. Acra Mechanica. Vol.63. pp:131-142
    117. Shibata M. and Mei C C.1986. Slow paralled flows of a water-granular mixture under gravity. Part Ⅱ:example of free surface and channel. Acra Mechanica. Vol.63. pp:176-216
    118. 倪晋仁,王光谦等.1991.固液两相流的基本理论及其最新应用.科学出版社.
    119. Ahmadi G. and Ma D.1990. A thermodynamics formulation for dispersed multiphase turbulent flow(Ⅰ,Ⅱ). J. Multiphase Flow. Vol.2. pp:323-351
    120. 张政,谢灼利.2000.流体-固体两相流的数值模拟.化工学报,52(1):1-11
    121. Ge W, Li J.2003. Macro-scale phenomena reproduced in microscopic system-pseudo-particle model of fluidization. Chem. Eng. Sci,58(8):1565-1585
    122. 林江.2004.气力输送系统中加速区气固两相流动特性的研究.浙江大学学报(工学版),38(7):38-43.
    123. Tsujji Y, Kawaguchi T, Tanaka T.1993. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol,77(1):79-87
    124. Xu B H,Yu A B.1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computation fluid dynamics. Chem. Eng. Sci,52(16):2785-2809
    125. Mikami T, Kamiya H,Horio M.1998. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci,53(10):1927-1940
    126. Hoomans B P B, Kuipers J A M, Briels W J, van Swaaij W P M.1996. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized:A hard-sphere approach. Chem. Eng. Sci,51(1):99-108
    127. Ouyang J, Li J H.1999. Discrete simulation of heterogeneous structure and dynamics behavior in gas-solid fluidization. Chem. Eng. Sci,54(22):5427-5440
    128. Helland E, Occelli R, Tadrist L.2000. Numerical study of cluster formation in a gas-particle circulating fluidized bed. Powder Technol,110(30):210-221
    129. Tsujji Y, Tanaka T, Yonemura S.1998. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technol,95(3): 254-264
    130. Toomey R D, Johnstone H F.1952. Gaseous fluidization of solid particles. Chem. Eng. Prog,48(5): 220-226
    131. Davidson J F, Clift R, Harrison D.1985. Fluidization.2nd ed. London:Academic Press
    132. Grace J R, Clift R.1974. On the two-phase theory of fluidization. Chem. Eng. Sci,29(2):327-334
    133. 贲洪玲,刘繁明.1997.一种步进电机的微机控制方法.微处理机,(115)
    134. 郝鸿安.1991.3-4相步进电机控制器5G8713.电子技术,(8):325-627.
    135. 董里扬.2007.浅谈步进电机的工作原理.科技信息,(8)
    136. 朱力.2003.PLC控制步进电机方法的研究.山西机械
    137. 钟肇新,彭侃.2000.可编程控制器原理及应用.广州:华南理工大学出版社
    138. 王啸东,阚子振.2009.PLC控制步进电机应用系统设计.实用科技:234.
    139. 毛广卿.2003.粮食输送机械与应用,北京:科学出版社,264-266
    140. 殷哲,易维明,李志合等.2009.陶瓷球颗粒在圆形漏斗中下落速度的PIV研究.应用与环境生物学报,15(3),437-440.
    141. Adrianr R J.1986. Multi-point optical measurement of simultaneous vectors in unsteady flow—a review[J]. International Journal of Heat and Fluid Flow,7(2):127-130.
    142. 何旭.1999.用于柴油机缸内流场的PIV图像处理系统.大连:大连理工大学
    143. Willert C E, Gharib M.1991. Digital particle image velocimetry. Experiments in Fluids, 10:181-193.
    144. Tina Ehrman.1994. Standard Method for Ash in Biomass. Chemical Analysis and Testing Task Laboratory Analytical Procedure,4(28):3-5.
    145. 王丽红.2004.生物质闪速热解挥发特性的研究与生物油的组分分析.山东淄博:山东理工大学
    146. 何芳.2004.生物质热解液化过程分析及实验.上海:上海理工大学.
    147. 潘丽娜.2004.生物质快速热解工艺及其影响因素.应用能源技术,2(总第86期):7-9.
    148. 丁福臣,迟姚玲,易玉峰.2007.生物质热解液化技术及其产物利用的研究进展.北京石油化工学院学报.15(2):44-48.
    149. 刘荣厚,张春梅.2004.我国生物质热解液化技术的现状.可再生能源,3(总第115期):11-13.
    150. 张琦,常杰,王铁军,徐莹.2006.生物质裂解油的性质及精制研究进展.石油化工,35(5):493-498.
    151. Bridgwater A.V, Peacocke G.V.C.1999a. Principles and practice of biomass fast pyrolysis process for liquids. Journal of Analytical Applied Pyrolysis,51:3-33
    152. Bridgwater A.V, Peacocke G.V.C.2000b.Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews.4:1-73.
    153. Tsai W.T, Lee M.K., Chang Y.M.2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell inan induction-heating reactor. J. Anal. Appl. Pyrolysis.76:230-237
    154. Colomba Di Blasi.2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science,34:47-90.
    155. James E. Helt and Ravindra K. Agrawal.1998. Liquids from municipal solid waste. ASC symposium series 376:77-99.
    156. Ozlem Onay, Mete O.Kockar.2003. Slow, fast and flash pyrolysis of rapeseed.Renewable Energy, 28(15):2417-2433
    157. Chen G, Andries J, Luo Z, Spliethoff H.2003.Biomass pyrolysis/gasification for product gas production:the overall investigation of parametric effects.Energy Conversion and Management,44 (11):1875-1884.
    158. Parihar M.F.,Kamil M., Goyal H.B., etal.2007. An Experimental Study on Pyrolysis of Biomass.
    159. 刘荣厚,王华.2006.生物质快速热解反应温度对生物油产率及特性的影响.农业工程学报,22(6):138-143.
    160. 柏雪源,易维明,王丽红.等.2005.玉米秸秆在等离子体加热流化床上的快速热解液化研究.农业工程学报,21(12):127-130.
    161. 李志合,易维明,李永军.2007.等离子体加热流化床反应器的设计与实验.农业机械学报,38(4):66-69.
    162. 郑水华.2004.气固两相圆湍射流拟序结构的PIV测试及研究.杭州:浙江大学.
    163. 何旭,高希彦,梁桂华等.2003.基于互相关算法的粒子图像测速技术.大连理工大学学报,43(2): 164-167.
    164. 翁文国,廖光煊,王喜世.1999.基于互相关的DPIV图像诊断方法研究.实验力学,14(3):323-329.
    165. 赵宇.2004.PIV测试中示踪粒子性能的研究.大连:大连理工大学.
    166. 许联峰.2004.一种改进的PIV互相关算法.水力发电学报,23(4):74-78.
    167. 杨小林,严敬.2005.PIV测速原理与应用.西华大学学报·自然科学版,24(1):19-22.
    168. 刘荣厚,栾敬德.2008.榆术木屑快速热解主要工艺参数优化及生物油成分的研究.农业工程学报,24(5):187-190.
    169. Ozlem Onay.2007. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology,88 (5):523-531.
    170. Liu Ronghou, Niu Weisheng, Yu Xiaofang, etal.2003 Effects of biomass fast pyrolysis key parameters on yields and distributions of products. Transaction of CSAE,19(5):204-208
    171. Tanaka T., Tsuji Y.,1991. Numerical simulation of gas-solid two-phase flow in a vertical pipe:On the effect of inter-particle collision. In:Stock et al. Gas-Solid Flows, ASME Vol.121:121-128.
    172. M. Sommerfeld.,2001. Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence. J. Multiple. Flow. Vol.27:1829-1858.
    173. S. Fohanno, B. Oesterle,2000. Analysis of the effect of collision on the gravitational motion of large particles in a vertical duct. J. Multiple. Flow. Vol.26:267-292.
    174. Wen CY, Chang TM.1967. Particle to particle heat transfer in air fluidized beds. Proceedings of International Symposium on Fluidization,edited by drinken-burg, A.A.H. Eindhoven, Part2,491-506.
    175.刘安源.2002.流化床内流动、传热及燃烧特性的离散颗粒模拟.中国科学院工程热物理研究所博士学位论文.
    176. 刘安源,刘石.2003.流化床内颗粒碰撞传热的理论研究.中国电机工程学报,23(3):161-165.
    177. 蔡毅,由长福,祁海鹰等,2003.颗粒碰撞频率的实验研究.中国工程热物理学会,2003年学术会议,中国工程热物理学报,pp:409-413
    178. 赵海亮,由长福,祁海鹰等,2004.颗粒碰撞率的实验研究.中国工程热物理学会,2003年学术会议,中国工程热物理学报,pp:352-356
    179. 何芳,易维明等.2003.固体热载体和生物质粉沿倾斜管流动和传热的计算.农业工程学报,11(6):190-193.
    180. Wen C Y, Yu YH.1966. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser,62(62):100-111
    181. Schiller V L, Naumann A.1933. Uber die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z. Ver. Dtsch. Ing,77:318-320
    182. 岑可法,樊建人.1990.工程气固多相流动的理论及计算.杭州:浙江大学出版社
    183. 李静海,欧阳洁等.2005.颗粒流体复杂系统的多尺度模拟,北京:科学出版社,pp:328
    184. Li J, Kwauk M.1994. Particle-Fluid Two-Phase Flow:The Energy-Minimization Multi-Scale Method. Beijing:Metallurgical Industry Press
    185. Li J, Kwauk M, Reh L.1992. Role of energy minimization in gas/solid fluidization. In:Potter O E, Nicklin D J, ed. Fluidization VII. New York:United Engineering Foundation,83-91
    186. 韩占忠,王敬,兰小平编.2008FLUENT:流体工程仿真计算实例与应用,北京:北京理工大学出版社,PP:19-26
    187. 于勇主编.2008FLUENT入门与进阶教程,北京:北京理工大学出版社,pp:154-159
    188. 江帆,黄鹏编著.2008.Fluent高级应用与实例分析.北京:清华大学出版社,140-170
    189. 温正,石良臣,任毅如编著.2009FLUENT流体计算应用教程.北京:清华大学出版社,1-15
    190. 韩占忠编.2009Fluent-流体工程仿真计算实例与分析.北京:北京理工大学出版社,pp:1-3
    191. Yang N, Wang W, Ge W, Li J.2003.Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow. China Particuology,1(1):38-41
    192. Gidaspow D.1994. Multiphase Flow and Fluidization:Continuum and Kinetic Theory Description. Boston:Academic Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700