用户名: 密码: 验证码:
新型复合人字形板式换热器传热与流动理论分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前中国正面临着环境污染、能源紧张和节能减排的多重压力,能源供应成为制约我国经济发展的瓶颈。因此如何有效的利用能源和节约能源成为保证国民经济不断向前发展的重要因素。板式换热器作为一种传热性能优越的热动力元件,广泛的应用于石油、化工、动力、制冷和食品加工等行业,因此研究强化传热技术、开发新型的、紧凑的、高效的板式换热器,提高板式换热器的换热性能,减少换热过程中的能量损失,具有十分重要的意义。本文提出了一种新型复合人字形板式换热器,采用理论分析、数值模拟及实验研究相结合的方式对其换热特性和阻力特性展开了研究。
     首先,依据一定假设对板式换热器进行简化,建立了完整流道的板式换热器模型,在考虑介质流体物性变化和流体与固体耦合换热的基础上,使用RNG k-ε湍流模型、换热面网格加密技术、边界层网格技术及GGI(general grid interface)网格链接技术,模拟分析了1-1程三流道板式换热器模型。通过对数值模拟结果的分析,得到了包括:大小波纹比例、波高、波纹密度及波纹倾斜角度在内几个重要几何参数对复合人字形板式换热器流动与传热特性的影响规律;同时讨论分析了复合人字形板式换热器流道内介质流动形态、速度分布、压力分布、和温度分布以及换热面的温度分布和热流分布情况。
     基于场协同原理,综合考虑速度场、温度场及压力场三场的协同性,分析了波纹倾斜角度对新型复合人字形板式换热器的协同性影响,结果显示:波纹倾角在30°-70°范围内,倾角为30。的复合人字形板式换热器三场协同性最佳。
     根据(?)耗散原理,定义了评价换热器性能的(?)耗散均匀性系数。火积耗散均匀性系数代表换热器内(?)耗散分布情况,当换热器内(?)耗散分布均分时,换热器总的(?)耗散最小;同时定义了(?)耗散的分配率,其代表换热器内由温差引起(?)耗散与由阻力引起(?)耗散之间的比例关系。复合人字形板式换热器的(?)耗散均匀性和(?)耗散分配率分析结果表明:在对流换热过程中(?)耗散与系统有用能损失存在对应关系,火积耗散最小意味着系统有用能损失最少;同时(?)散与系统(?)耗散均匀性也存在对应关系,系统(?)耗散越均匀意味其(?)耗散越小,即系统有用能损失最少。随着雷诺数的增加,在总的(?)耗散中,由阻力引起的(?)耗散比重逐渐增大。
     通过建立复合人字形板式换热器实验系统,对复合人字形板式换热器进行了水-水及油-水实验研究,得到了流体在这种换热器内的换热准则方程和流动特性方程。实验结果和数值模拟结果均表明:复合人字形板式换热器的综合性能与传统人字形板式换热器相比优势明显。
     最后,本文研究了复合人字形板式换热器内的气液两相流动与传热,给出了不同蒸汽入口速度和蒸汽入口体积含气量的影响规律。
At present, China is facing multiple pressures of environmental pollution, energy shortages, energy saving and emission reduction, energy supply has become a bottleneck to restrict China's economic development. So, how efficiently use energy and save energy as an important factor to ensure that the national economy develops ahead ceaselessly. As a thermal power device, plate heat exchangers have been widely used in the fields of petroleum, chemical, power, refrigeration and food processing etc. And then enhanced heat transfer, efficient and energy-save technologies, product applications had been paid a great deal of attention. The novel Plate Heat Exchangers (PHE) was proposed, in this paper, methods integrating theoretical analysis, numerical simulation and experiment are adapted to research heat transfer mechanism and performance of double chevron-type PHE.
     The mathematical model of full-channel is established in cylindrical coordinates based on some simplifications of actual PHE. Viscosity and thermal conductivity dependence on temperature of working fluid is considered. Fluid and solid coupling heat transfer in PHE is considered. RNG k-s turbulence model, Mesh refinement, Boundary layer mesh and general grid interface (GGI) technologies are considered. Through numerical studies in three different4-plate PHE, a fact that the corrugation's geometry parameters(corrugation ratio, corrugation depth, corrugation density and corrugation inclination angle) can markedly influence the performance of double chevron-type PHE has been found, the law of geometry parameters influence the performance has been found out; at the same times, fluid medium's flow pattern, velocity distribution, pressure distribution, the temperature distribution in channel of double chevron-type PHE, as well as, temperature distribution and heat flux distribution in heat transfer surface are discussed, respectively.
     Based on Field Synergy theory, relationships of synergy between velocity field, temperature field and pressure field in heat exchangers are considered. According to the analysis results of double chevron-type PHE between different corrugation inclination angles shows that double chevron-type PHE with30°corrugation inclination angle was best synergy.
     Based on Enransy Dissipation theory the factor of equipartition of entransy dissipation and the distribution ratio of entransy dissipation were defined, the factor of equipartition of entransy dissipation can be employed to evaluate entransy dissipation distribution, namely the total entransy dissipation reaches the minimum when the local entransy dissipation is uniformly distributed in the heat exchangers, the distribution ratio of entransy dissipation represents the ratio of entransy dissipation for heat transfer to entransy dissipation for viscous flow in heat exchangers. By numerical simulation results to the factor of equipartition of entransy dissipation and the distribution ratio of entransy dissipation, relationships between available energy loss, entransy dissipation and equipartition of entransy dissipation were found, namely the available energy loss is the minimum when the total entransy dissipation reaches the minimum as local entransy dissipation is uniformly distributed in the heat exchangers. In addition, entransy dissipation for viscous flow increases as Reynolds number.
     The experiment system of investigating the performance of double chevron-type PHE has been set up. The Heat transfer equations and flow resistance equations of characteristic number have been acquired by water to water and oil to water heat exchanging experiments investigating to double chevron-type PHE. Results show that comprehensive performance of double chevron-type PHE is much better than that of traditional chevron PHE. The numerical method was validated by experiment data.
     Finally, numerical analysis for the gas-liquid two phase flow is performed and law of inlet velocity and volume content of stream influence the performance have been found out.
引文
1.史美中,王中诤.热交换器原理与设计.南京:东南大学出版社,1996.
    2.隆德.半焊式板式换热器在制冷系统中的应用和发展.制冷学报.2003(2):27-31.
    3. Wagner, R. L, Sjogren,S. Optimizing Heat Exchanger Design for Crude Oil Stabilization. Chemical Engineering,1985(1):46-51.
    4. Panchal C. B. Condensation Heat Transfer in Plate Heat exchangers. Two— Phase Heat Exchanger Symposium.1985,44:45-52.
    5. Gillham M. W. H. New Composite Material for Plate Heat Exchangers. Materials & Design.1988,9(4):192-194.
    6. Sjogren S, Gruerio W. Applying Plate Heat Exchangers in Hydrocarbon Processing. Hydrocarbon Processing.1983,62(9):133-136.
    7. Jonsson I. Plate Heat Exchangers as Evaporators and Condensers for Refrigerants. Air Conditioning and Heating,1985,39(9):30-35.
    8. Kumar H. Evaporation in Plate Heat Exchangers. AIChE Symposium Series, 1993,89:211-222.
    9. Polat S, Manglik R M, and Wilkins, R. L. Forced Convective Boiling of a Non-Newtonian Liquid in a Multipass Plate Heat Exchanger. AIChE Symposium Series.1993,89:230-235.
    10. Cooper A. Recover More Heat with Plate Heat Exchangers. Chemical Engineering.1974,285:280-285.
    11. Lawry F. J. Versatile, Flexible and Easy-to-Operate Plate Type Heat Exchangers Give Increased Heat Flux. Chemical Engineering.1959,66(13): 89-94.
    12. Shah, R. K, Focke W. W. Plate Heat Exchangers and Their Design Theory in Heat Transfer Equipment Design. Hemisphere Publishing, Washington, 1988(4):149-176.
    13. Raju K. S. N, and Bansal J. C. Plate Heat Exchangers and Their Performance in low Reynolds Number Flow Heat Exchanger. Hemisphere Publishing, Washington.1983, (4):899-912.
    14.杨崇麟.板式换热器工程设计手册。北京:机械工业出版社,1994:1.5.
    15.兰州石油机械研究所编译.板式换热器.化工设备设计专业中心站. 1968.
    16. APV. Heat transfer handbook. APV.1986.
    17. R. L. Warnger. Optimizing heat exchanger design for crude oil stabilization. CEP.1985.
    18.日阪制作所(HISKA WORKS LTD)《换热板,基本操作》
    19.朱曾用.板式换热器的国内外概况:动态,进展与展望制冷.1990,(3):34—38.
    20.赵镇南.板式换热器人字波纹倾角对传热及阻力性能影响.石油化工设备,2001,5:2,3.
    21.赵镇南,王中铮.板式换热器中水蒸汽的冷凝阻力特性.高等学校工程热物理研究会会议论文集.西安:西安交大出版社,1990.
    22.王中铮,王艳,郭新川.复杂结构流道中汽一液两相凝结流动压降研究.天津大学学报.1993(6).
    23.赵镇南,郝睿.管内与波纹板通道内冷凝传热与压降关联式.石油化工设备.2004(3):51-55.
    24.赵镇南.流量非均匀分布对板式换热器传热器传热性能的影响.石油化工设备,2003.5:20-32.
    25.邓先和,王杨君,黄德斌,张亚君.来流不均匀分布对换热器传热的影响.华南理工大学学报.2004(2):1-3.
    26.许淑惠,周明连.板式换热器进出口流道内的压力分布、流阻及流型显示的试验研究.节能,1996,8,12-15.
    27.周明连.板式热交换器流动分布的理论分析与实验研究.北方交通大学学报,2001,25(1):67-71.
    28.过增元,周维强,布卫红.来流温度不均匀时叉流换热器的热分析.工程热物理学报.19s5(2):66-68.
    29.周森泉,过增元,胡桅林,李志信.来流温度速度不均匀时换热器效能的分析.工程热物理学报.1994(4):403-407.
    30.罗棣庵,焦芝林,顾传宝.超低流阻板式换热器的实验研究.工程热物理。学报.1987(3):264-267.
    31.罗棣庵,龚茂勤.人字波纹和百叶窗连续翅片管束内传热、流阻和流型的研究.工程热物理学报.1990(1):69-71.
    32.过增元,庄文红.对流换热的物理机制分析及其应用.工程热物理学学报.1992(1):52.56.
    33.张力,谷操,顾维藻,刘文艳.连续型与打孔型波纹传热表面热力性能 试验研究.工程热物理学报.工程热物理学报.2001(增刊):97.100.
    34.陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用.科学通报.2008(4):489-492.
    35.胡峰新.新型均流板式换热器的开发.石油化工设备1995,24(4).33,34.
    36. GUO Z Y, LI D Y, WANG B X. A Novel Concept for convective Heat Transfer Enhancement. Int. J. Heat Mass Transfer,1998,41:2221-2225.
    37. Guo Zengyuan, Zhu Hongye, Liang Xingang. Entransy- a physical quantity describing heat transfer ability. Int. J. Heat Mass Transfer,2007,50: 2545-2556.
    38. Cheng Xinguang. Entransy and its applications in heat transfer optimization. Beijing:Tsinghua University,2004.
    39.詹宗勉,袁金良,潘延龄.评价板式换热器传热及流阻综合性能的方法工程热物理学报.1992(4):400-403.
    40.熊大曦,李志信,过增元.换热器的效能及熵产分析.工程热物理学报.1997(1):90-94.
    41. Guo, Z. Y, Zhou, S. Q., Li, Z. X., and Chen, L. G, Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger, International Journal of Heat and Mass Transfer,45, pp.2002,2119-2127.
    42.商建平;俞树荣.板式换热器遗传算法优化设计.石油化工设备.2002(9):51-55.
    43.黄秀琴.板式换热器波纹通道内流动与传热的数学模型及其求解.彭城职业大学学报.1999(4):56-58.
    44.景步云,谷波,黎远光.板式蒸发器仿真计算模型.系统仿真学报,2003,15(10):1481-1483.
    45.杨勇.数值传热学在波纹式换热器上的应用.华北电力技术,1999,10,27-29.
    46.黄秀娟.板式换热器中流体的流动状况与传热机理分析.辽宁高职学报.2001(3):44.49.
    47. Sharifi, F., M. R. Golkar Narandji, et al. (1995). Dynamic simulation of plate heat exchangers. International Communications in Heat and Mass Transfer 22(2):213-225.
    48.吴华新.空气-水介质板式换热器流动与传热特性研究.哈尔滨工程大 学博士学位论文.2009年6月.
    49.戴传山.板式换热器板型研究及设计初探.区域供热.1995(6):8-10.
    50.常春梅.新型非对称网状导流板式换热器.石油化工设备.2001(5):51-66
    51.雷国庆,张治川.板式换热器波纹板片设计.石油化工设备.2003(5):32,33
    52.刘艳,何国庚,赖学江.板式换热器板型尺寸对换热性能影响的探讨.制冷.2003(2):65-68.
    53.倪晓华,夏景清,萧渊.板式换热器的换热与压降计算.流体机械.2002(3):22-32.
    54.吴继臣,+陈晓杰.板式换热器热力简化计算的精度分析.哈尔滨建筑大学学报.1999(2):50-53.
    55.徐百平,吴雪.超低流阻板式换热器强化传热研究.石油化工设备.2000(1):4-6.
    56.刘志军,史启财,刘凤霞.新型板换热器的传热性能和阻力降特性研究.化工机械.2002(2):63-65.
    57.胡跃明,董玉军,周翔,包涛,袁秀玲.人字型波纹板式蒸发器数值模拟.制冷与空调.2005(2):42-46.
    58.徐向华,梁新刚,任健勋.空气冷凝换热器模拟中几个问题的研究.工程热物理学报.2005(6):1131-1033.
    59. Delplace, F., J. C. Leuliet, et al. (1997). A reaction engineering approach to the analysis of fouling by whey proteins of a six-channels-per-pass plate heat exchanger. Journal of Food Engineering 34(1):91-108.
    60.曲宁.板式换热器传热与流动分析.山东大学硕士学位论文.2005:5-12.
    61.蔡毅,贾志刚.板式换热器性能的数值模拟和实验研究.北京化工大学硕士学位论文.2008:6-12.
    62.谷芳,刘春江,袁希钢,余国棕.倾斜波纹板上液膜流动的CFD研究.化工学报.2005(3):462-467.
    63.师晋生.波纹壁面降膜过程的一种近似模型.工程热物理学报.2006(2):310-312.
    64.何庆琼,田茂城.复合波纹板式换热器换热与阻力特性研究.山东大学硕士学位论文.2007.
    65.师晋生,刘瑞,陈东,刘振义.波纹竖壁下降液膜的传热.天津科技大学学报.2006(2):39-42.
    66.刘研,.玄哲浩,王永珍,崔淑琴.换热器传热和阻力特性的实验研究.实 验技术与管理.2005(5):90-99.
    67.郭荣春.板式换热器测试系统研究.哈尔滨工业大学硕士学位论文.2006:8-12.
    68.张海泉.板式换热器热工与阻力性能测试及计算方法研究。哈尔滨工业大学硕士学位论文.2006:10-17.
    69.张明艳.换热器性能测试系统的设计与开发.兰州理工大学工程硕士学位论文.2006:6-12.
    70.马学虎,林乐,兰忠.低Re下板式换热器性能的实验研究及热力学分析.热科学与技术.2007(3):38-43.
    71. W. W. Focke. The Effect of the corrugation inclination angle on the thermo hydraulic performance of plate heat exchangers. Heat Mass Transfer.1985, 28(8):1469.
    72. Muley,A, Manglik, P. M. Experimental Study of Turbulent Flow Transfer and Pressure Drop in a plate Heat Exchanger with Chevron Plates. Journal of Heat Transfer.1999,121(1):110-117.
    73. Reinhard Wiirfel, Nikolai Ostrowski. Experimental investigations of heat transfer and pressure drop during the condensation process within plate heat exchangers of the herringbone-type. International Journal of Thermal Sciences,2004,43(1),59-68.
    74. Yasar Islamoglu, Cem Parmaksizoglu. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Applied Thermal Engineering.2003,23(1):979-987.
    75. D. Dovic, B. Palmb, S. Svaic. Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry. International Journal of Heat and Mass Transfer.2009, (52): 4553-4563.
    76. Manglik R M, Ding J. Laminar flow heat transfer to viscous power-law fluids in double-sine duets. International Journal of Heat and Mass Transfer.1997(6):vol.40,1370-1390.
    77. Metwally H M, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated —plate channels. International Journal of Heat and Mass Transfer. 2004(10-11):Vol.47,2283-2292.
    78. L K Wang, B Sunden. Optimal design of plate heat exchangers with and without pressure drop specification. Applied, Thermal Engineering.2003: vol.23295-311.
    79. Wang L K. Performance analysis and optimal design of heat exchangers and heat exchanger networks. Doctoral Thesis:Lund Institute of Technology. Sweden,2001.
    80. Wang L K, Sunden B. On plate heat exchangers in heat exchanger networks.34th National Heat Transfer Conference. Pittsburgh, USA.2000: 12150-12166.
    81. G N Xie, B Sunden, Q W Wang. Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering.2008(8-9):V01.28, 895-906.
    82. Cooper, A. Condensation of steam in Plate Heat Exchangers. AlChe Symposium series, Vol.70, No.138, AIChE, New York,172-177.
    83. Kwan-Soo Lee, Woo. Seung Kim, Jong-Min Si. Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger. International Journal of Heat and Mass Transfer.2001(44):3223-3231.
    84. P.Vlasogiannis, G. Karagiannis. P.Argyropoulous, V. Bontozoglou. Air-water two-phase flow and heat transfer in plate heat exchanger. International Journal of Multiphase Flow.2002(28):757-772.
    85. Asano H, Takenaka N, Fuji T, Maeda N. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger. Applied Radiation and Isotopes.2004(61):707-713.
    86. Dast S K, Roetzel W. Second law analysis of a plate heat exchanger with an axial dispersive wave. Cryogenics.1998(8):791-798.
    87. Awadhi E M. Forced Convection Flow in a Wavy Channel With a Linearly Increasing Waviness at the Entrance Region. ASME Journal of Heat Transfer.2009(1):V01.131,01 1703.
    88. Blomerius H, Holsken C, Mitra N K. Numerical investigation of flow field and heat transfer and in GLOSS—corrugated ducts. Int. J. Heat Transfer. 1999:V01.121,314-21.
    89. Blomerius Hm Mitra N K. Numerical investigation of convective heat transfer and pressure drop in wavy ducts. Numerical Heat Transfer, Part A. 2000:VOl.37.37-54.
    90. Sarikaya O, Islamoglu Y, Celik E. Finite element modeling of the effect of the ceramic coatings 011 heat transfer characteristics in thermal barrier applications. Materials&Design.2005(5):V01.26,357-362.
    91. Stasiek J, Ciofalo M, Smith I K Collins M W. Experimental and analytical studies of fluid flow and c Ill; IOSS corrugated·undulated heat exchangers surfaces. Proe. lOlh Int. Heat Transfer Conference, Brighton:1994:V01.6, 103-109.
    92. Stasiek J, Ciofalo M, Collins M W, Chew P E. Investigation of flow and hem transfer in corrugmed Passages-I. Experimental simulmions. Int. J. Hem Mass Transfer.1996(1):V01.39,149-192.
    93. Croce G, Agmo. P D. Numerical analysis of forced convection in plate and frame heat exchangers. International Journal of Numerical Methods for Heat & Fluid Flow.2002(6):V01.12,756-771.
    94. Croce G, Agaro P D. Numerical analysis of roughness effect on micro tube heat transfer Super lattices and Microstructures.2004(3-6):V01.35, 601-616.
    95. Agaro P D, Cortella G, Croce G. Two and three dimensional CFD applied to vertical display cabinets simulation. International Journal of Refrigeration. 2006(2):V01.9,178-190.
    96. Croee G, Agaro P, Nomno C. Three-dimensional roughness effect on micro channel heat transfer and pressure drop. International Journal of Heat and Mass Transfer.2007(25-26):V01.50,5249-5259.
    97. G Croce, P D Agaro. Compressibility and rarefaction effect on heat transfer in rough micro channels. International Journal of Thermal Sciences. 2009(2):Vol,48.252-260.
    98. Ciofalo M, Di Piazza 1, Stasiek J A. Investigation ofFlow and Heat Transfer in Corrugated—undulated Plate Heat Exchangers Heat and Mass Transfer/Waerme—und Stoffuebertragung, v36, n5, Sep,2000,449-462.
    99. Femandes C S, Dias P IL Laminar flow in chevron-type plate heat exchangers:CFD analysis of tortuosity shape factor and friction factor. Chemical Engineering and Processing.2007(9):VOL 46,825-833.
    100. Olaf S. A general calculation method for plate heat exchangers. International Journal of Thermal Sciences.2000(39):645-658.
    101. A.B. Datta, A.K. Majumdar, A calculation procedure for two phase flow distribution in manifolds with and without heat transfer, Int. J. Heat Mass Transfer 26 (9) (1983) 1321-1327.
    102. A.K. Majumdar, Mathematical modeling of flows in dividing and combining floe manifold, Appl. Math. Model.4 (1980):424-432.
    103. R.A. Bajura, E.H. Jones Jr., Flow distribution manifolds, Trans. ASME J. Fluids Eng.98 (1976) 654-666.
    104. M.K. Bassiouny, H. Martin, Flow distribution and pressure drop in plate heat exchangers-I, U-type arrangement, Chem. Eng. Sci.39 (1984) 693-700.
    105. B. Prabhakara Rao, Sarit K. Das, Effect of the flow distribution to channels on the thermal performance of the multipass plate heat exchangers, Heat Transfer Eng.25 (8) (2004) 48-59.
    106. A.R. Khan, N.S. Baker, A.P. Wardle, The dynamic characteristics of counter current plate heat exchanger, Int. J. Heat Mass Transfer 31 (6) (1987) 1269-1278.
    107. Sarit K. Das, W. Roetzel, Dynamic analysis of plate heat exchangers with dispersion in both fluids, Int. J. Heat Mass Transfer 38 (1995) 1127-1140.
    108. Sarit K. Das, B. Spang, W. Roetzel, Dynamic behaviour of plate heat exchangers—experiments and modeling, ASME J. Heat Transfer 117 (1995) 859-864.
    109. Sarit K. Das, K. Murugeasan, Transient response of multipass plate heat exchangers with axial thermal dispersion in fluid, Int. J. Heat Mass Transfer 43 (2000) 4327-4345.
    110. W. Roetzel, C. Na Ranong, Consideration of maldistribution in heat exchangers using the hyperbolic dispersion model, Chem. Eng. Process.38 (1999)675-681.
    111. N. Srihari, B. Prabhakara Rao, Sarit K. Das, B. Sunden, Transient response of plate heat exchangers considering effect of flow maldistribution, Int. J. Heat Mass Transfer 48 (2005) 3231-3243.
    112. Y. Xuan, W. Roetzel, Dynamics of shell and tube heat exchangers to arbitrary temperature and step flow variations, AIChE J.39 (1993) 413-421P.
    113. Koen Crijspeerdt, Birinchi Hazarika, Dean Vucinic. Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for mill processing. Journal of Food Engineering.2003(57): 237-242.
    114. Gut J A W, Femandes R, Pinto J M, TadiniC C. Thermal model validation of plate heat exchangers with generalized Configurations. Chemical Engineering Science.2004:V01 59,4591-4600.
    115. Gut JAW, Pinto J M. Modeling of plate heat exchangers with Generalized eonfigumtiom. International Journal of Heat and 1 Mass Transfer.2003(14): V01 46,2571-2585.
    116. Gut J A W, Pinto J M. Optimal configuration design for plate heat exchangers. International Journal of Heat and Mass Transfer 2004(22): 135V01.47,4833-4848.
    117. Gut J A W, Pinto J M. Optimal design of continuous sterilization processes with plate heat exchangers. Computer Aided Chemical Engineering. 2005(1):V01.20,919-924.
    118.余德平.数值模拟技术的发展现状.勘探地球物理进展,2003.6:407-412,422.
    119. Markatos N C. Computational fluid flow capabilities and software. Ironmaking Steelmaking,1987,16(4):266-273.
    120.张冠敏.复合波纹板式换热器强化传热机理及传热特性研究.山东大学博士毕业论文,2006,4.
    121. Islamoglu, Y. and C. Parmaksizoglu. Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel. Applied Thermal Engineering 24(1):141-147.
    122.翁荣周.传热学的有限元方法.2000年10月第1版.科学出版社.1981.
    123.李人宪.有限体积法基础.国防工业出版社.2008.
    124.蓝少健,朱冬生,钟家淞,赵强.波纹板式换热器的数值模拟.化工学报.2010(8):19-21.
    125. Fernandes, C. S., R. P. Dias, et al. (2008). "Friction factors of power-law fluids in chevron-type plate heat exchangers." Journal of Food Engineering 89(4):441-447.
    126. Luan, Z.-j., G.-m. Zhang, et al. (2008). "Flow resistance and heat transfer characteristics of a novel plate heat exchanger." Journal of Hydrodynamics, Ser.B 20(4):524-529.
    127. Fernandes, C. S., R. P. Dias, et al. (2007). "Laminar flow in chevron-type plate heat exchangers:CFD analysis of tortuosity, shape factor and friction factor." Chemical Engineering and Processing:Process Intensification 46(9): 825-833.
    128. Fernandes, C. S., R. P. Dias, et al. (2006). "Thermal behaviour of stirred yoghurt during cooling in plate heat exchangers." Journal of Food Engineering 76(3):433-439.
    129. Fernandes, C. S., R. Dias, et al. (2005). "Simulation of stirred yoghurt processing in plate heat exchangers." Journal of Food Engineering 69(3): 281-290.
    130.崔立祺.基于FLUENT的板式换热器三维数值模拟.浙江大学硕士学位论文.2008年5月.
    131.栾志坚,张冠敏,张俊龙,潘继红.波纹几何参数对人字形板式换热器内流动形态的影响机理.山东大学学报(工学版),2007(2):34-37.
    132.黄莉.板式换热器波纹参数优化数值模拟试验研究.北京化工大学硕士学位论文.2007年6月
    133.徐志明,王明月,张仲彬.板式换热器性能的数值模拟.动力工程学报.2011(3):198-202.
    134. Lozano, A., F. Barreras, et al. The flow in an oil/water plate heat exchanger for the automotive industry. Applied Thermal Engineering 28(10): 1109-1117.
    135.陈文超,张锁龙,梁欣.人字形板式换热器双流道模型温度场数值模拟.化工机械.2010(4):465-468.
    136. Sammeta, H., K. Ponnusamy, et al. (2011). Effectiveness charts for counter flow corrugated plate heat exchanger. Simulation Modelling Practice and Theory 19(2):777-784.
    137. Miura, R. Y., F. C. C. Galeazzo, et al. (2008). The effect of flow arrangement on the pressure drop of plate heat exchangers. Chemical Engineering Science 63(22):5386-5393P.
    138. Gherasim, I., N. Galanis, et al. (2011). Heat transfer and fluid flow in a plate heat exchanger. Part Ⅱ:Assessment of laminar and two-equation turbulent models. International Journal of Thermal Sciences 50(8):1499-1511.
    139. Gherasim, I., N. Galanis, et al. (2011). "Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger." Applied Thermal Engineering 31(17-18):4113-4124.
    140.蔡毅,贾志刚,周文学,寿比南.人字形波纹板式换热器性能数值模拟 的研究.计算机与应用化学.2009(1):105-108.
    141.陶文铨.数值传热学.西安:西安交通大学出版社,2001:488-490.
    142. WESSELING P. Principles of computational fluid dynamics. Berlin: Springer,2001:9-21.
    143.陈文良.湍流计算模型.中国科技大学出版社.1991年5月.
    144.王立新.回路型重力热管蒸发腔沸腾传热的FLUENT数值分析.浙江大学硕士学位论文.2006年2月.
    145. Guo Z Y, Li D Y, Wang B X. Novel concept for convective heat transfer enhancement.International Journal of Heat & Mass Transfer,1998,41 (14): 2221-2225.
    146.何雅玲,雷勇刚,田丽亭,楚攀,刘占斌.高效低阻强化换热技术的三场协同性探讨[J].工程热物理学报,2009,(11).
    147.冷学礼.振动圆管外强化传热机理及污垢生长特性研究.山东大学,2007.
    148. YILMAZ M, SARA O N, KARSLI S. Performance evaluation criteria for heat exchangers based on second law analysis. Energy,2001,1:278-294.
    149. BEJAN A. Entropy Generation through Heat and Fluid Flow. New York: Wiley,1982.
    150. BEJAN A. Advanced Engineering Thermodynamics. New York:Wiley, 1988.
    151. BERTOLA V, CAFARO E. A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Inter J Heat Mass Trans,2008,51:1907-1912.
    152. HESSELGREAVES J E. Rationalization of second law analysis of heat exchangers. Inter J Heat Mass Trans,2000,43:4189-4204.
    153. GUO Z Y, ZHU H Y, LIANG X G. Entransy-a physical quantity describing heat transfer ability. Int. J. Heat Mass Transfer,2007,50: 2545-2556.
    154. CHENG X G. Entransy and its applications in heat transfer optimization. Beijing:Tsinghua University,2004.
    155. GUO Z Y, ZHOU S Q, LI Z X, et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger. International Journal of Heat and Mass Transfer,2002,45: 2119-2127.
    156. BALKAN F. Comparison of entropy minimization principles in heat exchange and a short-cut principle:EoTD. International Journal of Energy Research,2003,27:1003-1014.
    157.宋伟明,孟继安,梁新刚等.一维换热器中温差场均匀性原则的证明.化工学报,2008,59:2460-2464.
    158. GUO J F, XU M T, CHENG L. Principle of equipartition of entransy dissipation for heat exchanger design. Science China Technological Sciences,2010,53:1309-1314.
    159. JOHANNESSEN E, NUMMEDAL L, KJELSTRUP S. Minimizing the entropy production in heat exchanger. International Journal of Heat and Mass Transfer,2002,45:2649-2654.
    160.过增元,李志信,周森泉等.换热器中的温差场均匀性原则.中国科学E辑:技术科学,1996.
    161. XU M T, GUO J F, CHENG L. Application of entransy dissipation theory in heat convection. Frontiers of Energy and Power Engineering in China,2009, 3:402-405.
    162.马家骏,宿天和,王起增等.金属切削实用刀具技术(第2版).北京:机械工业出版社.2002.9.
    163.夏巨谌,李志刚.中国模具设计大典.2003.5
    164.高为国.模具材料.北京:机械工业出版社.2006.1
    165.久保田和幸,黄宁秋译.涂层技术与提高工具性能的关系.日立工具株式会社.2006.6.
    166.张冲,江海东.高速铣削加工中的进给量优化.机械加工与自动化.2004.12:30-32.
    167. Shuting Lei, Wenjie liu. High—speed machining of titanium alloys using the driver rotary tool. International Journal of MachineTools&Manufacture42(2002):653-661
    168.陆剑中。孙家宁.金属切削原理与刀具.北京:机械工业出版社.1985.12
    169.孙全平,廖文和,盛亮.高速铣削刀轨优化技术的研究.机械科学与技术.2004,23(8):922—926.
    170.西彬.高速切削的加工机理及刀具技术.机械工人.2003,9:27—29
    171.陈学俊.多相流物理研究的进展.西安交通大学学报,1995,28(5):1-8.
    172.林宗虎,王栋,王树众等.近期多相流基础理论研究综述.西安交通大 学学报,2001,35(9):881-885.
    173.林宗虎,王栋,王树众等.多相流的近期工程应用趋势.西安交通大学学报,2001,35(9):886-889.
    174.鲁钟琪.两相流与沸腾传热.清华大学出版社.2002年1月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700