用户名: 密码: 验证码:
聚氨酯及水性聚氨酯纳米复合材料结构和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(polyurethane,简称PU)是指含有重复的氨基甲酸酯键(NHCOO)的一类高分子化合物,主要由多异氰酸酯(主要为二异氰酸酯)与多元醇(包括聚酯多元醇和聚醚多元醇)通过逐步加成聚合而成。通过调节软段和硬段的结构和比例,可获得所需最佳力学性能的聚氨酯材料,具有软硬度调节范围广、耐低温、柔韧性好、附着力强等优点。水性聚氨酯(WPU)是以水为分散介质的二元胶态体系,不仅保留了传统溶剂型聚氨酯的一些优良性能,如良好的耐磨性、柔顺性、耐低温性和耐疲劳性等,而且具有无毒、不易燃、无污染、节能、安全可靠等优点,这使得水性聚氨酯己成功地应用在溶剂型聚氨酯所覆盖的领域。
     纳米粒子改性聚氨酯材料完美地结合了纳米粒子的刚性、尺寸稳定性、热稳定性及PU和WPU的韧性、易加工性,同时利用了纳米材料表面效应、量子尺寸效应和宏观量子隧道效应,能使涂膜的光学、热学、电学、磁学和力学性能等得到显著提高。
     在本论文中,我们进行纳米复合聚氨酯和水性聚氨酯材料的研究。具体的研究内容如下:
     (1)传统的聚氨酯合成工艺中,采用超声分散法引入碳纳米管,制备聚氨酯/多壁碳纳米管复合材料(PU/CNT)。本工作采用了不同含量、尺寸及表面修饰官能基的碳纳米管调节PU/CNT的力学性能。此外,采用衰减全反射傅立叶红外光谱分析、动态力学分析、扫描电子显微镜、透射电子显微镜及拉力测试表征PU/CNT纳米复合材料的结构和力学性能。研究结果表明,填充0.1wt%直径10-15nm的CNT可获得最大的抗张强度和伸长率。值得关注的是,CNT的表面羧基化能进一步提高PU/CNT纳米复合材料的抗张强度和伸长率。
     (2)通过一步法,采用原位合成未修饰累托石(REC,一种层状硅酸盐)改性的聚氨酯(PU)材料,制备一系列强度、伸长率增强的纳米复合材料。值得关注的是,纳米复合材料中REC含量为2wt%时,具有最大的伸长率(1449%)和强度(32.66MPa),分别约为纯PU薄膜的2.7和1.4倍,REC以未剥离的团聚体及剥离的纳米片存在于PU基质。尽管PU基质的原始结构和相互作用有部分被破坏,但凭借REC薄层表面较强的界面相互作用,应力可以转移至刚性的RECs,材料强度仍有所提高。同时,PU的聚合物链段与REC的交联及在REC的层间滑动可能提高应力。REC含量较高时,过多的未剥离REC团聚体会抑制材料力学性能的改善,并且已经证实有效提高力学性能的关键在于剥离的REC纳米片。因此,本工作提出了一种简单的制备高力学性能的聚氨酯基纳米复合材料的制备方法,而避免了层状硅酸盐的修饰及对片落和分散性的复杂处理。
     (3)淀粉纳米晶(StNs)具有类似于剥离的层状硅酸盐的层状结构,在水性聚氨酯(WPU)基质中具有较高的填充率,可制备水性聚氨酯/淀粉纳米晶(WPU/StN)复合物。据报导,制备过程中淀粉纳米晶的自聚集行为导致其部分沉淀,淀粉纳米晶在材料中的填充率始终低于8wt%。然而本研究发现,淀粉纳米晶含量高达30%时,在复合材料中仍然有较好的分散性。此外,该复合材料的力学模量及杨氏模量有显著提高,并且其伸长率约为300%。淀粉纳米晶含量为10wt%时,复合材料表现出最大的抗张强度,为31.1MPa,约为纯WPU的1.8倍,并且杨氏模量约为纯WPU的35.7倍。淀粉纳米晶的活性表面和刚性促使应力传递界面形成,提高了复合材料的耐压能力。随着淀粉纳米晶填量的增加,粒子的自聚集行为导致材料力学性能的下降。然而,淀粉纳米晶的刚性促使材料的杨氏模量增大,在含量为30wt%时取得最大值。由此可得到性能优异的水性聚氨酯基“绿色”生物纳米复合材料。
     (4)采用超分子纳米片(SNs)作为填料,制备了新型的水性聚氨酯基复合材料。超分子纳米片是通过β-环糊精(β-CD)与聚环氧乙烷-聚环氧丙烷-聚环氧乙烷-嵌段共聚物(PEO-b-PPO-b-PEO)上的聚环氧丙烷(PPO)片段自组装形成的。值得注意的是,长度适中的PEO链段组装的SNs会导致复合材料的强度、伸长率和杨氏模量的同时增加,可归结于SNs的刚性和WPU基质与由β-环糊精基聚多轮烷连接PEO伸缩链段而组装的纳米片层间的界面协同作用。若缺乏自由伸缩PEO链,尽管材料的杨氏模量在提高,但强度与伸长率均在降低。但是,过长的PEO链会趋于结晶态,而抑制链段与WPU基质间的交联,导致机械性能的降低。此外,相对较高的SNs的填充量,会引发SNs相的尺寸和数目的增长,抑制材料强度与伸长率的提高。
Polyurethane is a class of polymer containing duplicate carbamate (NHCOO), mainlysynthesised by multi-isocyanate (diisocyanate) and polyol (including polyester polyols andpolyether polyols) via the gradual addition polymerization. By adjust the structure andproportion of dissimilar soft segment and hard segment, we could obtain polyurethane withthe optimal mechanical properties, it has a number of exceptional properties, such as a widerange of hardness adjustment, low temperature resistance, good flexibility, adhesion, and so on.Waterborne polyurethane (WPU) is a binary colloidal system using water as the dispersionmedium. It not only preserved the traditional solvent-based polyurethane in a number of goodproperties, such as good wear resistance, flexibility, low temperature resistance and resistanceto fatigue, etc., but also has the advantages of non-toxic, non-flammable, non-polluting,energy saving, safe and reliable, which makes waterborne polyurethane has been appliedsuccessfully in solvent-based polyurethane applications.
     Nanoparticles modified polyurethane combine stiffness, dimensional stability, thermalstability of nanoparticles with toughness, ease of processing of WPU perfectly, while takingadvantage of the nano-surface effect, quantum size effect and macroscopic quantumtunneling effect, enhance significantly the optical, thermal, electrical, magnetic andmechanical properties of coating.
     In this paper, polyurethane-based and waterborne polyurethane-based nanocompositewas studied. All the relative studies are outline as follows.
     (1) Polyurethanes/multi-walled carbon nanotube (PU/CNT) composites were preparedwith a help of ultrasonically dispersing CNT in the traditional procedure of synthesizingpolyurethane. In this case, the various loading levels, sizes and surface-modified groups wereconsidered to regulate the mechanical performances of the PU/CNT nanocomposites.Moreover, the structure and mechanical properties of all the PU/CNT nanocomposites wereinvestigated by attenuated total reflection-Fourier transform infrared spectroscopy, dynamicmechanical analysis, scanning electron microscope, transmission electron microscope, andtensile testing. The results showed that a moderate loading-level of0.1wt%and a diameter of10-15nm for CNT could produce the maximum tensile strength and elongation while it wasworth noting that the surface carboxylation of CNT could further enhance the tensile strengthand elongation of the PU/CNT nanocomposites.
     (2) The unmodified rectorite (REC), a kind of layered silicate, was incorporated intopolyurethane (PU) as matrix by the process of one-pot synthesizing polyurethane in situ, andhence produced a series of nanocomposite materials with enhanced strength and elongation. It is worth noting that the nanocomposite containing2wt%REC had the maximum elongation(1449%) and strength (32.66MPa) as ca.2.7-and1.4-fold over those of neat PU film,respectively.Meanwhile, the unexfoliated agglomerates and exfoliated nanoplatelets of RECco-existed in PU matrix. By virtue of strong interfacial interaction on the surface of REClamella, the stress facilely transferred to the rigid RECs and hence contributed to theenhancement of strength in spite that the original structure and interaction in the PU matrixwere partly cleaved. Moreover, the intertwisting of polymer chains in PU matrix with REC aswell as the gliding among the REC lamellae might produce greater strain. Nevertheless,excess unexfoliated REC agglomerates under high loading level inhibited the enhancement ofmechanical performances, which verified the key role of exfoliated REC nanoplatelet inimproving mechanical performances. As a result, this work submitted a simple method todevelop a polyurethane-based nanocomposite with high mechanical performances withoutany modification of layered silicates and the complicated treatment for exfoliation anddispersion.
     (3) Starch nanocrystals (StNs), which possesses a distinct platelet-like structure similar toexfoliated layered silicate, was incorporated into waterborne polyurethane (WPU) matrix athigh loading levels to prepare WPU/StN nanocomposites. As reported, the StN loading levelwas restricted to lower than8wt%because self-aggregation of StN resulted in itssedimentation during preparation. However, in this work, good dispersion of the StNnanophase in the nanocomposites was observed even when the StN loading level reached30wt%. Furthermore, the resultant composites exhibited prominent enhancement in bothstrength and Young’s modulus, and maintained an elongation of greater than ca.300%. A StNloading level of10wt%showed the maximum tensile strength (31.1MPa) and an enhancedYoung’s modulus, respectively ca.1.8-and35.7-fold over those of neatWPU.The activesurface and rigidity of StN facilitated formation of an interface for stress transfer andcontributed to higher stress-endurance. As the StN loading level increased, self-aggregation ofStNs resulted in a decrease in strength; however, the rigidity of StN supported an increase inYoung’s modulus, which was highest in nanocomposites containing30wt%StNs. Highperformance waterborne polyurethane-based “green” bionanocomposites were therebyestablished.
     (4) New composites of waterborne polyurethane (WPU) as a matrix were prepared byincorporating rigid supramolecular nanoplatelets (SN) as a filler, which were self-assembledby the selective inclusion of β-cyclodextrin (β-CD) onto poly(propylene oxide)(PPO)segment in the poly(ethylene oxide)-block-PPO-block-poly(ethylene oxide)(PEO-b-PPO-b-PEO). It is worth noting that the SN with moderate PEO length resulted in thesimultaneous increase in strength, elongation and Young’s modulus. It was attributed to therigidity of SN, and the essential association between the WPU matrix and rigid crystalline aggregates of β-CD-based polyrotaxane mediated with stretching free PEO chains. If therewas no stretching free PEO chain, both strength and elongation decreased in spite of anincrease in Young’s modulus. However, too long PEO chains tended to crystalline, and henceinhibited the interfacial entanglement with the WPU matrix, resulting in the decrease ofmechanical performances. Furthermore, the relatively higher loading-level of SN induced theincrease in the size and number of the SN phase, and hence inhibited the enhancement ofstrength and elongation.
引文
[1] Solarski S, Benali S, Rochery M, et al. Synthesis of a polyurethane/claynanocomposite used as coating: Interactions between the counterions of clay andthe isocyanate and incidence on the nanocomposite structure[J]. J. Appl. Polym.Sci.,2005,95(2):238-244.
    [2] Kwak Y, Park S, Lee Y, et al. Preparation and properties of waterbornepolyurethanes for water-vapor-permeable coating materials[J]. J. Appl. Polym.Sci.,2003,89(1):123-129.
    [3] Osman M A, Mittal V, Morbidelli M, et al. Polyurethane adhesivenanocomposites as gas permeation barrier[J]. Macromolecules,2003,36(26):9851-9858.
    [4] Kojio K, Fukumaru T, Furukawa M. Highly softened polyurethane elastomersynthesized with novel1,2-bis(isocyanate)ethoxyethane[J]. Macromolecules,2004,37(9):3287-3291.
    [5]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,1998.
    [6] Mondal P, Khakhar D V. Rigid polyurethane-clay nanocomposite foams:preparation and properties[J]. J. Appl. Polym. Sci.,2007,103(5):2802-2809.
    [7] Modesti M, Lorenzetti A, S Besco. Influence of nanofillers on thermal insulatingproperties of polyurethane nanocomposites foams[J]. Polym. Eng. Sci.,2007,47(9):1351-1358.
    [8] Meng Q, Hu J, Zhu Y, et al. Polycaprolactone-based shape memory segmentedpolyurethane fiber[J]. J. Appl. Polym. Sci.,2007,106(4):2515-2523.
    [9] Simmons A, Padsalgikar A D, Ferris L M, et al. Biostability and biologicalperformance of a PDMS-based polyurethane for controlled drug release[J].Biomaterials,2008,29(20):2987-2995.
    [10] Noble K L. Waterborne polyurethane[J]. Prog. Org. Coat.,1997,32:131-136.
    [11]蒋蓓蓓,杨建军,等.水性聚氨酯纳米复合材料的研究进展[J].化工新型材料,2010,38(6):22-24.
    [12]朱晓光,漆宗能.聚合物增韧研究进展[J].材料研究学报,1997,11:623.
    [13]董建华.高分子材料科学的发展动向和若干热点[J].材料导报,1999,13(5):2.
    [14] He Pburn H. Polyurethane Elastomers[M]. NewYork, Applied Science PublishersLtd,1982.
    [15]袁毅,郭建民,申开智.浅谈聚氨酯硬泡在建筑业上的应用[J].聚氨酯工业.2001,16(4):10-11.
    [16]刘意,张力,刘敬芹.聚氨酯涂料的研究进展[J].辽宁化工,2002,31(3):107-112.
    [17] Sehillltt F, Wenning A, Wei1ss J. Recent development in aqueoustwo-compoment polyurethane coatings[J]. Prog. Org. Coat.,2000,40:99.
    [18] Dvorehak M J. Using “high performance two-compoment waterbornepolyurethane” wood coating[J]. Journal of Coatings Technology.1997,69,886.
    [19] Aley D, Fiori D E, Quinn R J. Optimization of acrylic polyols for low VOCtwo-compoment water reducible polyurethane coating using tertiary isocyanatecrosslinkrs[J]. progress in Organic Catings.1999,35:109.
    [20] Hirose M, Zhou J H, Nagai K. The structure and properties ofacrylic-polyurethane hybrid emulsions[J]. Prog. Org. Coat.,2000,38:27.
    [21] Mayer R E. Encyclopedia of Polymer Science and Technology[M]. Sealants. NewYork. John Wiley and Sons.1989.
    [22]李莉,郭旭虹.聚氨酯改性环氧树脂粘合剂[J].化学与粘合,1997,2:63-66.
    [23]王士才,李宝霞.聚氨酯改性软质PVC塑料的研制及其性能的研究[J].聚氯乙烯,1998,3:5-10.
    [24] Sugano S, Charoen C, Kanoh S, et al. Preparation of aqueous polyurethanedispersions using aromatic diisocyanate[J]. Macromol. Symp.,2006,239:51-57.
    [25] Yen M S, Tsai H C, Hong P D. Effect of soft segment composition on the physicalproperties of nonionic aqueous polyurethane containing side chain PEGME[J]. J.Appl. Polym. Sci.,2007,105:1391-1399.
    [26] Kim B S, Kim B K. Enhancement of hydrolytic stability and adhesion ofwaterborne polyurethanes[J]. J. Appl. Polym. Sci.,2005,97:1961-1969.
    [27] Charoen C, Kanoh S, Yamada T, et al. Preparation of aqueous dispersiblepolyurethane: effect of acetone on the particle size and storage stability ofpolyurethane emulsion[J]. J. Appl. Polym. Sci.,2004,91:3455-3461.
    [28] Bayer A G. Waterborne polyurethanes[J]. Prog. Org. Coat.,1997,32:131-136.
    [29] Coutinhoa F M B, Delpech M C, Alves T, et al. Degradation profiles of cast filmsof polyurethane and poly(urethane-urea) aqueous dispersions based onhydroxyl-terminated polybutadiene and different diisocyanates[J]. Polym. Degrad.Stabil.,2003,81:19-27.
    [30]丁昌春.稳定水性聚氨酯分散液的合成研究[J].胶体与聚合物,2005,23(1):9-14.
    [31] Delpech M C, Coutinhoa F M B. Waterborne anionic polyurethanes andpoly(urethane-urea)s: influence of the chain extender on mechanical and adhesiveproperties[J]. Polym. Test.,2000,19:939-952.
    [32] Gardon J L. A perspective on resins for aqueous coatings[J]. ACS Symp. Ser.,1997,663:27-43.
    [33] Chen T K, Tien Y I, Wei K H. Synthesis and characterization of novel segmentedpolyurethane/clay nanocomposites[J]. Polymer.2000,41(4):1345-1353.
    [34] Zheng J R, Ozisik R, Siegel R W. Disruption of self-assembly and alteredmechanical behavior in polyurethane/zinc oxide nanocomposites[J], Polymer,2005,46:10873-10882.
    [35] Zhou S X, Wu L M, Sun J, et al. The change of the properties of acrylic-basedpolyurethane via addition of nano-silica[J]. Progress in Orgainc Coatings.2002,45(1):33-42.
    [36] Chen H X, Zeng D L, Xiao X Q, et al. Influence of organic modification on thestructure and properties of polyurethane/sepiolite nanocomposites[J]. Mater. Sci.Eng. A,2011,528(3):1656-1661.
    [37] pírková M, Pavli evic' J, Strachota A, Poreba R, Bera O, Kaprálková L,Baldrian J, louf M, Lazi N., Budinsky-simendic J. Novelpolycarbonate-based polyurethane elastomers: composition-propertyrelationship[J]. Eur. Polym. J.,201l,47(5):959-972.
    [38]刘曙光,张冬,刘国玉,等.聚氨酯/有机膨润土纳米复合材料的制备及性能表征[J].工程塑料应用,2010,38(2):17-19.
    [39] Hsu S H, Chou C W. Enhanced biostability of polyurethane containing goldnanoparticles[J]. Polym. Degrad. Stabil.,2004,85(1):675-680.
    [40]冶银平,张永胜,孙晓军,等. Ni/聚氨酯纳米复合涂层的制备及其摩擦学性能研究[J].摩擦学,2003,23(2):104-107.
    [41] Ryszkowska J, Jurczyk-Kowalska M, Szymborski T, et al. Dispersion of carbonnanotubes in polyurethane matrix[J]. Physica E,2007,39:124-127.
    [42] Kuan H C, Ma C C M, Chang W P, et al. Synthesis, thermal, mechanical andrheological properties of multiwall carbon nanotube/waterborne polyurethanenanocomposite[J]. Compos. Sci. Technol.,2005,65:1703-1710.
    [43] Kwon J Y, Kim H D. Comparison of the properties of waterbornepolyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbonnanotube composites prepared by in situ polymerization[J]. J. Polym. Sci. Pol.Chem.,2005,43:3973-3985.
    [44] Kwon J Y, Kim H D. Preparation and properties of acid-treated multiwalledcarbon nanotube/waterborne polyurethane nanocomposites[J]. J. Appl. Polym.Sci.,2005,96:595-604.
    [45] Kuan H C, Ma C C M, Chuang W P, et al. Hydrogen bonding, mechanicalproperties, and surface morphology of clay/waterborne polyurethanenanocomposites[J]. J. Polym. Sci. Pol. Phy.,2005,43: l-12.
    [46] Ma C C M, Su H Y, Kuan H C, et al. Hydrogen-bonding, crystallinity, andmorphological properties of poly(silicic acid)/waterborne polyurethanenanocomposites[J]. J. Polym. Sci. Pol. Phy.,2005,43:1076-1089.
    [47] Deng X, Liu F, Luo Y. Preparation, structure and properties of comb-branchedwaterborne polyurethane/OMMT nanocomposites[J]. Prog. Org. Coat.,2007,60:11-16.
    [48]侯孟华,刘伟区,陈精华.蒙脱土改性水性聚氨酯的研究[J].化学世界,2006(2):88-91.
    [49] Pan H, Chen D. Preparation and characterization of waterbornepolyurethane/attapulgite nanocomposites[J]. Eur. Polym. J.,2007,43:3766-3772.
    [50] Nanda A K, Wicks D A, Madbouly S A, et al. Nanostructured polyurethane/POSShybrid aqueous dispersions prepared by homogeneous solution polymerization[J].Macromolecules,2006,39:7037-7043.
    [51] Madouly S A, Otaigbe J U, Nanda A K, et al. Rheological behavior ofPOSS/polyurethane-urea nanocomposite films prepared by homogeneous solutionpolymerization in aqueous dispersionsl[J]. Macromolecules,2007,40:4982-4991.
    [52] Cao X D, Dong H, Li C M. New nanocomposite materials reinforced with flaxcellulose nanocrystals in waterborne polyurethane[J]. Biomacromolecules,2007,8:899-904.
    [53] Chen G J, Wei M, Chen J H, et al. Simultaneous reinforcing and toughening: newnanocomposites of waterborne polyurethane filled with low loading level ofstareh nanocrystals[J]. Polymer,2008(2):20-30.
    [54]李爱萍.甲壳素晶须/水性聚氨酯复合材料结构与性能研究[D].武汉:中国地质大学,2007.
    [1] Baughman R H, Zakhidov A A, Heer W A D. Carbon nanotubes-the route towardapplications[J]. Science,2002,297(5582):787-792.
    [2] Nanda G S, Sravendra R, Jae, W C, et al. Polymer Nanocomposites based onfunctionalized carbon nanotubes[J]. Prog. Polym. Sci.,35(7):837-867.
    [3] Zdenko S, Dimitrios T, Konstantinos P, et al. Carbon nanotube-polymercomposites: chemistry, processing, mechanical and electrical properties[J]. Prog.Polym. Sci.,2010,35(3):357-401.
    [4] Dinadayalane T C, Leszczynski J. Remarkable diversity of carbon–carbon bonds:structures and properties of fullerenes, carbon nanotubes, and grapheme[J]. Struct.Chem.,2010,21:1155–1169.
    [5] Lin Y, Zhou B, Shiral Fernando K A, et al. Polymeric carbon nanocompositesfrom carbon nanotubes functionalized with matrix polymer[J]. Macromolecules,2003,36(19):7199-7204.
    [6] Liu T, Phang I Y, Shen L, et al. Morphology and mechanical properties ofmultiwalled carbon nanotubes reinforced nylon-6composites[J]. Macromolecules,2004,37(19):7214-7222.
    [7] Zhao C, Hu G, Schaefer D W, et al. Synthesie and characterization of multi-walledcarbon nanotubes reinforced polyamide6via in situ polymerization[J]. Polymer,2005,46(14):5125-5132.
    [8] Chou W J, Wang C C, Chen C Y. Characteristics of polyimide-basednanocomposites containing plasma-modified multi-walled carbon nanotubes[J].Compos. Sci. Technol.,2008,68(10):2208-2213.
    [9] Sreekumar T V, Liu T, Min B G, et al. Polyacrylonitrile single-walled carbonnanotube composite fibers[J]. Adv. Mater.,2004,16(1):58-61.
    [10] Brown J M, Anderson D P, Justice R S, et al. Hierarchical morphology of carbonsingle-walled nanotubes during sonication in an aliphatic diamine[J]. Polymer,2005,46(24):10854-10865.
    [11] Kanagaraj S, Varanda F R, Zhil’tsova T V, et al. Mechanical properties of highdensity polyethylene/carbon nanotube composites[J]. Compos. Sci. Technol.,2007,67(15-16):3071-3077.
    [12] Grossiord N, Miltner H E, Loos J, et al. On the crucial role of wetting in thepreparation of conductive polystyrene-carbon nanotube composites[J]. Chem.Mater.,2007,19(15):3787-3792.
    [13] Sun Y P, Fu K, Lin Y, et al. Functionalized carbon nanotubes: properties andapplications[J]. Acc. Chem. Res.,2002,35(12):1096-1104.
    [14] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbonnanotubes[J]. Science,1998,282(5386):95-98.
    [15]Sano M, Kamino A, Okamura J, et al. Self-organization ofPEO-graft-single-walled carbon nanotubes in solutions and langmuir-blodgettfilms[J]. Langmuir,2001,17(17):5125-5128.
    [16] Ying Y M, Saini R K, Liang F, et al. Functionalization of carbon nanotubes byfree radicals[J]. Org. Lett.,2003,5(9):1471-1473.
    [17] Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of canbonnanotubes[J]. J. Am. Chem. Soc.,2002,124(5):760-761.
    [18] Ruan S L, Gao P, Yang X G, et al. Toughening high performance ultrahighmolecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer,2003,44(19):5643-5654.
    [19] Tang W, Santare M H, Advani S G. Melt processing and mechanical propertycharacterization of multi-walled carbon nanotube/high density polyethylene(MWNT/HDPE) composite films[J]. Carbon,2003,41(14):2779-2785.
    [20] Gordeyev S A, Macedo F J, Ferreira J A, et al. Transport properties ofpolymer-vapour grown carbon fibre composites[C]. Phys B: Cond. Matt.,2000,279(1-3):33-36.
    [21] Jin Z, Pramoda K P, Xu G, et al. Dynamic mechanical behavior of melt-processedmulti-walled carbon nanotube/poly(methyl methacrylate) composites[J]. Chem.Phys. Lett.,2001,337(1-3):43-47.
    [22] Chapelle M L, Stephan C, Nguyen T P, et al. Raman characterization ofsinglewalled carbon nanotubes and PMMA-nanotubes composites[J]. Synth. Met.,1999,103(1-3):2510-2512.
    [23] Jia Z, Wang Z, Xu C, et al. Surface modified multiwalled carbon nanotubes inCNT/epoxy-composites[J]. Mater. Sci. Eng. A.,1999,271:395-400.
    [24] Andrews R, Jaques D, Rao A M, et al. Nanotube composite carbon fibers[J]. Appl.Phys. Lett.,1999,75(9):1329-1331.
    [25] Schadler L S, Ciannaris S C, Ajayan P M. Load transfer in carbon nanotubeepoxy composites[J]. Appl. Phys. Lett.,1998,73(26):3842-3844.
    [26] Park J M, Kim D S, Lee J R, et al. Nondestructive damage sensitivity andreinforcing effect of carbon nanotube/epoxy composites usingelectro-micromechanical technique[C]. Mater. Sci. Eng. C.,2003,23(6-8):971-975.
    [27] Gojny F H, Nastalczyk J, Roslaniec Z, et al. Surface modified multi-walledcarbon nanotubes in CNT/epoxy-vomposites[J]. Chem. Phys. Lett.,2003,370(5-6):820-824.
    [28] Quan D, Dickey E C, Andrews R, et al. Load transfer and deformationmechanisms in carbon nanotube–polystyrene composites[J]. Appl. Phys. Lett.,2000,76(20):2868-2870.
    [29]Fernandez M, Landa M, Eugenia Munoz M, et al. Thermal and viscoelasticfeatures of new nanocomposites based on a hot-melt adhesive polyurethane andmulti-walled carbon nanotubes[J]. Macromol. Mater. Eng.,2010,295(11):1031-1041.
    [30] Chattopadhyay D K, Dean C W. Thermal stability and flame retardancy ofpolyurethanes[J]. Prog. Polym. Sci.,2009,34(10):1068-1133.
    [31] Marc B, Muhammad Y R, Andreas L. Multifunctional shape-memorypolymers[J]. Adv. Mater.,2010,22(31):3388-3410.
    [32] Zdrahala R J, Zdrahal I J. Biomedical applications of polyurethanes: a review ofpast promises, present realities, and a vibrant future[J]. J. Biomater. Appl.,1999,14:67-90.
    [33] Sahoo N G, Jung Y C, Yoo H J, et al. Effect of functionalized carbon nanotubeson molecular interaction and properties of polyurethane composites[J]. Macromol.Chem. Phys.,2006,207(19):1773-1780.
    [34] Sahoo N G, Jung Y C, Yoo H J, et al. Influence of carbon nanotubes andpolypyrrole on the thermal, mechanical and electroactive shape-memoryproperties of polyurethane nanocomposites[J]. Compos. Sci. Technol.,2007,67(9):1920-1929.
    [35] Guo S Z, Zhang C, Wang W Z, et al. Preparation and characterization ofpolyurethane/multiwalled carbon nanotube composites[J]. Polym. Polym.Compos.,2008,16(8):501–507.
    [36] Buffa F, Abraham G A, Grady B P, et al. Effect of Nanotube Functionalization onthe properties of single-walled carbon nanotube/polyurethane Composites[J]. J.Polym. Sci. Part B Polym. Phys.,2007,45(4):490–501.
    [1] Solarski S, Benali S, Rochery M, et al. Synthesis of a polyurethane/claynanocomposite used as coating: interactions between the counterions of clay andthe isocyanate and incidence on the nanocomposite structure[J]. J. Appl. Polym.Sci.,2005,95(2):238-244.
    [2] Kwak Y, Park S, Lee Y, et al. Preparation and properties of waterbornepolyurethanes for water-vapor-permeable coating materials[J]. J. Appl. Polym.Sci.,2003,89(1):123-129.
    [3] Osman M A, Mittal V, Morbidelli M, et al. Polyurethane adhesivenanocomposites as gas permeation barrier[J]. Macromolecules,2003,36(26):9851-9858.
    [4] Kojio K, Fukumaru T, Furukawa M. Highly Softened polyurethane elastomersynthesized with novel1,2-Bis(isocy anate)ethoxyethane[J]. Macromolecules,2004,37(9):3287-3291.
    [5] Mondal P, Khakhar D V. Rigid polyurethane-clay nanocomposite foams:preparation and properties[J]. J. Appl. Polym. Sci.,2007,103(5):2802-2809.
    [6] Modesti M, Lorenzetti A, Besco S. Influence of nanofillers on thermal insulatingproperties of polyurethane nanocomposites foams[J]. Polym. Eng. Sci.,2007,47(9):1351-1358.
    [7] Meng Q, Hu J, Zhu Y, et al. Polycaprolactone-based shape memory segmentedpolyurethane Fiber[J]. J. Appl. Polym. Sci.,2007,106(4):2515-2523.
    [8] Simmons A, Padsalgikar A D, Ferris L M, et al. Biostability and biologicalperformance of a PDMS-based polyurethane for controlled drug release[J].Biomaterials,2008,29(20):2987-2995.
    [9] Yao K J, Song M, Hourston D J, et al. Polymer/layered clay nanocomposites:polyurethane nanocomposites[J]. Polymer,2002,43(3):1017-1020.
    [10]Wang N, Zhang L, Gu J. Mechanical properties and biodegradability ofcrosslinked soy protein isolate/waterborne polyurethane composites[J]. J. Appl.Polym. Sci.,2005,95(2):465-473.
    [11]Cho J W, Kim J W, Jung Y C, et al. Electroactive shape-memory polyurethanecomposites incorporating carbon nanotubes[J]. Macromol. Rapid Commun.,2005,26(5):412-416.
    [12]Paul D R, Robeson L M. Polymer nanotechnology: nanocomposites[J]. Polymer,2008,49(15):3187-3204.
    [13]Ayres E, Oréfice R L, Sousa D. Influence of bentonite type in waterbornepolyurethane nanocomposite mechanical properties[J]. Macromol. Symp.,2006,245(1):330-336.
    [14]Xu Z, Tang X, Gu A, et al. Novel preparation and mechanical properties of rigidpolyurethane foam/organoclay nanocomposites[J]. J. Appl. Polym. Sci.,2007,106(1):439-447.
    [15]Kuan H, Ma C M, Chuang W, et al. Hydrogen bonding, mechanical properties,and surface morphology of clay/waterborne polyurethane nanocomposites[J]. J.Polym. Sci.: Part B: Polym. Phys.,2005,43(1):1-12.
    [16]Jana R N, Cho J W. Thermal stability and molecular interaction of polyurethanenanocomposites prepared by in situ polymerization with functionalizedmultiwalled carbon nanotubes[J]. J. Appl. Polym. Sci.,2008,108(5):2857-2864.
    [17]Sreedhar B, Chattopadhyay D K, Swapna V. Thermal and surface characterizationof polyurethane-urea clay nanocomposite coatings[J]. J. Appl. Polym. Sci.,2006,100(3):2393-2401.
    [18]Ma X, Lu H, Lian G, et al. Rectorite/thermoplastic polyurethane nanocomposites.II. improvement of thermal and oil-resistant properties[J]. J. Appl. Polym. Sci.,2005,96(4):1165-1169.
    [19]Ma J, Zhang S, Qi Z. Synthesis and characterization of elastomericpolyurethane/clay nanocomposites[J]. J. Appl. Polym. Sci.,2001,82(6):1444-1448.
    [20]Ni P, Li J, Suo J, et al. Novel polyether polyurethane/clay nanocompositessynthesized with organic-modified montmorillonite as chain extenders[J]. J. Appl.Polym. Sci.,2004,94(2):534-541.
    [21]Sreedhar B, Chattopadhyay D K, Swapna V. Thermal and surface characterizationof polyurethane-urea clay nanocomposite coatings[J]. J. Appl. Polym. Sci.,2006,100(3):2393-2401.
    [22]Dan C H, Kim Y D, Lee M, et al. Effect of solvent on the properties ofthermoplastic polyurethane/clay nanocomposites prepared by solution mixing[J].J. Appl. Polym. Sci.,2008,108(4):2128-2138.
    [23]Chang J, An Y U. Nanocomposites of polyurethane with various organoclays:thermomechanical properties, morphology, and gas permeability[J]. J. Polym.Sci.: Part B: Polym. Phys.,2002,40(7):670-677.
    [24]Moon S Y, Kim J K, Nah C, et al. Polyurethane/montmorillonite nanocompositesprepared from crystalline polyols, using1,4-butanediol and organoclay hybrid aschain extenders[J]. European Polymer Journal,2004,40(8):1615-1621.
    [25]Yao Q, Wang C, Zhao L. Introduce of rectorite to rare mineral in the world[J].Miner Res.Geol.,2001,15(4):264-266.
    [26]Yang L L, Liang G Z, Zhang Z P, et al. Sodium alginate/Na+-rectorite compositefilms: preparation, characterization, and properties[J]. J. Appl. Polym. Sci.,2009,114(2):1235-1240.
    [27]Huang Y, Ma X Y, Liang G Z, et al. Structure and properties ofpolypropylene/organic rectorite nanocomposites[J]. Clay Minerals,2009,44(1):35-50.
    [28]Ma X Y, Qu X H, Zhang Q L, et al. Analysis of interfacial action ofrectorite/thermoplastic polyurethane nanocomposites by inverse gaschromatography and molecular simulation[J]. Polymer,2008,49(16):3590-3600.
    [29]Ma X, Lu H, Liang G, et al. Rectorite/thermoplastic polyurethane nanocomposites:preparation, characterization, and properties[J]. J. Appl. Polym. Sci.,2004,93(2):608-614.
    [30]Ma X Y, Liang G Z, Lu H J, et al. The thermal properties ofrectorite/thermoplastic polyurethane nanocomposites[J]. Acta Polymerica Sinica,2003,(5):655-660.
    [31]Ma X Y, Lu H J, Liang G Z, et al. Study on nanocomposites of thermoplasticpolyurethane with rectorite clay[J]. Acta Polymerica Sinica,2003,(1):62-67.
    [32]Yu J, Cui G, Wei M, et al. Facile exfoliation of rectorite nanoplatelets in soyprotein matrix and reinforced bionanocomposites thereof[J]. J. Appl. Polym. Sci.,2007,104(5):3367-3377.
    [33]Balazs A C, Singh C, Zhulina E, et al. Modeling the phase behavior ofpolymer/clay nanocomposites[J]. Acc. Chem. Res.,1999,32(8):651-657.
    [34]Dennis H R, Hunter D L, Chang D, et al. Effect of melt processing conditions onthe extent of exfoliation in organoclay-based nanocomposites[J]. Polymer,2001,42(23):9513-9522.
    [35]Grim R E. Clay mineralogy[M]. New York: McGraw–Hill,1968.
    [36]Ray S S, Okamoto M. Polymer/layered silicate nanocomposites: a review frompreparation to processing[J]. Prog. Polym. Sci.,2003,28(11):1539-1641.
    [37]Sohn J R, Kim J T. Infrared study of alkyl ketones adsorbed on the interlamellarsurface of montmorillonite[J]. Langmuir,2000,16(12):5430-5434.
    [38]Chausson S, Caignaert V, R Retous, et al. Polyethylene nanocomposites based onintercalation of N-alkyl amines within KTiNbO5Structure[J]. Polymer,2008,49(2):488-496.
    [1] Angellier H, Choisnard L, Dufresne, A. Optimization of the preparation ofaqueous suspensions of waxy maize starch nanocrystals using a response surfacemethodology[J]. Biomacromolecules,2004,5:1545-1551.
    [2] Angellier H, Molina-Boisseau S, Dufresne A. Mechanical properties of waxymaize starch nanocrystal reinforced natural rubber[J]. Macromolecules,2005,38:9161-9170.
    [3] Angellier H, Molina-Boisseau S, Dufresne A. Processing and structuralproperties of waxy maize starch nanocrystals reinforced natural rubber[J].Macromolecules,2005,38:3783-3792.
    [4] Angellier H, Molina-Boisseau S, Dufresne A. Thermoplastic starch-waxy maizestarch nanocrystals nanocomposites[J]. Biomacromolecules,2006,7:531-539.
    [5] Le Corre D, Bras J, Dufresne A.2nd International Conference on BiodegradablePolymers and Sustainable Composites,(BIOPOL2009)[C], Alicante, Spain.
    [6] Le Corre D, Bras J, Dufresne A. Starch nanoparticles: A review[J].Biomacromolecules,2011,11:1139-1153.
    [7] Chang P R, Huang J, Lin N. Bio-nanocomposites with non-cellulosic biofillers. InV. Mittal (Ed.), Nanocomposites with biodegradable polymers: synthesis,properties and future perspectives (pp.71-100)[M]. London: Oxford UniversityPress,2011.
    [8] Thielemans W, Belgacem M N, Dufresne A.(2006). Starch nanocrystals withlarge chain surface modifications[J]. Langmuir,2006,22:4804-4810.
    [9] Lin N, Huang J, Chang, Yu J H, et al. Preparation, modification, and applicationof starch nanocrystals in nanomaterials: A review[J]. J. Nanomater.,2011,13:573687.
    [10]Bondeson D, Mathew A, Oksman K. Optimization of the isolation ofnanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose,2006,13:171-180.
    [11]Chen Y, Chang P R, Huneault M A.. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native peastarch[J]. Carbohydr. Polym.,2008,73:8-17.
    [12]Zheng H, Ai F, Huang J, et al. Structure and properties of starch nanocrystalreinforced soy protein plastics[J]. Polym. Compos.,2009,30:474–480.
    [13] Wang Y, Zhang L. High-strength waterborne polyurethane reinforcedwithwaxymaize starch nanocrystals[J]. J. Nanosci. Nanotechno.,2008,8:5831-5838.
    [14] Noble K L. Waterborne polyurethanes[J]. Prog. Org. Coat.,1997,32:131–136.
    [15] Wicks Z W, Wicks D A, Rosthauser J W. Two package waterborne urethanesystems[J]. Prog. Org. Coat.,2002,44:161-183.
    [16] Brinkman E, Vandevoorde P. Waterborne two-pack isocyanate-free systems forindustrial coatings[J]. Prog. Org. Coat.,1997,34:21-25.
    [17] Coogan R G. Post-crosslinking of water-borne urethanes[J]. Prog. Org. Coat.,1997,32:51-63.
    [18] Duecoffre V, Diener W, Schubert W. Emulsifiers with high chemical resistance:a key to high performance waterborne coatings[J]. Prog. Org. Coat.,1997,34:200-205.
    [19] Kim B K, Kim T K, Jeong H M. Aqueous dispersion of polyurethaneanionomers from H12MDI/IPDI, PCL, BD, and DMPA[J]. J Appl Polym Sci,1994,53:371-378.
    [20] Lin Y, Hsieh F. Water-blown flexible polyurethane foam extender with biomassmaterials[J]. J. Appl. Polym. Sci.,1997,65:695-703.
    [21] Wu Q X, Zhang L N. Structure and properties of casting films blended withstarch and waterborne polyurethane[J]. J. Appl. Polym. Sci.,2001,79:2006-2013.
    [22] Wang N G, Zhang L N. Preparation and characterization of soy protein plasticsplasticized with waterborne polyurethane[J]. Polym. Int.,2005,54:233-239.
    [23] Cui G J, Xia W B, Huang J, et al. Enhanced mechanical performances ofwaterborne polyurethane loaded with lignosulfonate and its supramolecularcomplexes[J]. J. Appl. Polym. Sci.,2007,106:4257-4263.
    [24] Cao X D, Dong H, Li C M. New nanocomposite materials reinforced with flaxcellulose nanocrystals in waterborne polyurethane[J]. Biomacromolecules,2007,8:899-904.
    [25] Chen G J, Huang J, Chang P R, et al. Simultaneous reinforcing and toughening:new nanocomposites of waterborne polyurethane filled with low loading level ofstarch nanocrystals[J]. Polymer,2008,49:1860-1870.
    [26] Wang Y X, Tian H F, Zhang L. Role of starch nanocrystals and cellulosewhiskers in synergistic reinforcement of waterborne polyurethane[J]. Carbohyd.Polym.,2010,80:665-671.
    [27] Jiang L, Zhang J, Wolcott M P. Comparison of polylactide/nano-sized calciumcarbonate and polylactide/montmorillonite composites: Reinforcing effects andtoughening mechanisms[J]. Polymer,2007,48:7632-7644.
    [28] Yu Z, Yin J, Chen X. Biodegradablepoly(L-lactide)/poly(ε-caprolactone)-modified montmorillonite nanocomposites:Preparation and characterization[J]. Polymer,2007,48:6439–6447.
    [29] Zhang X L, Huang J, Chang P R, et al. Structure and properties ofpolysaccharide nanocrystaldoped supramolecular hydrogels based oncyclodextrin inclusion[J]. Polymer,2010,51:4398–4407.
    [30] Kim D H, Fasulo P D, Paul D R. Effect of the ratio of maleated polypropyleneto organoclay on the structure and properties of TPO-based nanocomposites. PartI. Morphology and mechanical properties[J]. Polymer,2007,48:5960-5978.
    [31] Huang J, Zhang L. Effects of NCO/OH molar ratio on structure and propertiesof graft-interpenetrating polymer networks from polyurethane and nitrolignin[J].Polymer,2002,43:2287-2294.
    [32] Cui L L, Ma X, Paul D R. Morphology and properties of nanocompositesformed from ethylene-vinyl acetate copolymers and organoclays[J]. Polymer,2007,48:6325-6339.
    [1] Wenz G, Han B H, Muller A. Cyclodextrin rotaxanes and polyrotaxanes[J]. Chem.Rev.,2006,106(3):782-817.
    [2] Huang F H, Gibson H W. Polypseudorotaxanes and polyrotaxanes[J]. Prog.Polym. Sci.,2005,30:982-1018.
    [3] Harada A. Design and construction of supramolecular architectures consisting ofcyclodextrins and polymers[J]. Adv. Polym. Sci.,1997,133:141-191.
    [4] Tonelli A E. Nanostructuring and Functionalizing Polymers with Cyclodextrins[J].Polymer,2008,49(7):1725-1736.
    [5] Koichi M, Kohzo I. Structure and dynamics of polyrotaxane and slide-ringmaterials[J]. Polymer,2010,51(4):959-967.
    [6] Vedula J, Tonelli A E. Reorganization of PET structures and conformations toalter properties[J]. J. Polym. Sci. Part B Polym. Phys.,2007,45:735.
    [7] Rusa C C, Rusa M, Tonelli A E, et al. Nanostructuring high molecular weightisotactic polyolefins via processing with gamma-cyclodextrin inclusioncompounds. Formation and characterization of polyolefin-gamma-cyclodextrininclusion compounds[J]. Macromolecules,2004,37(21):7992-7999.
    [8] Rusa C C, Tonelli A E. Polymer/polymer inclusion compounds as a novelapproach to obtaining a PLLA/PCL intimately compatible blend[J].Macromolecules,2000,33(15):5321-5324.
    [9] Uyar T, Evren A, Tonelli A E, et al. Pyrolysis mass spectrometry analysis ofpoly(vinyl acetate), poly(methyl methacrylate) and their blend coalesced frominclusion compounds formed with gamma-cyclodextrin[J]. Polym. Degrad.Stabil.,2006,91(1):11-Jan.
    [10]Wei M, Shin I D, Tonelli A E, et al. Partial miscibility in a nylon-6/nylon-66blend coalesced from their common alpha-cyclodextrin inclusion complex[J]. J.Polym. Sci. Part B Polym. Phys.,2004,42:1369-1378.
    [11]Uyar T, Oguz G, Tonelli A. E. Thermal degradation processes of poly(carbonate)and poly(methyl methacrylate) in blends coalesced either from their commoninclusion compound formed with gamma-cyclodextrin or precipitated from theircommon solution[J]. Polym. Degrad. Stab.,2006,91:2471-2481.
    [12]Shuai X T, Porbeni F E, Tonelli A E. Formation of and coalescence from theinclusion complex of a biodegradable block copolymer and alpha-cyclodextrin: Anovel means to modify the phase structure of biodegradable block copolymers[J].Macromolecules,2001,34:7355-7361.
    [13]Shuai X T, Wei M, Tonelli A E. Formation of and coalescence from the inclusioncomplex of a biodegradable block copolymer and A-cyclodextrin2: A novel wayto regulate the biodegradation behavior of biodegradable block copolymers[J].Biomacromolecules,2002,3(1):201-207.
    [14]Wei M, Shuai X T, Tonelli A E. Melting and crystallization behaviors ofbiodegradable polymers enzymatically coalesced from their cyclodextrininclusion complexes[J]. Biomacromolecules,2003,4(3):783-792.
    [15]Wang X S, Kim H K, Fujita Y. Relaxation and reinforcing effects of polyrotaxanein an epoxy resin matrix[J]. Macromolecules,2006,39:1046-1052.
    [16]Araki J, Kataoka T, Katsuyama N. A preliminary study for fiber spinning ofmixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithiumchloride (DMAc/LiCl) solvent system[J]. Polymer,2006,47:8241-8246.
    [17]Tsai C C, Leng S W, Jeong K U, et al. Supramolecular Structure ofbeta-Cyclodextrin and Poly(ethylene oxide)-block-poly(propyleneoxide)-block-poly(ethylene oxide) Inclusion Complexes[J]. Macromolecules,2010,43(22):9454-9461.
    [18]Tsai C C, Zhang W B, Wang C L, et al. Evidence of formation of site-selectiveinclusion complexation between beta-cyclodextrin and poly(ethyleneoxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers[J]. J.Chem. Phys.,2010,132(20):204903.
    [19]Huang J, Zhou Z, Chang P. Soy Protein-Based Nanocomposites Reinforced bySupramolecular Nanoplatelets Assembled from Pluronic Polymers/b-Cyclodextrin Pseudopolyrotaxanes[J]. J. Appl. Polym. Sci.,2008,107:409-417.
    [20]Wicks Z W, Wicks D A, Rosthauser J W. Two packagewaterborne urethanesystems[J]. Prog. Org. Coat.,2002,44:161.
    [21]Noble K L. Waterborne polyurethanes [J]. Prog. Org. Coat.,1997,32:131-136.
    [22]Yen M S, Tsai P Y. Effects on the structure and properties of membranes formedby blending polydimethylsiloxane polyurethane into different soft-segmentwaterborne polyurethanes[J]. J. Appl. Polym. Sci.,2006,102:210-221.
    [23]Kim B K, Seo J W, Jeong H M. Morphology and properties of waterbornepolyurethane/clay nanocomposites[J]. Eur. Polym. J.,2003,39:85-91.
    [24]Lee H T, Hwang J J, Liu H J. Effects of Ionic Interactions between Clay andWaterborne Polyurethanes on the Structure and Physical Properties of TheirNanocomposite Dispersions[J]. J. Polym. Sci. Part A Polym. Chem.,2006,44:5801-5807.
    [25]Kuan H C, Ma C C, Chuang W P. Hydrogen bonding, mechanical properties, andsurface morphology of clay/waterborne polyurethane nanocomposites[J]. J.Polym. Sci. Part B Polym. Phys.,2005,43(1):1-12.
    [26]Lee H T, Lin L H. Waterborne Polyurethane/Clay Nanocomposites: Novel Effectsof the Clay and Its Interlayer Ions on the Morphology, Physical and ElectricalProperties[J]. Macromolecules,2006,39:6133-6141.
    [27]Kuan H C, Ma C C, Chuang W P. Synthesis, thermal, mechanical and rheologicalproperties of multiwall carbon nanotube/waterborne polyurethanenanocomposite[J]. Compos. Sci. Technol.,2005,65(11-12):1703.
    [28]Zhao C, Zhang W, Sun D. Preparation and mechanical properties of waterbornepolyurethane/carbon nanotube composites[J]. Polym. Compos.,2009,30(5):649-654.
    [29]Kwon J Y, Kim H D. Preparation and properties of acid-treated multiwalledcarbon nanotube/waterborne polyurethane nanocomposites[J]. J. Appl. Polym.Sci.,2005,96:595-604.
    [30]Kwon J, Kim H. Comparison of the properties of waterbornepolyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbonnanotube composites prepared by in situ polymerization[J]. J. Polym. Sci. Part APolym. Chem.,2005,43(17):3973-3985.
    [31]Cao X D, Dong H, Li C M. New nanocomposite materials reinforced with flaxcellulose nanocrystals in waterborne folyurethane[J]. Biomacromolecules,2007,8:899-904.
    [32]Chen G J, Wei M, Huang J. Simultaneous Reinforcing and Toughening: NewNanocomposites of Waterborne Polyurethane Filled with Low Loading Level ofStarch Nanocrystals[J]. Polymer,2008,49:1860-1870.
    [33]Chang P R, Ai F J, Huang J. Effects of Starch Nanocrystal-graft-Polycaprolactoneon Mechanical Properties of Waterborne Polyurethane-Based Nanocomposites[J].J. Appl. Polym. Sci.,2009,111:619-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700