用户名: 密码: 验证码:
亚抑菌浓度抗生素对紫色杆菌群体感应系统的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪20年代末青霉素的发现,开辟了抗生素治疗的新时代,许多感染性疾病从此得到了有效控制。但是,随着抗生素的广泛使用、错用和滥用,细菌耐药性越来越严重,涌现出了大量的耐药菌、多重耐药菌甚至超级耐药菌株,这些问题已成为制约人类生存和发展的极大危机。我们国家是世界上抗生素滥用最严重的国家之一,每年约有8万人死于抗生素泛滥使用导致的不良反应,且死亡数量每年都在递增,细菌耐药问题和其他国家相比更加严峻。因此,如何解决细菌耐药难题和发现新的药物靶点研发新型抗生素已经迫在眉睫。研究表明抗生素在低于治疗剂量即亚抑菌浓度(subinhibitory concentrations)条件下引起的生物学效应是临床上引起细菌耐药的一个重要因素。因此研究抗生素亚抑菌效应不仅对分析细菌耐药机理、发现新的药物靶点具有重要作用,而且抗生素在亚抑菌浓度下产生的生理生化反应对临床给药剂量和给药时间都有非常重要的指导意义。
     本研究中,我们发现在紫色杆菌培养平板上卡那霉素抑菌圈外围紫色菌素合成明显增强。实验证明这种增强作用是由亚抑菌浓度卡那霉素引起,且其在1/4、1/6、1/8MIC时均明显促进紫色杆菌紫色菌素合成,其中1/6MIC促进效果高达25%。这种现象在临床常见抗生素阿米卡星、庆大霉素、红霉素、四环素中同样存在,但促进效果均不如卡那霉素明显。由于紫色杆菌中紫色菌素合成受群体感应系统密切调控,我们采用荧光定量PCR和生物报告菌株分析了亚抑菌浓度抗生素作用下紫色杆菌信号分子合成酶基因转录水平和信号分子产量,实验结果表明亚抑菌卡那霉素明显提高了群体感应信号分子合成酶基因的转录水平和信号分子的产生。此外,群体感应增强同时促进了与其相关的几丁质酶产生和细菌生物被膜形成。进一步研究显示,在抗生素刺激下与紫色杆菌生物被膜形成相关的swimming, swarmming运动行为和聚集能力明显增强。上述结果表明,亚抑菌浓度抗生素促进紫色杆菌群体感应行为发生。
     c-di-GMP是细菌中普遍存在的第二信使,其调控的多种细菌行为如:细胞运动、生物被膜形成等均与群体感应系统相互交叉,暗示c-di-GMP信号系统和群体感应信号系统相互关联。在本论文中,我们采用双亲接合转化方式成功将来自大肠杆菌的c-di-GMP合成基因adrA导入紫色杆菌中。当过表达adrA时,紫色杆菌群体感应行为明显受到抑制。荧光定量PCR实验结果显示adrA转入后紫色杆菌群体感应信号分子合成基因的转录水平下调。信号分子定量分析也得到了一致的实验结果。同时,受群体感应系统调节的紫色菌素合成和几丁质酶产生都受到明显抑制。这些结果表明,adrA可能通过增加c-di-GMP合成量来调节紫色杆菌群体感应行为。
     传统的细胞内c-di-GMP监测方法是利用放射性同位素对c-di-GMP合成底物GTP进行标记,然后利用薄层层析和放射自显影监测胞内的同位素量,该方法对实验条件要求高、操作繁琐而且很难实时反映胞内c-di-GMP含量。为了解决这一问题,我们利用c-di-GMP能够作为核糖开关配体分子调控基因表达原理构建了c-di-GMP核糖开关监测模型并以此模型监测抗生素作用下细胞内c-di-GMP水平变化,从而确定抗生素是否通过第二信使调控细菌群体感应系统。首先,我们分别从霍乱弧菌VC16961、腊样芽孢杆菌和嗜水气单胞菌基因组上克隆了六个c-di-GMP核糖开关(riboswitch)基因。然后分别利用sacB和lacZ报告基因成功构建了6组c-di-GMP含量变化体内检测模型。通过结构优化和功能验证,我们获得了一个特异性强,灵敏度高的c-di-GMP核糖开关生物检测模型Ahy-1。利用此模型我们检测了亚抑菌浓度抗生素作用下紫色杆菌胞内c-di-GMP含量变化,结果表明亚抑菌浓度抗生素下调了紫色杆菌胞内c-di-GMP水平。由于c-di-GMP负调控紫色杆菌群体感应系统,因此我们认为亚抑菌浓度抗生素能通过c-di-GMP信号通路调节紫色杆菌群体感应行为。
     综上所述:本文我们发现并证明了亚抑菌浓度抗生素促进紫色杆菌群体感应发生,探究了c-di-GMP合成酶基因adrA转入后对紫色杆菌群体感应行为的调控,构建并优化了c-di-GMP核糖开关生物检测模型,证明了亚抑菌浓度抗生素信号能通过影响紫色杆菌c-di-GMP信号通路调节群体感应行为。本论文的研究为解决临床细菌耐药和发现新的药物作用靶点、开发新型抗感染药物提供了新的理论依据。同时,为抗菌药物在临床使用时趋利避害,合理应用提供了有价值的参考。
In the late1920s, the discovery of penicillin opened up a new era of antibiotictreatment and many infectious diseases have been effectively controlled from then on.However, with the misuse and abuse of antibiotics, bacterial resistance is more andmore serious and a large number of drug-resistant bacteria, multi-resistant bacteriaand even super-resistant strains emergence. These problems have restricted thesurvival and development of human. Our country is one of the most seriousantibiotics-abuse countries where the problem of bacterial resistance is more severecompared to other countries. Each year about80,000people died due to the adversereaction of antibiotic abuse, and the number is increasing progressively every year.Therefore, how to solve the problem of bacterial resistance and find novel drug targetsis imminent. It has been proposed that the biological effect caused by antibiotics atsubinhibitory concentrations (less than therapeutic dose) is an important factor inclinical bacterial resistance. The study of antibiotic-effect at subinhibitoryconcentrations will not only play an important role in the analysis of bacterialresistance mechanism, but also have great significance for guiding clinical dosage andadministration time.
     In this study, we found a clear enhancement of violacein production at the edge ofthe kanamycin inhibition zone when strain CV12472was grown on plates. Our datashowed that this enhancement was caused by kanamycin at subinhibitoryconcentrations and violacein production was promoted when the concentration ofantibiotics was1/4,1/6and1/8of MICs. A peak induction occurred in the presence ofkanamycin at1/6MIC. The amount of violacein was increased by25%at thisconcentration. Similar results were observed in1/4MIC of amikacin,1/2MIC ofgentamycin,1/16MIC of tetracycline, and1/8MIC of erythromycin, but the effect is not as obvious as1/6MIC of kanamycin. In Chromobacterium violaceum, thesynthesis of violacein is under the control of QS. Thus, we analyzed the violaceinsignal molecule synthase gene and signal molecule production with quantitativereal-time PCR and signal molecule report strain, respectively. The results showed thatkanamycin at1/6MIC enhanced the transcription of signal molecule synthetase geneand the production of QS signaling molecules N-acyl-L-homoserine lactones. At thesame time, antibiotics promoted the QS controlled virulence, including chitinaseproduction and biofilm formation. Besides, a positive flagellar activity and increasedbacterial clustering ability were found to be related to the antibiotic-induced biofilmformation. These results indicated that antibiotics at subinhibitory concentrationsimproved the QS behavior of C. violaceum.
     Cyclic di-guanosine monophosphate (c-di-GMP) is the second messenger inbacteria and triggers wide-ranging physiological changes interdisciplinary with QS,such as cell movement and biofilm formation, which suggests that c-di-GMP signalsystem and QS signal system are not separated. In this thesis, we transferred thec-di-GMP synthetase gene adrA of E. coli into C. violaceum successfully withconjugal transfer and the QS behavior of it was inhibited obviously when overexpressed adrA. Quantitative real-time PCR analysis showed that adrA decreased thegene transcription level of the violacein signal molecule synthase. Signal moleculequantitative analysis was consistent with these results. At the same time, violaceinsynthesis and chitinase production were both inhibited. These results indicated thatadrA regulate QS behavior of C. violaceum by increasing the c-di-GMP synthesis.
     The traditional cell c-di-GMP monitoring method is using radioisotopes ofc-di-GMP synthesis substrate GTP tag, and then detecting the intracellular amount ofisotope with thin layer chromatography and autoradiography. However, this methodrequests high experimental condition, operation is complicated and it is difficult toreflect intracellular c-di-GMP content in real-time. To solve this problem, we built thec-di-GMP riboswitch monitoring model according the principle of c-di-GMP acting asriboswitch ligand molecular regulates gene expression. Then, we used this model tomonitor the intracellular level of c-di-GMP changes and determine whether antibiotics regulate bacterial QS system through c-di-GMP. Here we cloned six c-di-GMPriboswitch genes from the genomes of Vibrio cholera VC16961, Aeromonashydrophila and Bacillus cereus, and constructed six c-di-GMP content-changedetection models in vivo using sacB and lacZ biological reporter gene successfully.Through function verification and structure optimization, we got a strong specificityand high sensitivity c-di-GMP riboswitch biological detection model Ahy-1. Usingthis model, we found that antibiotics at subinhibitory concentrations decreased thelevel of c-di-GMP and antibiotics regulated QS behavior through c-di-GMP signalpathway in C. violaceum.
     In summary, we proved that antibiotics at subinhibitory concentrations improvedthe QS behavior of C. violaceum, demonstrated c-di-GMP regulation of QS behavior,constructed a strong specificity and high sensitivity c-di-GMP riboswitch biologicaldetection model and found that antibiotics at subinhibitory concentrations regulatedQS behavior through c-di-GMP signal pathway in C. violaceum. Our findings in thisthesis provided a new theoretical basis to solve clinical bacterial resistance anddiscover new drug targets for developing new anti-infective drugs. Meanwhile, itprovided valuable reference for antibacterial drugs in clinical use.
引文
[1] Stearns S.C., Issues in evolutionary medicine. Am J Hum Biol,2005,17(2):131-40.
    [2] Williams G.C. and Nesse R.M., The dawn of Darwinian medicine. Q Rev Biol,1991,66(1):1-22.
    [3] Stearns S.C., Nesse R.M., Govindaraju D.R., et al., Evolution in health and medicine Sacklercolloquium: Evolutionary perspectives on health and medicine. Proc Natl Acad Sci USA,2010,107Suppl1:1691-5.
    [4]曾小龙,陈振强。抗生素的发展与应用。广东教育学院学报,2003,23(2):78-81。
    [5] Yong D., Toleman M.A., Giske C.G., et al., Characterization of a new metallo-beta-lactamasegene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique geneticstructure in Klebsiella pneumoniae sequence type14from India. Antimicrob AgentsChemother,2009,53(12):5046-54.
    [6] Walsh C., Where will new antibiotics come from? Nat Rev Microbiol,2003,1(1):65-70.
    [7] Minagawa N., Yabu Y., Kita K., et al., An antibiotic, ascofuranone, specifically inhibitsrespiration and in vitro growth of long slender bloodstream forms of Trypanosoma bruceibrucei. Mol Biochem Parasitol,1997,84(2):271-80.
    [8] Moazed D. and Noller H.F., Interaction of antibiotics with functional sites in16S ribosomalRNA. Nature,1987,327(6121):389-94.
    [9] Leclercq R. and Courvalin P., Resistance to macrolides and related antibiotics in Streptococcuspneumoniae. Antimicrob Agents Chemother,2002,46(9):2727-34.
    [10] Dheen S.T., Kaur C., and Ling E.A., Microglial activation and its implications in the braindiseases. Curr Med Chem,2007,14(11):1189-97.
    [11] Bye N., Habgood M.D., Callaway J.K., et al., Transient neuroprotection by minocyclinefollowing traumatic brain injury is associated with attenuated microglial activation but nochanges in cell apoptosis or neutrophil infiltration. Exp Neurol,2007,204(1):220-33.
    [12] Van Laar E.S., Weitman S., MacDonald J.R., et al., Antitumor activity of irofulvenmonotherapy and in combination with mitoxantrone or docetaxel against human prostatecancer models. Prostate,2004,59(1):22-32.
    [13] Paltineanu R., Sarmasanu O., and Chirila A., The antibiotic and chemotherapeutic resistanceof Shigella strains isolated in the Microbiology Laboratory of I.P.S.M.P. Neamt in1991-1995.Bacteriol Virusol Parazitol Epidemiol,1997,42(1-2):33-8.
    [14] Goh E.B., Yim G., Tsui W., et al., Transcriptional modulation of bacterial gene expression bysubinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA,2002,99(26):17025-30.
    [15] Hostacka A., Pharmacodynamic parameters of gentamicin and its effect on the surfacehydrophobicity of Acinetobacter baumannii. Ceska Slov Farm,2000,49(1):41-4.
    [16] Shen L., Shi Y., Zhang D., et al., Modulation of secreted virulence factor genes bysubinhibitory concentrations of antibiotics in Pseudomonas aeruginosa. J Microbiol,2008,46(4):441-7.
    [17] Mlot C., Microbiology. Antibiotics in nature: beyond biological warfare. Science,2009,324(5935):1637-9.
    [18] Linares J.F., Gustafsson I., Baquero F., et al., Antibiotics as intermicrobial signaling agentsinstead of weapons. Proc Natl Acad Sci USA,2006,103(51):19484-9.
    [19] Davies J., Spiegelman G.B., and Yim G., The world of subinhibitory antibiotic concentrations.Curr Opin Microbiol,2006,9(5):445-53.
    [20] Yim, Huimi Wang H, and J D.F., Antibiotics as signalling molecules. PhilosophicalTransactions of the Royal Society B: Biological Sciences,2007,362(1483):1195-1200.
    [21] Alksne L.E. and Dunman P.M., Target-based antimicrobial drug discovery. Methods Mol Biol,2008,431:271-83.
    [22] Cheng Q., Wang S., and Salyers A.A., New approaches for anti-infective drug discovery:antibiotics, vaccines and beyond. Curr Drug Targets Infect Disord,2003,3(1):66-75.
    [23] Cegelski L., Marshall G.R., Eldridge G.R., et al., The biology and future prospects ofantivirulence therapies. Nat Rev Microbiol,2008,6(1):17-27.
    [24] Gracias D.T. and Katsikis P.D., MicroRNAs: Key Components of Immune Regulation. AdvExp Med Biol,2012,780:15-26.
    [25] Fonseca A.P., Extremina C., Fonseca A.F., et al., Effect of subinhibitory concentration ofpiperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol,2004,53(Pt9):903-10.
    [26]方晔,李向阳,杨锦红,等。亚抑菌浓度头孢西丁对耐药质粒接合转移的影响。中华微生态学杂志,2008,20(3):243-246。
    [27] Niu C., Afre S., and Gilbert E.S., Subinhibitory concentrations of cinnamaldehyde interferewith quorum sensing. Lett Appl Microbiol,2006,43(5):489-94.
    [28] Lerat E. and Moran N.A., The evolutionary history of quorum-sensing systems in bacteria.Mol Biol Evol,2004,21(5):903-13.
    [29] Cakar A., Bacterial communication: quorum-sensing. Mikrobiyol Bul,2004,38(3):273-84.
    [30] Tateda K., Quorum-sensing systems in bacteria. Nihon Rinsho,2003,61Suppl3:272-9.
    [31] Nealson K.H., Platt T., and Hastings J.W., Cellular control of the synthesis and activity of thebacterial luminescent system. J Bacteriol,1970,104(1):313-22.
    [32] Cha C., Gao P., Chen Y.C., et al., Production of acyl-homoserine lactone quorum-sensingsignals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact,1998,11(11):1119-29.
    [33] Schauder S. and Bassler B.L., The languages of bacteria. Genes Dev,2001,15(12):1468-80.
    [34] Miller M.B. and Bassler B.L., Quorum sensing in bacteria. Annu Rev Microbiol,2001,55:165-99.
    [35] Swift S., Bainton N.J., and Winson M.K., Gram-negative bacterial communication by N-acylhomoserine lactones: a universal language? Trends Microbiol,1994,2(6):193-8.
    [36] Bassler B.L., Cell-to-cell communication in bacteria: a chemical discourse. Harvey Lect,2004,100:123-42.
    [37] Rasmussen T.B., Bjarnsholt T., Skindersoe M.E., et al., Screening for quorum-sensinginhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol,2005,187(5):1799-814.
    [38] Platt T.G. and Fuqua C., What's in a name? The semantics of quorum sensing. TrendsMicrobiol,2010,18(9):383-7.
    [39] Creczynski-Pasa T.B. and Antonio R.V., Energetic metabolism of Chromobacteriumviolaceum. Genet Mol Res,2004,3(1):162-6.
    [40] Dromigny J.A., Fall A.L., Diouf S., et al., Chromobacterium violaceum: a case of diarrhea inSenegal. Pediatr Infect Dis J,2002,21(6):573-4.
    [41] Fantinatti-Garboggini F., Almeida R., Portillo Vdo A., et al., Drug resistance inChromobacterium violaceum. Genet Mol Res,2004,3(1):134-47.
    [42] Brito C.F., Carvalho C.B., Santos F., et al., Chromobacterium violaceum genome: molecularmechanisms associated with pathogenicity. Genet Mol Res,2004,3(1):148-61.
    [43] Ferreira C.V., Bos C.L., Versteeg H.H., et al., Molecular mechanism of violacein-mediatedhuman leukemia cell death. Blood,2004,104(5):1459-64.
    [44] Sirinavin S., Techasaensiri C., Benjaponpitak S., et al., Invasive Chromobacterium violaceuminfection in children: case report and review. Pediatr Infect Dis J,2005,24(6):559-61.
    [45] McClean K.H., Winson M.K., Fish L., et al., Quorum sensing and Chromobacteriumviolaceum: exploitation of violacein production and inhibition for the detection ofN-acylhomoserine lactones. Microbiology,1997,143(Pt12):3703-11.
    [46] Stauff D.L. and Bassler B.L., Quorum sensing in Chromobacterium violaceum: DNArecognition and gene regulation by the CviR receptor. J Bacteriol,2011,193(15):3871-8.
    [47] Melo P.S., Maria S.S., Vidal B.C., et al., Violacein cytotoxicity and induction of apoptosis inV79cells. In Vitro Cell Dev Biol Anim,2000,36(8):539-43.
    [48] Bromberg N. and Duran N., Violacein biotransformation by basidiomycetes and bacteria. LettAppl Microbiol,2001,33(4):316-9.
    [49]王海胜,张晓霞,卢元,等。紫色杆菌素研究进展。化工进展,2008,27(3):325-321。
    [50] Duran N. and Menck C.F., Chromobacterium violaceum: a review of pharmacological andindustiral perspectives. Crit Rev Microbiol,2001,27(3):201-22.
    [51] The complete genome sequence of Chromobacterium violaceum reveals remarkable andexploitable bacterial adaptability. Proc Natl Acad Sci USA,2003,100(20):11660-5.
    [52] Antonio R.V. and Creczynski-Pasa T.B., Genetic analysis of violacein biosynthesis byChromobacterium violaceum. Genet Mol Res,2004,3(1):85-91.
    [53] Haun M., Pereira M.F., Hoffmann M.E., et al., Bacterial chemistry. VI. Biological activitiesand cytotoxicity of1,3-dihydro-2H-indol-2-one derivatives. Biol Res,1992,25(1):21-5.
    [54] Andrighetti-Frohner C.R., Antonio R.V., Creczynski-Pasa T.B., et al., Cytotoxicity andpotential antiviral evaluation of violacein produced by Chromobacterium violaceum. MemInst Oswaldo Cruz,2003,98(6):843-8.
    [55] Lichstein H.C. and Van De Sand V.F., The Antibiotic Activity of Violacein, Prodigiosin, andPhthiocol. J Bacteriol,1946,52(1):145-6.
    [56] Gauthier M.J., Shewan J.M., Gibson D.M., et al., Taxonomic position and seasonal variationsin marine neritic environment of some gram-negative antibiotic-producing bacteria. J GenMicrobiol,1975,87(2):211-8.
    [57] Costerton J.W., Introduction to biofilm. Int J Antimicrob Agents,1999,11(3-4):217-21;discussion237-9.
    [58] Costerton J.W., Lewandowski Z., DeBeer D., et al., Biofilms, the customized microniche. JBacteriol,1994,176(8):2137-42.
    [59] Wagner V.E. and Iglewski B.H., P. aeruginosa Biofilms in CF Infection. Clin Rev AllergyImmunol,2008,35(3):124-34.
    [60] Vebo H.C., Solheim M., Snipen L., et al., Comparative genomic analysis of pathogenic andprobiotic Enterococcus faecalis isolates, and their transcriptional responses to growth inhuman urine. PLoS One,2010,5(8): e12489.
    [61] Koubar M., Rodier M.H., and Frere J., Involvement of Minerals in Adherence of Legionellapneumophila to Surfaces. Curr Microbiol,2013.
    [62] Moon J.H., Kim C., Lee H.S., et al., Antibacterial and antibiofilm effects of iron chelatorsagainst Prevotella intermedia. J Med Microbiol,2013.
    [63] Beaulieu E.D., Ionescu M., Chatterjee S., et al., Characterization of a diffusible signalingfactor from Xylella fastidiosa. MBio,2013,4(1): e00539-12.
    [64] Zhang H., Ma Z., Li Y., et al., Identification of a novel collagen type capital I,Ukrainian-binding protein from Streptococcus suis serotype2. Vet J,2013.
    [65] Schaber J.A., Carty N.L., McDonald N.A., et al., Analysis of quorum sensing-deficientclinical isolates of Pseudomonas aeruginosa. J Med Microbiol,2004,53(Pt9):841-53.
    [66] Davies D.G., Parsek M.R., Pearson J.P., et al., The involvement of cell-to-cell signals in thedevelopment of a bacterial biofilm. Science,1998,280(5361):295-8.
    [67] Wopperer J., Cardona S.T., Huber B., et al., A quorum-quenching approach to investigate theconservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex.Appl Environ Microbiol,2006,72(2):1579-87.
    [68] Throup J.P., Koretke K.K., Bryant A.P., et al., A genomic analysis of two-component signaltransduction in Streptococcus pneumoniae. Mol Microbiol,2000,35(3):566-76.
    [69] Li Y.H., Tang N., Aspiras M.B., et al., A quorum-sensing signaling system essential for geneticcompetence in Streptococcus mutans is involved in biofilm formation. J Bacteriol,2002,184(10):2699-708.
    [70] Whiteley M., Bangera M.G., Bumgarner R.E., et al., Gene expression in Pseudomonasaeruginosa biofilms. Nature,2001,413(6858):860-4.
    [71] Pumbwe L., Skilbeck C.A., and Wexler H.M., Presence of quorum-sensing systems associatedwith multidrug resistance and biofilm formation in Bacteroides fragilis. Microb Ecol,2008,56(3):412-9.
    [72] Maseda H., Sawada I., Saito K., et al., Enhancement of the mexAB-oprM efflux pumpexpression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of themexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother,2004,48(4):1320-8.
    [73] Yang S., Lopez C.R., and Zechiedrich E.L., Quorum sensing and multidrug transporters inEscherichia coli. Proc Natl Acad Sci USA,2006,103(7):2386-91.
    [74] Buroni S., Pasca M.R., Flannagan R.S., et al., Assessment of three Resistance-Nodulation-CellDivision drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance.BMC Microbiol,2009,9:200.
    [75] Bagge N., Schuster M., Hentzer M., et al., Pseudomonas aeruginosa biofilms exposed toimipenem exhibit changes in global gene expression and beta-lactamase and alginateproduction. Antimicrob Agents Chemother,2004,48(4):1175-87.
    [76] Romling U., Gomelsky M., and Galperin M.Y., C-di-GMP: the dawning of a novel bacterialsignalling system. Mol Microbiol,2005,57(3):629-39.
    [77] Ross P., Weinhouse H., Aloni Y., et al., Regulation of cellulose synthesis in Acetobacterxylinum by cyclic diguanylic acid. Nature,1987,325(6101):279-81.
    [78] Tal R., Wong H.C., Calhoon R., et al., Three cdg operons control cellular turnover of cyclicdi-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains inisoenzymes. J Bacteriol,1998,180(17):4416-25.
    [79] Amikam D. and Benziman M., Cyclic diguanylic acid and cellulose synthesis inAgrobacterium tumefaciens. J Bacteriol,1989,171(12):6649-55.
    [80] Chan C., Paul R., Samoray D., et al., Structural basis of activity and allosteric control ofdiguanylate cyclase. Proc Natl Acad Sci USA,2004,101(49):17084-9.
    [81] Schmidt A.J., Ryjenkov D.A., and Gomelsky M., The ubiquitous protein domain EAL is acyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EALdomains. J Bacteriol,2005,187(14):4774-81.
    [82] Hengge R., Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal,2010,3(149):pe44.
    [83] Nakhamchik A., Wilde C., and Rowe-Magnus D.A., Cyclic-di-GMP regulates extracellularpolysaccharide production, biofilm formation, and rugose colony development by Vibriovulnificus. Appl Environ Microbiol,2008,74(13):4199-209.
    [84] Tischler A.D. and Camilli A., Cyclic diguanylate regulates Vibrio cholerae virulence geneexpression. Infect Immun,2005,73(9):5873-82.
    [85] Lim B., Beyhan S., and Yildiz F.H., Regulation of Vibrio polysaccharide synthesis andvirulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. JBacteriol,2007,189(3):717-29.
    [86] Kirillina O., Fetherston J.D., Bobrov A.G., et al., HmsP, a putative phosphodiesterase, andHmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersiniapestis. Mol Microbiol,2004,54(1):75-88.
    [87] Karaolis D.K., Rashid M.H., Chythanya R., et al., c-di-GMP (3'-5'-cyclic diguanylic acid)inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob AgentsChemother,2005,49(3):1029-38.
    [88] Simm R., Morr M., Kader A., et al., GGDEF and EAL domains inversely regulate cyclicdi-GMP levels and transition from sessility to motility. Mol Microbiol,2004,53(4):1123-34.
    [89] Huang B., Whitchurch C.B., and Mattick J.S., FimX, a multidomain protein connectingenvironmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol,2003,185(24):7068-76.
    [90] Kazmierczak B.I., Lebron M.B., and Murray T.S., Analysis of FimX, a phosphodiesterase thatgoverns twitching motility in Pseudomonas aeruginosa. Mol Microbiol,2006,60(4):1026-43.
    [91] D'Argenio D.A., Calfee M.W., Rainey P.B., et al., Autolysis and autoaggregation inPseudomonas aeruginosa colony morphology mutants. J Bacteriol,2002,184(23):6481-9.
    [92] Lee V.T., Matewish J.M., Kessler J.L., et al., A cyclic-di-GMP receptor required for bacterialexopolysaccharide production. Mol Microbiol,2007,65(6):1474-84.
    [93] Beyhan S., Odell L.S., and Yildiz F.H., Identification and characterization of cyclicdiguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol,2008,190(22):7392-405.
    [94] Lim B., Beyhan S., Meir J., et al., Cyclic-di-GMP signal transduction systems in Vibriocholerae: modulation of rugosity and biofilm formation. Mol Microbiol,2006,60(2):331-48.
    [95] Paul R., Weiser S., Amiot N.C., et al., Cell cycle-dependent dynamic localization of a bacterialresponse regulator with a novel di-guanylate cyclase output domain. Genes Dev,2004,18(6):715-27.
    [96] Jenal U. and Malone J., Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet,2006,40:385-407.
    [97] Sudarsan N., Lee E.R., Weinberg Z., et al., Riboswitches in eubacteria sense the secondmessenger cyclic di-GMP. Science,2008,321(5887):411-3.
    [98] Mandal M. and Breaker R.R., Gene regulation by riboswitches. Nat Rev Mol Cell Biol,2004,5(6):451-63.
    [99] Weinberg Z., Barrick J.E., Yao Z., et al., Identification of22candidate structured RNAs inbacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res,2007,35(14):4809-19.
    [100] Edwards T.E., Klein D.J., and Ferre-D'Amare A.R., Riboswitches: small-molecule recognitionby gene regulatory RNAs. Curr Opin Struct Biol,2007,17(3):273-9.
    [101]路新枝,刘湛军,于文功。环二鸟苷酸———新型的细菌第二信使。中国生物化学与分子生物学报,2009,25(5):10-11。
    [102] Cochrane J.C. and Strobel S.A., Riboswitch effectors as protein enzyme cofactors. RNA,2008,14(6):993-1002.
    [103] Klein D.J. and Ferre-D'Amare A.R., Structural basis of glmS ribozyme activation byglucosamine-6-phosphate. Science,2006,313(5794):1752-6.
    [104]骆迎峰,陈跃磊。核开关:一个新的基因调控元件,一类潜在的药物靶点。生物化学与生物物理进展,2004,31(8):684-87。
    [105] Montange R.K. and Batey R.T., Riboswitches: emerging themes in RNA structure andfunction. Annu Rev Biophys,2008,37(2):117-33.
    [106]刘湛军,路新枝,姜鹏,等。核糖开关———药物开发的新靶点。武汉大学学报(理学版),2010,56(3):313-319。
    [107] Breaker R.R., Complex riboswitches. Science,2008,319(5871):1795-97.
    [108] Lundrigan M.D., Koster W., and Kadner R.J., Transcribed sequences of the Escherichia colibtuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA,1991,88(4):1479-83.
    [109] Sudarsan N., Wickiser J.K., Nakamura S., et al., An mRNA structure in bacteria that controlsgene expression by binding lysine. Genes Dev,2003,17(21):2688-97.
    [110] Mandal M., Boese B., Barrick J.E., et al., Riboswitches control fundamental biochemicalpathways in Bacillus subtilis and other bacteria. Cell,2003,113(5):577-86.
    [111] Fernandez-Luna M.T. and Miranda-Rios J., Riboswitch folding: one at a time and step by step.RNA Biol,2008,5(1):20-23.
    [112] Sudarsan N., Barrick J.E., and Breaker R.R., Metabolite-binding RNA domains are present inthe genes of eukaryotes. RNA,2003,9(6):644-47.
    [113] Nudler E. and Mironov A.S., The riboswitch control of bacterial metabolism. Trends BiochemSci,2004,29(1):11-17.
    [114] Lai E.C., RNA sensors and riboswitches: self-regulating messages. Curr Biol,2003,13(7):R285-91.
    [115] Winkler W.C., Nahvi A., Sudarsan N., et al., An mRNA structure that controls gene expressionby binding S-adenosylmethionine. Nat Struct Biol,2003,10(9):701-07.
    [116] Clark G.T., Koyano K., and Nivichanov A., Case-based learning for orofacial pain andtemporomandibular disorders. J Dent Educ,1993,57(11):815-20.
    [117] Jones B.V., Mahenthiralingam E., Sabbuba N.A., et al., Role of swarming in the formation ofcrystalline Proteus mirabilis biofilms on urinary catheters. J Med Microbiol,2005,54(Pt9):807-13.
    [118] O'Toole G.A. and Kolter R., Flagellar and twitching motility are necessary for Pseudomonasaeruginosa biofilm development. Mol Microbiol,1998,30(2):295-304.
    [119] Pratt L.A. and Kolter R., Genetic analysis of Escherichia coli biofilm formation: roles offlagella, motility, chemotaxis and type I pili. Mol Microbiol,1998,30(2):285-93.
    [120] Tagliabue L., Antoniani D., Maciag A., et al., The diguanylate cyclase YddV controlsproduction of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation ofthe PNAG biosynthetic pgaABCD operon. Microbiology,2010,156(Pt10):2901-11.
    [121] Ueda A. and Wood T.K., Connecting quorum sensing, c-di-GMP, pel polysaccharide, andbiofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885).PLoS Pathog,2009,5(6): e1000483.
    [122] Welz R. and Breaker R.R., Ligand binding and gene control characteristics of tandemriboswitches in Bacillus anthracis. RNA,2007,13(4):573-82.
    [123] Linares JF, Gustafsson I, Baquero F, et al., Antibiotics as intermicrobial signaling agentsinstead of weapons. Proceedings of the National Academy of Sciences,2006,103(51):19484-19489.
    [124] Weber H., Pesavento C., Possling A., et al., Cyclic-di-GMP-mediated signalling within thesigma network of Escherichia coli. Mol Microbiol,2006,62(4):1014-34.
    [125] Smith K.D. and Strobel S.A., Interactions of the c-di-GMP riboswitch with its secondmessenger ligand. Biochem Soc Trans,2011,39(2):647-51.
    [126] Hoffman L.R., D'Argenio D.A., MacCoss M.J., et al., Aminoglycoside antibiotics inducebacterial biofilm formation. Nature,2005,436(7054):1171-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700