用户名: 密码: 验证码:
鸡胚生殖细胞减数分裂起始调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡胚常被用作发育生物学研究的动物模型,应用于深层次揭示动物发育的机理,尤其是生殖系统的发育,在实践中提高家禽的繁殖性能,在理论上阐明生殖细胞早期发育的调控机理。本实验以海兰鸡胚为材料,研究四个科学问题:①雌激素通过改变性腺的结构而影响生殖细胞性别发育的方向;②垂体-卵巢轴激素如何调控生殖细胞在有丝分裂和减数分裂起始之间的选择;③孕酮(P4)通过何种机制诱发生殖细胞减数分裂的起始;④碱性成纤维细胞生长因子(bFGF)是否参与调节卵巢内生殖细胞的发育。
     1.雌激素对生殖细胞发育方向的影响
     哺乳动物和鸟类生殖细胞减数分裂起始存在性别间差异,雌性生殖细胞于胚胎期起始减数分裂而雄性生殖细胞在胚胎期增殖后进入滞育阶段。早期生殖细胞减数分裂起始被认为可由性腺的结构所决定,但缺少体内的证据来证明。本研究使用雌激素(E2)和芳香化酶抑制剂(AI)处理进行性别逆转,改变性腺结构检测生殖细胞性别决定因素。结果表明:E2或AI处理均可引起性腺形态逆转;处理后两性卵巢样皮质内生殖细胞进入减数分裂状态,而精索状结构中均未见此现象发生。推测出现上述现象原因是E2和AI处理后使得性腺内中视黄酸(RA)浓度发生了改变。编码RA主要降解酶基因(Cyp26b1的表达量出现了性别间差异。进一步使用免疫组化染色发现Cyp26b1主要在睾丸精索状结构中表达。综上所述:雌激素通过改变性腺结构影响生殖细胞减数分裂的起始时间,其中Cyp26bl的分布引起RA浓度差异是关键因素。
     2.垂体-卵巢轴激素调控生殖细胞有丝分裂与减数分裂的选择
     胚胎期卵巢生殖细胞发育面临两个重要事件:有丝分裂和起始减数分裂。本研究利用鸡胚为模型,研究垂体-卵巢轴激素在生殖细胞有丝分裂和减数分裂起始之间选择所发挥的调控作用。对鸡胚进行卵泡刺激素(FSH)和黄体生成素(LH)注射以改变体内促性腺激素的浓度,结果表明:FSH处理下调了减数分裂基因及其蛋白的表达并显著提高了增殖状态生殖细胞的比例;LH处理上调了减数分裂基因及其蛋白的表达,对生殖细胞的增殖无显著影响。结果还表明,miR181a*的转录受到促性腺激素的调控参与了垂体-卵巢轴对生殖细胞发育的调控。进一步研究发现,FSH和LH处理分别上调了类固醇激素合成酶Cyp19al和3βHSDII的转录。使用AI与FSH共同处理,发现AI可阻止FSH所发挥的作用。LH处理可增加卵巢中3βHSDII的转录,促进P4的合成,参与了减数分裂的起始。综上所述:鸡胚垂体-卵巢轴激素通过调节卵巢内类固醇激素的分泌,分别调节了生殖细胞增殖和减数分裂的起始。
     3.P4调控生殖细胞减数分裂起始
     最新研究表明,RA可能不是唯一的内源性引发减数分裂起始的因子。作者前期研究证实LH通过刺激P4合成诱发生殖细胞减数分裂的起始。在本研究中,雌性鸡胚注射P4可使生殖细胞提前起始减数分裂;体内P4处理对睾丸生精细胞没有显著影响,但P4刺激了体外培养的睾丸生殖细胞起始减数分裂。抑制RA受体不能阻止P4诱发的生殖细胞减数分裂起始,提示RA受体并没有介导该过程。此外,P4处理对RA主要的合成和代谢酶及RA受体mRNA的表达均无显著影响;使用高效液相色谱分析发现,P4处理并未改变卵巢内RA的浓度,这表明P4并非通过RA而发挥作用。利用鸡胚生殖细胞一体细胞共培养模型,使用siRNA敲减P4核受体PRA及PRB表达后,然后用P4处理仍可刺激生殖细胞进入减数分裂,提示P4的作用可能并非通过与核受体结合而发挥作用,确切的机制有待进一步研究。综上所述,本研究为鸡胚生殖细胞减数分裂起始机制提供了新的见解,P4可能是RA信号之外调节生殖细胞减数分裂起始的内分泌因子。
     4.bFGF调节鸡胚卵巢生殖细胞的发育
     在动物胚胎发育过程中,bFGF具有抑制细胞分化和促进增殖的作用。前期报道中鸡胚卵巢内部分生殖细胞没有起始减数分裂。本研究中使用体内和体外方法探索了bFGF在鸡胚卵巢生殖细胞的作用。结果表明:鸡胚卵巢bFGF随着减数分裂的进行,其表达从全卵巢表达转变为卵巢髓质表达;通过RT-PCR及原位杂交的方法,证实其受体在卵巢中均有表达;使用卵巢培养模型发现bFGF显著降低了RA促进减数分裂起始的作用,且与RA信号无关。此外,bFGF促进了生殖细胞保持未分化状态(SSEA阳性)并增殖。体内注射bFGF后出雏鸡卵巢皮质层厚度增加。综上,bFGF抑制了RA诱发的生殖细胞减数分裂起始,使胚胎卵巢生殖细胞保持未分化状态并进一步增殖。
     5.成年鸡卵巢生殖细胞再生的探索
     传统理论认为,雌性哺乳动物和鸟类出生(出壳)时只具备卵母细胞的有限储备池,失去了产生卵母细胞的能力。然而,最近的研究结果却与这一传统观点不符,认为动物卵巢内卵母细胞的数量并非固定,在某些条件下可以再生。前期的实验表明,bFGF可使卵巢中部分卵原细胞保持未分化状态。通过石蜡切片及免疫组化和RT-PCR检测发现:在胚胎期直至成年鸡卵巢中均发现生殖细胞样的细胞簇群,并在胞质中表达Dazl蛋白;检测到不同阶段成年鸡卵巢中均有减数分裂相关基因的表达。推测成年鸡卵巢中可能存在卵原细胞起始减数分裂过程。
     综上所述,本研究证实了RA调控胚胎期生殖细胞减数分裂起始的作用,这一过程受到性腺环境、垂体-卵巢轴及卵巢旁分泌、自分泌的调节。此外,P4具有独立于RA信号之外诱发生殖细胞减数分裂起始的作用。在此基础上,探索了成鸡卵巢是否具有生殖细胞再生现象。这些结果为阐明早期生殖细胞发生的调控机理及提高家禽繁殖性能奠定了的理论基础。
At present, people's consumption and market force the poultry industries to choice high-reproductive performance individuals in the breeding. The reproductive performance depends on the follicular development of poultry. Thus, study of follicular development is the theoretical basis for understanding the regulation of reproductive function and improving the laying performance in poultry. Moreover, the poultry ovary constitutes an ideal model for studies of ovarian biology and follicular development. Here, we evaluated the effects of endocrine, paracrine and autocrine on the development of follicles and their related mechanism.1. Turnover of the germ cell developmental fate in the sex-reversed embryonic chickens by estrogen modulation.2. Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken.3. Progesterone (P4) regulates embryonic germ cell meiotic initiation independent of retinoic acid signaling in chicken.4. Basic fibroblast growth factor (bFGF) suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens. From these studies, we expected to provide theoretic guidance for improving the reproductive performance of poultry.
     1. Turnover of the germ cell developmental fate in the sex-reversed embryonic chickens by estrogen modulation
     The hypothesis that sex determination of germ cells depends upon their external environment rather than a cell-autonomous program had been widely accepted, but there exists little direct in vivo evidence to support this notion. Dazl, as an intrinsic factor for meiotic initiation, was strictly localized to the cytoplasm of both male and female embryonic germ cells, which indicates that the intrinsic Dazl may not be involved in sex determination. Then, the sex reversed chicken embryos were used to investigate germ cell development pattern in different microenvironments. Feminization of male (ZZ) gonads was caused by estrogen and masculinization of female (ZW) gonads by aromatase inhibitor. Meiotic germ cells appeared only in the ovarian-like cortex and mitotic germ cells appeared in the testis cord-like structures of both sexes. The abundance of retinoic acid (RA) metabolism enzyme mRNAs indicated that local levels of RA likely represents the signaling factor for germ cell meiotic initiation. Furthermore, the RA-degrading enzyme Cyp26b1was immunolocalised strictly in the testis cord-like structures of both sexes but not in the ovarian-like cortex. We proved through in vivo experiments that the fate of germ cells was predominantly determined by their gonadal environment instead of sex-specific intrinsic factors.
     2. Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken
     Gonadotropins are required for gametogenesis but in embryonic gonads this mechanism is not well understood. Here we use chicken embryos to investigate the mechanism that gonadotropins regulate the ovarian germ cell mitosis/meiosis decision. Treatment with follicle-stimulating hormone (FSH) delayed germ cell meiosis entry and promoted their proliferation. This action was blocked by an aromatase inhibitor. Treatment with luteinizing hormone (LH) accelerated germ cell meiosis entry and promoted transcription of3βHSDII to increase progesterone (P4) production. In the cultured ovaries, P4triggered meiotic initiation in germ cells. MiR181a*, which acts to downregulate the NR6A1transcript to prevent the meiotic initiation, was upregulated by FSH and downregulated by LH. Collectively, gonadotropins regulate germ cells mitosis and meiotic initiation through steroid hormones and a miRl81a*-mediated pathway. In particularly, FSH delays germ cell meiosis entry and promotes cell proliferation via estrogen while LH accelerates the meiotic initiation via elevated P4production.
     3. P4regulates embryonic germ cell meiotic initiation independent of retinoic acid signaling in chicken
     Meiosis is a special type of cell division that is restricted to germ cells. Recent studies demonstrate that the signaling molecule RA triggers germ cells to enter meiosis. However, many publications have revealed that RA may not be the only secreted inducer of meiosis. Progestin is an essential factor for the initiation of meiosis in teleosts. Here we used the chicken embryo to investigate whether P4regulates germ cell meiotic initiation in vertebrates which been reported that meiosis entry induced by RA. The female chicken embryos were challenged with P4at embryonic day9.5of incubation that accelerated germ cells meiosis entry. However, treated with P4did no effect on testicular germ cells in vivo but entered meiosis when testis-only culturing. The treatment of a pan-RAR antagonist, AGN193109cannot prevent germ cell meiotic initiation which induced by P4indicating no involvement of RA receptor-mediated signaling. Moreover, no significantly difference in abundances of RA metabolism-related enzymes (Raldh2and Cyp26bl) and RA receptor (RARβ) mRNAs and RA concentration in ovaries by P4treated in vivo. Use siRNA to knockdown both progesterone A and B in germ cell/somatic cell co-culture did not impaired meiosis suggest that PR is not required for P4-stimulated germ cell meiosis. Overall, this study provides new insights into the mechanisms of germ cell meiotic initiation in chicken. We conclude that P4regulates embryonic germ cell meiotic initiation independent of RA signaling.
     4. The bFGF Suppresses Meiosis and Promotes Mitosis of Ovarian Germ Cells in Embryonic Chickens
     The bFGF plays diverse roles in regulating cell proliferation, migration and differentiation during embryo development. In this study, the effect of bFGF on ovarian germ cell development was investigated in the embryonic chicken by in vitro and in vivo experiments. Results showed that a remarkable decrease in bFGF expression in the ovarian cortex was manifested during meiosis progression. With ovary organ culture, we revealed that meiosis was initiated after RA treatment alone but was decreased after combined bFGF treatment that was detected by real time RT-PCR, fluorescence immunohistochemistry and Giemsa staining. Further, no significant difference in mRNA expression of either RA metabolism-related enzymes (Raldh2and Cyp26b1) or RA receptors was displayed after bFGF challenge. This result suggests that the suppression of bFGF on meiosis was unlikely through inhibition of RA signaling. In addition, as a mitogen, bFGF administration increased germ cell proliferation (via BrdU incorporation) in cultured organ or cells in vitro and also in developing embryos in vivo. In conclusion, bFGF suppresses RA-induced entry of germ cells into meiosis to ensure embryonic ovarian germ cells to maintain at undifferentiated status and accelerate germ cell proliferation in the chicken.
     5. Neo-oogenesis in the adult chicken ovary
     It remains unclear whether neo-oogenesis occurs in postnatal ovaries of avis, based on studies in chicken. We thought to test whether adult chicken ovaries undergo neo-oogenesis.We took the approach of analyzing the expression of meiotic marker genes and genes for germ cell development. First, histological analysis of juvenile and young adult ovaries revealed the presence of large ovoid cells, resembling germ cells of fetal chicken ovaries. Immunohistochemical staining for Dazl, confirmed that these large ovoid cells were of a germline lineage. We show that active meiosis and neo-oogenesis are likely to exist in normal, adult, chicken ovaries. These data establish the existence of germ cells that sustain oocyte and follicle production in the adult chicken ovary.
     In conclusion, we investigated the developmental changes of chicken germ cells by the methods of morphology and immunohistochemistry and the effects of bFGF on the follicular development by suspension follicle culture and cell culture. The results showed that the loacal growth-promoting factors promoted proliferation of cells via their respective receptors, hence to regulate the development of chicken follicles.These results could be contributed to elucidate the mechanism of follicular development and selection, as well as to represent a reference for improvement of poultry reproductive performance.
引文
Abinawanto, Zhang C. Saito N. Matsuda Y, Shimada K. Identification of sperm bearing female-specific chromosome in the sex-reversed chicken,J Exp Zool.1998.280:65-72.
    Ahumada-Solorzano SM, Carranza ME, Pedernera E, Rodriguez-Mendez AJ, Luna M, Aramburo C. Local expression and distribution of growth hormone and growth hormone receptor in the chicken ovary:effects of GH on steroidogenesis in cultured follicular granulosa cells. Gen Comp Endocrinol.2012.175:297-310.
    Akazome Y, Abe T, Mori T. Differentiation of chicken gonad as an endocrine organ:expression of LH receptor, FSH receptor, cytochrome P450cl7 and aromatase gene. Reproduction.2002.123:721-728.
    Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol.2007.7:136.
    Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet.2006.38: 1430-1434.
    Bannister SC, Smith CA. Roeszler KN, Doran TJ, Sinclair AH, Tizard ML. Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads. Biol Reprod.2011.85:22-30.
    Bannister SC, Tizard ML. Doran TJ, Sinclair AH, Smith CA. Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod.2009.81:165-176.
    Barreto G Borgmeyer U. Dreyer C. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Mech Dev.2003.120:415-428.
    Barrios F, Filipponi D, Pellegrini M, Paronetto MP, Di Siena S, Geremia R, Rossi P, De Felici M, Jannini EA, Dolci S. Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci.2010.123:871-880.
    Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev.1997.18: 26-45.
    Bowles J, Feng CW, Spiller C, Davidson TL, Jackson A, Koopman P. FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell.2010.19:440-449.
    Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K. Wilson MJ, Rossant J, Hamada H, Koopman P. Retinoid signaling determines germ cell fate in mice. Science.2006.312: 596-600.
    Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals. Development.2007.134:3401-3411.
    Bruggeman V, Van As P. Decuypere E. Developmental endocrinology of the reproductive axis in the chicken embryo. Comp Biochem Phys A Mol Integr Physiol.2002.131:839-846.
    Byskov AG, Saxen L. Induction of meiosis in fetal mouse testis in vitro. Dev Biol.1976.52:193-200
    Byskov AG. Regulation of initiation of meiosis in fetal gonads. Int J Androl.1978.2:S29-38.
    Byskov AG Regulation of meiosis in mammals. Annales De Biologie Animale. Biochemie Biophysique.1979.19: 1251-1261.
    Caldwell RB, Kierzek AM, Arakawa H, Bezzubov Y, Zaim J, Fiedler P, Kutter S, Blagodatski A, Kostovska D, Koter M, Plachy J, Carninci P, Hayashizaki Y, Buerstedde JM. Full-length cDNAs from chicken bursal lymphocytes to facilitate gene function analysis. Genome Biol.2005.6:R6.
    Callebaut M. Premeiosis and premeiotic DNA synthesis in the left ovary of the female chick embryo. J Embryol Exp Morphol.1967.18:299-304.
    Cancilla B, Davies A, Ford-Perriss M, Risbridger GP. Discrete cell- and stage-specific localisation of fibroblast growth factors and receptor expression during testis development. J Endocrinol.2000.164:149-159.
    Choi JW, Kim S, Kim TM, Kim YM Seo HW, Park TS, Jeong JW, Song G, Han JY. Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS One.2010.5:e12968.
    Cohen A, Shmoish M, Levi L, Cheruti U, Levavi-Sivan B, Lubzens E. Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation. Endocrinology.2008.149:1687-1696.
    Darras VM, Hume R, Visser TJ.1999. Regulation of thyroid hormone metabolism during fetal development. Mol Cell Endocrinol.151:37-47.
    De Felici, M. Germ stem cells in the mammalian adult ovary:considerations by a fan of the primordial germ cells. Mol Hum Reprod.2010.16:632-636.
    De Groef B, Grommen SV, Darras VM. The chicken embryo as a model for developmental endocrinology: development of the thyrotropic, corticotropic, and somatotropic axes. Mol Cell Endocrinol.2008.293:17-24.
    Decuypere E, Dewil E, Kuhn ER. The hatching process and the role of hormones. In:Tullett, S.C. (ed.), Avian Incubation. Butterworth & Co.,1990.239-256.
    Duester G Retinoic acid synthesis and signaling during early organogenesis. Cell.2008.134:921-931.
    Durcova-Hills, G. Adams, I.R. Barton, S.C. Surani, M.A. McLaren, A. The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells.2006.24: 1441-1449.
    Elbrecht A, Smith RC. Aromatase enzyme activity and sex determination in chicken. Science.1992.255:467-469.
    Ellis HL. Shioda K, Rosenthal NF, Coser KR, Shioda T. Masculine epigenetic sex marks of the CYP19Al/aromatase promoter in genetically male chicken embryonic gonads are resistant to estrogen-induced phenotypic sex conversion. Biol Reprod.2012.87:1-12.
    Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural graaulosa cells. Biol Reprod.2008.79:1030-1037.
    Ford CE, Evans EP, Burtenshaw MD, Clegg HM, Tuffrey M, Barnes RD. A functional'sex-reversed'oocyte in the mouse. Proc R Soc Lond B Biol Sci.1975.190:187-197.
    Gasc JM. Distribution and regulation of progesterone receptor in the urogenital tract of the chick embryo. Anat. Embryol.1991.183:415-426.
    Ge C, Yu M, Petitte JN, Zhang C. Epidermal growth factor-induced proliferation of chicken primordial germ cells: involvement of calcium/protein kinase C and NFKB1. Biol Reprod.2009.80:528-536.
    Gill ME, Hu YC, Lin Y, Page DC. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA.2011.108:7443-7448.
    Gomez Y, Velazquez PN, Peralta-Delgado I, Mendez MC, Vilchis F, Juarez-Oropeza MA, Pedernera E Follicle-stimulating hormone regulates steroidogenic enzymes in cultured cells of the chick embryo ovary. Gen Comp Endocrinol.2001.121:305-315.
    Gonzalez del Pliego M, Gonzalez-Moran G, Pedernera E Ultrastructure of the ovarian medulla in the newly hatched chick treated with human chorionic gonadotropin. Cell Tissue Res.1988.253:665-670.
    Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. Faseb J.2006.20:476-478.
    Gonzalez-Moran MG. Effect of follicle-stimulating hormone on different cell sub-populations in the ovary of newly hatched chicks treated during embryonic development. Brit Poult Sci.1998.39:128-132.
    Gonzalez-Moran MG. Effects of luteinizing hormone treatment on oogenesis in ovarian germ cells of the chick (Gallus domesticus). Domest Anim Endocrinol.2007.33:154-166.
    Gonzalez-Moran MG, Calderon S. Effect of luteinising-hormone in vivo on ovarian cell subpopulations of newly-hatched chicks. Br Poult Sci.2000.41:494-501.
    Griswold MD, Hogarth CA, Bowles J, Koopman P. Initiating meiosis:the case for retinoic acid. Biol Reprod.2012. 86:35.
    Guerquin MJ, Duquenne C, Lahaye JB, Tourpin S, Habert R, Livera G.New testicular mechanisms involved in the prevention of fetal meiotic initiation in mice. Dev Biol.2010.346:320-330.
    Hilscher B, HilscherW, Bulthoff-Ohnolz B, Kramer U, Birke A, Pelzer H, Gauss G. Kinetics of gametogenesis. Ⅰ. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res.1974.154:443-470.
    Hogarth CA, Mitchell D, Evanoff R, Small C, Griswold M. Identification and expression of potential regulators of the mammalian mitotic-to-meiotic transition. Biol Reprod.2011.84:34-42.
    Hudson QJ, Smith CA, Sinclair AH. Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Dev Dyn.2005.233:1052-1055.
    Hughes GC. The population of germ cells in the developing female chick. J Embryol Exp Morphol.1963.11: 513-536.
    Hunter N, Borner GV, Lichten M, Kleckner N. Gamma-H2AX illuminates meiosis. Nat Genet.2001.27:236-238.
    Huszar JM, Payne CJ. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod.2012.88:15.
    Jenkins SA, Porter TE.2004. Ontogeny of the hypothalamo-pituitary-adrenocortical axis in the chicken embryo:a review. Domest Anim Endocrin.26:267-275.
    Johnson J, Canning J, Kaneko T, Pru P, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature.2004.428:145-150.
    Kagami H, Clark ME, Verrinder Gibbins AM, Etches RJ. Sexual differentiation of chimeric chickens containing ZZ and ZW cells in the germline. Mol Reprod Dev.1995.42:379-387.
    Kagami H, Tagami T, Matsubara Y, Harumi T, Hanada H, Maruyama K, Sakurai M, Kuwana T, Naito M. The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol Reprod Dev.1997.48:501-510.
    Kagami H, Clark ME, Verrinder Gibbins AM, Etches RJ. Sexual differentiation of chimeric chickens containing ZZ and ZW cells in the germline. Mol Reprod Dev.1995.42:379-387.
    Kagami H, Tagami T, Matsubara Y, Harumi T, Hanada H, Maruyama K, Sakurai M, Kuwana T, Naito M. The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol Reprod Dev.1997.48:501-510.
    Kashimada K, Svingen T, Feng CW, Pelosi E, Bagheri-Fam S, Harley VR, Schlessinger D, Bowles J, Koopman P. Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J.2011.25:3561-3569.
    Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod.2008.23:589-599.
    Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature.1991.352:117-121.
    Kota SK, Feil R. Epigenetic transitions in germ cell development and meiosis. Dev Cell.2010.19:675-86.
    Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA.2006.103:2474-2479.
    Kumar S, Chatzi C, Brade T, Cunningham TJ, Zhao X, Duester G. Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signaling. Nat Commun.2011.2:151.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science.2001.294:853-858.
    Lee SI, Lee BR, Hwang YS, Lee HC, Rengaraj D, Song G, Park TS, Han JY. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proc Natl Acad Sci USA.2011.108:10426-10431.
    Lin J, Jia Y, Zeng W, Mi Y, Zhang C. Basic FGF promotes proliferation of ovarian granulosa cells in the laying chickens via FGFR1 and PKC pathway. Reprod Domest Anim.2012.47:135-142.
    Lin Y, Gill ME, Koubova J, Page DC. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science.2008.322:1685-1687.
    Lin Y, Page DC. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev Biol.2005.288:309-316
    Liu H, Zeng W, Cao A, Zhang C. Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation. J Zhejiang Univ Sci B.2010.11:952-957.
    Liu H, Zhang C, Tang X, Zeng W, Mi Y. Stimulating effects of androgen on proliferation of cultured ovarian germ cells through androgenic and estrogenic actions in embryonic chickens. Domest Anim Endocrinol.2005.28: 451-462.
    Livera G, Rouiller-Fabre V, Valla J, Habert R. Effects of retinoids on the meiosis in the fetal rat ovary in culture. Mol. Cell Endocrinol.2000.165:225-231.
    MacLean G, Li H, Metzger D, Chambon P, Petkovich M. Apoptotic extinction of germ cells in testes of Cyp26bl knockout mice. Endocrinology.2007.148:4560-4567.
    Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors:lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Ann Rev Pharmacol Toxicol.2006.46:451-480.
    Martin B, Gasc JM, Thibier M. C21-Steroid binding proteins and progesterone levels in chicken plasma during ontogenesis. J Steroid Biochem.1977.8:161-166.
    Maseki Y, Nakamura K, Iwasawa A, Zheng J, Inoue K, Sakai T Development of gonadotropes in the chicken embryonic pituitary gland. Zoolog Sci.2004.21:435-444.
    Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D. The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell.2010.19:612-624.
    Mattsson A, Olsson JA, Brunstrom B. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos. Gen Com Endocrinol.2011.172:251-259.
    McLaren A. Meiosis and differentiation of mouse germ cells. Symp Soc Exp Biol.1984.38:7-23.
    McLaren A. The developmental history of female germ cells in mammals, Oxf. Rev. Reprod. Biol.1988.10: 162-179.
    Mendez C, Carrasco E, Pedernera E. Adenohypophysis regulates cell proliferation in the gonads of the developing chick embryo. J Exp Zool A Comp Exp Biol.2005.303:179-185.
    Mendez MC, Ramirez M, Varelaa AR, Chavez B, Pederner E. Follicle-stimulating hormone increases cell proliferation in the ovary and the testis of the chick embryo. Gen Comp Endocrinol.2003.133:181-188.
    Mendez-Herrera MC, Tamez L, Candido A, Reyes-Esparza JA, Pedernera E. Follicle stimulating hormone increases somatic and germ cell number in the ovary during chick embryo development. Gen Comp Endocrinol. 1998.111:207-215.
    Miura C, Higashino T, Miura TA. progestin and an estrogen regulate early stages of oogenesis in fish. Biol Reprod. 2007.77:822-828.
    Miura T, Higuchi M, Ozaki Y, Ohta T, Miura C. Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. Proc Natl Acad Sci USA.2006.103:7333-7338.
    Murphy MJ, Clark NB. The avian embryo as a model for early developmental endocrinology. J. Exp. Zool. Suppl. 1990.4:177-180.
    Naito M, Minematsu T. Harumi T, Kuwana T. Testicular and ovarian gonocytes from 20-day incubated chicken embryos contribute to germline lineage after transfer into bloodstream of recipient embryos. Reproduction. 2007.134:577-584.
    Nakagawa-Mizuyachi K, Takahashi T, Kasai S, Nakayama H, Kawashima M. Calcitonin directly inhibits luteinizing hormone-stimulated progesterone production in granulosa cells of the largest follicle of hens. J Poult Sci.2010.47:170-175.
    Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science.2010.328:1561-1563.
    Niederreither K, Dolle P. Retinoic acid in development:towards an integrated view. Nat Rev Genet.2008.9: 541-553.
    Nieuwkoop PD, Sutasurya L. Primordial Germ Cells in the Chordates. Cambridge 1979. UK:Cambridge University Press.
    Notarianni E. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. J Ova Res.2011.4:1-20.
    Pacchiarotti J, Maki C, Ramos T, Marh J, Howerton K, Wong J, Pham J, Anorve S, Chow YC, Izadyar F. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation.2010. 79:159-170.
    Palmer SJ, Burgoyne PS. In situ analysis of fetal, prepuberal and adult XX-XY chimaeric mouse testes:Sertoli cells are predominantly, but not exclusively, XY. Development.1991.112:265-268.
    Pedernera E, Solis L, Peralta I, Velazquez PN Proliferative and steroidogenic effects of follicle-stimulating hormone during chick embryo gonadal development. Gen Comp Endocrinol.1999.116:213-220.
    Pennimpede T, Cameron DA, MacLean GA, Li H, Abu-Abed S, Petkovich M. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res A Clin Mol Teratol.2010. 88:883-894.
    Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer.2000.7:165-197.
    Reijntjes S, Gale E, Maden M. Expression of the retinoic acid catabolising enzyme CYP26B1 in the chick embryo and its regulation by retinoic acid. Gene Expr Patterns.2003.3:621-627.
    Resnick JL, Ortiz M, Keller JR. Donovan PJ. Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol Reprod.1998.59:1224-1229.
    Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ. Translation of the synaptonemal complex component Sycp3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA.2007.13:974-981.
    Reynolds N, Collier B, Maratou K, Bingham V, Speed RM, Taggart M, Semple CA, Gray NK, Cooke HJ. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet.2005.14:3899-3909.
    Roberts RD, Ellis RC. Mitogenic effects of fibroblast growth factors on chicken granulosa and theca cells in vitro. Biol Reprod.1999.61:1387-1392.
    Rombauts L, Berghman LR, Vanmontfort D, Decuypere E, Verhoeven G. Changes in immunoreactive FSH and inhibin in developing chicken embryos and the effects of estradiol and the aromatase inhibitor R76713. Biol Reprod.1993.49:549-554.
    Ruggiu M, Saunders PT, Cooke HJ. Dynamic subcellular distribution of the DAZL protein is confined to primate male germ cells. J Androl.2000.21:470-477.
    Sanchez-Bringas G, Salazar O, Pedernera E, Mendez C. Follicle-stimulating hormone treatment reverses the effect of hypophysectomy on cell proliferation in the chicken embryo ovary. Gen Comp Endocrinol.2006.149: 134-140.
    Scanes CG, Hart LE, Decuypere E, Kiihn ER. Endocrinology of the avian embryo:an overview. J. Exp. Zool. Suppl.1987.1:253-264.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc.2008.3: 1101-1108.
    Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol.2008.8:85.
    Souquet B, Tourpin S, Messiaen S, Moison D, Habert R, Livera G. Nodal signaling regulates the entry into meiosis in fetal germ cells. Endocrinology.2012.153:2466-2473.
    Stern CD. The chick:a great model system becomes even greater. Dev Cell.2005.8:9-17.
    Suzuki A, Saga Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev.2008.22: 430-435.
    Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol.1999.216:282-296.
    Takeuchi Y, Molyneaux K, Runyan C, Schaible K, Wylie C. The roles of FGF signaling in germ cell migration in the mouse. Development.2005.132:5399-5409.
    Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y. Conserved role of nanos proteins in germ cell development. Science.2003.301:1239-1241.
    Wallacides A, Chesnel A, Chardard D, Flament S, Dumond H. Evidence for a conserved role of retinoic acid in urodele amphibian meiosis onset. Dev Dyn.2009.238:1389-1398.
    White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012.18:413-421.
    Willier BH, Gallagher TF, Koch FC. Sex-modification in the chick embryo resulting from injections of male and female hormones. Proc Natl Acad Sci USA.1935.21:625-631.
    Wolff E, Ginglinger A. Sur la transformation des poulets males en intersexues pour 1'injection d'hormone female (follicline) aux embryons. Arch Anat Histol Embryol.1935.20:219-278.
    Wolgemuth DJ, Roberts SS. Regulating mitosis and meiosis in the male germ line:critical functions for cyclins, Philos. Trans R Soc Lond B Biol Sci.2010.365:1653-1662.
    Woods JE, Hopkins WE, Caliendo J, Martens JB, Thommes RC. Ontogenesis of LHRH in the hypothalamus and LH and FSH in the pars distalis of the chick embryo. In:Lofts, Holmes (Eds.), Current Trends in Comparative Endocrinology. Hong Kong University Press, Hong Kong,1985. pp 131-134.
    Woods JE, Thommes RC. Ontogeny of hypothalamo-adenohypophyseal-gonadal (HAG) inter relationships in the chick embryo. J Exp Zool.1984.232:435-441.
    Woods JE, Weeks RL. Ontogenesis of the pituitary-gonadal axis in the chick embryo. Gen Comp Endocrinol.1969. 45:66-73.
    Xie M, Zhang C, Zeng W, Mi Y. Effects of follicle-stimulating hormone and 17β-estradiol on proliferation of chicken embryonic ovarian germ cells in culture. Comp Biochem Physiol A Mol Integr Physiol.2004.139: 521-526.
    Yao N, Lu C, Zhao J, Xia H, Sun D, Shi X, Wang C, Li D, Cui Y, Ma X. A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci.2009.14:3239-3245.
    Yuen T, Ruf F, Chu T, Sealfon SC. Microtranscriptome regulation by gonadotropin-releasing hormone. Mol Cell Endocrinol.2009.302:12-17.
    Zhang M, Su Y, Sugiura K, Wigglesworth K, Xia G, Eppig JJ. Estradiol promotes and maintains promotes cumulus cell expression of natriuretic peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro. Endocrinology.2011.152:4377-4385.
    Zhang M, Su Y, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science.2010.330:366-369.
    Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol.2009.11:631-636.
    Zuckerman S, Baker TG The development of the ovary and the process of oogenesis, In:S. Zuckerman BJ. Weir (Eds.), Ovary. Academic Press, New York,1977, pp41-67.
    林金杏.局部性促生长因子对鸡卵泡发育的调控及其机理的研究[博士学位论文].杭州,浙江大学,2011.78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700