用户名: 密码: 验证码:
光电对抗中的激光大气传输仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电对抗装备易受到大气衰减效应、大气湍流效应、热晕效应等影响而导致性能下降,要定量评价大气状况对光电对抗工程应用的影响,需要根据系统结构建立相应模型,数值仿真模拟各种大气条件下光电对抗装备的性能。
     本文以光电对抗中的激光大气传输为核心,通过理论建模和数值仿真,模拟符合实际场景的光电对抗激光工程应用。论文主要分为两大部分,第一部分是针对“猫眼”合作目标的折叠光路激光大气传输建模仿真及实例分析;第二部分是以环形光束为主的高能激光大气传输建模仿真及实例分析。取得的主要研究成果如下:
     针对“猫眼”目标建立折叠光路激光大气传输仿真模型。利用Collins衍射积分方程研究大气湍流畸变光场经过“猫眼”系统的回波特性,根据激光和大气条件分别对正向传输和逆向传输进行仿真模拟。分析结果表明随着湍流强度的增加,“猫眼”目标处光斑能量分散导致回波接收概率降低,并且“猫眼”目标位置也对回波接收概率产生影响。在此基础上开发了一套折叠光路激光大气传输模拟仿真软件,为大气激光工程应用提供指导和参考。
     建立环形光束大气传输模型,仿真分析非稳腔输出的环形光束远场传输特性、大气湍流效应、热晕效应以及湍流热晕综合效应。分析结果表明脉冲高能环形光束受热晕影响极小;当传输距离大于特征距离时,连续高能环形光束热晕效应类似高斯光束;当传播距离小于特征距离时,其热晕效应与高斯光束不同。针对非稳腔输出的环形光束开发了一套高能激光大气传输模拟仿真软件,从激光光束质量、大气通道条件等方面评估高能激光的作用效果。
     分别对折叠光路模型和高能激光大气传输模型进行实例分析:针对零差激光测振目标识别系统提出大气湍流状态下振动信号解调算法;针对非相干合成技术提出了基于自适应光学元件的光纤激光器非相干合成方案,并对系统关键参数进行分析。
     开展了近地水平外场激光传输实验,并对实验数据进行统计分析。
The optoelectronic countermeasures equipment are susceptible to atmosphericattenuation effects, atmospheric turbulence effects, thermal blooming effects and resultin performance degradation. In order to evaluate the impact of atmospheric conditionson the engineering applications of optoelectronic countermeasures quantitatively, thesimulation model according to the system structure on the performance ofoptoelectronic countermeasures equipment under various atmospheric conditions mustbe established.
     In this dissertation, based on the laser propagation through the atmosphere inoptoelectronic countermeasures, laser engineering applications in optoelectroniccountermeasures accord with the actual scene were modeled theoretically and simulated.The contents can be mainly divided into two parts. The first part is the modeling andsimulation about the folded optical path of laser propagation in atmosphere. Thereflection model in the optical path is cat's eye cooperative target and some otherexamples are analyzed. The second part is the modeling and simulation abouthigh-energy laser (HEL) propagation in the atmosphere. The main beam types of HELare annular beams and some other examples are analyzed. The main research resultscould be summarized as follows.
     A simulation model about the folded optical path of laser propagation inatmosphere with cat's eye reflection model has been developed. The echo characteristicsof distorted optical field caused by atmospheric turbulence propagation through cat'seye system have been studied by means of Collins diffraction integral equations. Theforward propagation and reverse propagation were also simulated according to the laserand atmospheric conditions. The results show that the echo probability is reduced withthe increase of turbulence intensity because of the spot energy dispersion at the cat's eyetarget, and the echo probability is also influenced by the cat's eye location. A simulationsoftware about folded optical path of laser propagation in atmosphere was developed onthis basis. These results provide guidance and reference for atmospheric laserengineering applications.
     A simulation model about the annular beam propagation in atmosphere has beendeveloped. Propagation properties, atmospheric turbulence effects, thermal bloomingeffect and combined effect of both about annular beams from unstable resonator havebeen simulated and analyzed. The results show that the thermal blooming has littleeffect on pulse high-energy annular beam. For continuous high-energy annular beamwhen the propagation distance is greater than the characteristic distance, the thermalblooming effect is similar to the gaussian beam. When the propagation distance is lessthan the characteristic distance, the thermal blooming effect is different from thegaussian beam. A simulation software about HEL propagation in atmosphere has beendeveloped. The effect of the annular beams from unstable resonator has been evaluatedfrom the beam quality and atmospheric channel conditions.
     Some examples of folded optical path model and HEL propagation in atmospherewere analyzed respectively. The algorithm of vibration signal demodulation underatmospheric turbulence state for homodyne laser vibrometer target identification systemwas proposed. An incoherent combining scheme of high-power fiber lasers based onadaptive optics components was proposed and the key parameters has been analyzed.
     The field experiments of laser horizontal propagation in atmospheric near groundhave been carried out and the experimental datas have been analyzed statistically.
引文
[1]郭汝海,王兵.光电对抗技术研究进展.光机电信息,2011,28(7):21-25
    [2]杨立山.舰载光电对抗装备的发展分析.舰船电子工程,2008,28(8):22-26
    [3]陈素菊.光电对抗发展新思路.中国雷达,2008,1(1):1-3
    [4]赵勋杰,高稚允,张英远.基于“猫眼”效应的激光侦察技术及其在军事上的应用.光学技术,2003,29(4):91-95
    [5]时家明,王峰.国外陆军光电对抗装备综述.现代军事,2005,10(1):40-42
    [6] P. Glen, M. A. Marciniak, M. Goda. High energy laser weapons: technology overview. SPIE.,2004,5414:4-8
    [7]徐大伟.国外舰载激光武器的发展动向与分析.舰船电子工程,2012,32(17):7-9
    [8]吴健,杨春平,刘健斌.大气中的光传输理论.北京:北京邮电大学出版社,2005,128-208
    [9]饶瑞中.现代大气光学.北京:科学出版社,2012,481-505
    [10] C. A. Larry, R. L. Phillips. Laser Beam Propagation through Random Media. Bellingham:SPIE Press,2005,533-600
    [11] G. Frederick. High power laser propagation.Appl. Opt.,1976,15(6):1479-1492
    [12] D. C. Smith. High-Power Laser Propagation: Thermal Blooming. Proc. IEEE.,1977,65(12):1679-1680
    [13]吴健,王俊波.高能激光非线性传播.成都:成都电讯工程学院出版社,1988,204-245
    [14]宋正方.应用大气光学基础.北京:气象出版社,1990:18-20
    [15]饶瑞中.激光大气传输湍流与热晕综合效应.红外与激光工程,2006,35(2):130-134
    [16]余宁,李俊山,王新增,等.光电对抗仿真评估系统研究.四川兵工学报,2011,32(5):5-10
    [17]塔塔尔斯基.湍流大气中波的传播理论.北京:科学出版社,1978,86-160
    [18] M. E. Gracheva,A. S. Gurvich. Strong fluctuations in the intensity of light propagated throughthe atmosphere. Izv. Vyssh. Uchebn. Zaved. Radiofiz.,1965,8:717-724
    [19] L. C.Andrews. Theory of optical scintillation. J. Opt. Soc.Am.,1999,16(6):1417-1429
    [20] L. C.Andrews, M.A. Habash, C. Y. Hopen, et al.Theory of optical scintillation: Gaussian-beam wave model. W. R. Media.,2001,11:271-291
    [21] L. C.Andrews, R. L. Phillips. Recent results on optical scintillation in the presence of beamwander. SPIE.,2008,6878:1-14
    [22] D. T. Wayne, R. L. Phillips, L. C.Andrews, et al. Beam wander of a collimated beam:comparing theory and experiment. SPIE.,2008,7091:70910O1-70910O10
    [23] J. A. Fleck, J. R. Morris. Time-dependent propagation of high energy laser beams though theatmosphere. Appl. Phys.,1976,10:129-160
    [24] L. Dennis, D. Knepp. Multiple phase-screen calculation of the temporal behavior of stochasticwaves. IEEE.,1983,71(6):722-733
    [25] J. M. Martin, M. F. Stanley. Intensity images and statistics from numerical simulation of wavepropagation in3-D random media. Appl. Opt.,1988,27(11):2111-2126
    [26] E. M. Johansson. Simulation of stellar speckle imaging. SPIE.,1994,2200:372-383
    [27] D. Alastair. Generating Kolmogorov phase screens for modeling optical turbulence. SPIE.,2000,4034:50-57
    [28] N. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng.,1990,29(10):1174-1180
    [29] G. P. Dario, L. Zunino, G. Mario. Modeling turbulent wave-front phase as a fractionalBrownian motion: a new approach. J. Opt. Soc. Am.,2004,21(10):1962-1969
    [30] B. L. McGlamery. Restoration of turbulence-degraded images. J. Opt. Soc. Am.,1976,57(3):293-297
    [31] B. J. Herman, L. A. Strugala. Method for inclusion of low-frequency contributions innumerical representation of atmospheric tur1u1ence. SPIE.,1990,1221:183-192
    [32] E. M. Johansson, D. T. Gavel. Simulation of stellar speckle imaging. SPIE.,1994,2200:372-383
    [33] J. Noll. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am.,1976,66(3):207-211
    [34] R. G. Lane, A. Glindemann, J. C. Dainty. Simulation of a Kolmogorov phase screen. Waves inRandom Media.,1992,2(3):209-224
    [35] C. M. Harding, R.A. Johnston, R. G Lane. Fast simulation of a kolmogorov phase screen.Appl.Opt.,1999,38(11):2161-2170
    [36] N. C. Schwartz, G. Baum, E. N. Ribak. Turbulence-degraded wave fronts as fractal surfaces. J.Opt. Soc. Am.,1994,11(1):444-451
    [37]黄印博.激光大气传输数值模拟中对计算参量的选取.大气与环境光学学报,2007,2(1):23-27
    [38] J. W. Strohbehn. Laser beam propagation in the atmosphere. New York:Spinger-Verlag,1978,56-73
    [39]谢树茂.聚焦强激光束大气传输的数值模拟.强激光与粒子束,1996,8(3):407-412
    [40]张飞舟.计算聚焦激光束传输的非自适应坐标变换.量子电子学报,2003,20(6):656-660
    [41] H. Jennifer, S. John, A. Larry, et al. A user-friendly software package for predictingatmospheric turbulence effects on laser beam propagation. SPIE.,2004,5552:231-240
    [42]朱文越,黄印博,钱仙妹.激光大气传输模拟程序CLAP及其应用.大气与环境光学学报,2007,2(6):451-458
    [43] J. P. Gordon, R. C. Leite, R. S. Moore, et al. Long transient effects in lasers with inserted liquidsamples. Bull. Am. Phys. Soc.,964,9:501-507
    [44] G. G. Frederick, C. S. David. Turbulence effects on thermal blooming. Appl. Opt.,1973,12(8):1794-1804
    [45] L. C. Bradley, J. Herrmann. Phase compensation for thermal blooming. Appl. Opt.,1974,13(2):331-334
    [46] D. C. Smith. High-Power Laser Propagation: Thermal Blooming. Proc of IEEE.,1977,65(12):1679-1680
    [47] G. Frederick. Gebhardt Twenty-five years of thermal blooming: An Overview. SPIE.,1990,1221:5-25
    [48] L. C. Bradley, J. Herrmann. Phase compensation for thermal blooming. Appl. Opt.,1974,13(2):331-334
    [49]王英俭.激光大气传输及其相位补偿的若干问题探讨:[博士学位论文].合肥:中国科学院安徽光学精密机械研究所,1996,47-51
    [50]卢慧琳,冯锦玲,曾鹏.2010年美国高能激光武器的进展.情报交流,2011,7:20-24
    [51]万敏.大气热晕效应引起的激光焦移的计算与分析.计算物理,2002,19(5):449-452
    [52]黄印博,王英俭.聚焦光束大气传输光束扩展定标规律的数值分析.物理学报,2006,55(12):6715-6719
    [53]王英俭,黄印博.聚焦平台光束大气传输光束扩展的定标参数分析.量子电子学报,2006,23(3):274-281
    [54]乔春红,范承玉,黄印博.高能激光大气传输的定标规律.中国激光,2010,37(2):433-437
    [55] J. A. Fleck, J. R. Morris, M. D. Feit. Time-dipendent propagation of high energy laser beamsthrough the atmosphere:Ⅱ. Appl. Phys.,1977,14:99-115
    [56] S. Phillip, P. Joseph, H. Bahman. Propagation of high energy laser beams in variousenvironments. NRL. Report.,2007,1:1-55
    [57]卿光弼,王学楷.“猫眼效应”的物理模型及证明.激光技术,1995,19(4):244-247
    [58]赵延仲,孙华燕,宋丰华,等.激光辐照猫眼光学镜头时的反射特性机理研究.物理学报,2008,57(4):2284-2294
    [59] ITU-R Document3J/31-E. On propagation data and prediction methods required for the designof space-toearth and earth-to-space optical communication systems. Presented at theRadio-Communication Study Group meeting, Budapest,2001
    [60] R. J. Hill, S. F. Clifford. Modified spectrum of atmospheric temperature fluctuations and itsapplication to optical propagation. J. Opt. Soc. Am.,1978,68:293-297
    [61] R. Frehlich. Laser scintillation measurements of the temperature spectrum in the atmospheric,surface layer. JAS.,1992,49(16):1494-1509
    [62] D. L. Fried. Optical resolution through a randomly inhomogeneous medium for very long andvery short exposures. J. Opt. Soc. Am.,1966,56(10):1372-1379
    [63]徐光勇.大气湍流中的激光传输数值模拟及其影响分析:[硕士学位论文].成都:电子科技大学,2008,5-24
    [64]张逸新,迟泽英.激光大气传输束心抖动概率分布.光学学报,1994,14(6):636-641
    [65]张逸新,迟泽英.光波在大气中的传输与成像.北京:国防工业出版社,2001,63-82
    [66] A. R. Juan, B. Aniceto, C. Adolfo. Numerical simulation of long path spherical wavepropagation in three dimensional random media. SPIE.,1998,3494:123-134
    [67] J. Horwath, N. Perlot. Numerical simulations of beam propagation through optical turbulencefor high-altitude platform crosslinks. SPIE.,2004,5338:243-252
    [68] L. Sj qvist, M. Henriksson. Simulation of laser beam propagation over land and sea usingphase screens: a comparison with experimental data. SPIE.,2005,5989:59890D1-59890D12
    [69] D. Alastair, M. Aulay. Generating Kolmogorov phase screens for modeling optical turbulence.SPIE.,2000,4034:50-57
    [70]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究.光电工程,2006,33(1):14-19
    [71]杨连臣.大气湍流效应的模拟:[博士学位论文].成都:中国科学院光电技术研究所,2004,20-50
    [72]胡朝晖,姜文汉.受大气湍流影响的光学波前研究.光电工程,1995,22(2):50-56
    [73]陆长明,黄惠明,饶长辉,等.大气相位屏的协方差冲激函数产生法.光电工程,2005,32(8):16-18
    [74]吴晗玲.光波大气传输及其自适应光学相位校正中若干问题的数值模拟研究与理论分析:
    [博士学位论文].北京:中国科学院力学研究所,2009,27-40
    [75]钱仙妹.长程非均匀湍流路径激光大气传播的数值模拟研究:[博士学位论文].合肥:中国科学院合肥物质科学研究院,2008,50-65
    [76] W. Jian, A. D. Boardman. Coherence Length of a Gaussian-Schell beam and atmosphericturbulence. J. Mod. Opt.,1991,38(7):1355-1363
    [77] C. Y. Young, Y. V. Gilchrest, B. R. Macon. Turbulence induced beam spreading of higher ordermode optical waves. SPIE.,2002,41(5):1097-1103
    [78]张恩涛.大气湍流对厄米-高斯光束光束质量的影响.光电工程,2006,33(3):28-31
    [79]汤明玥,陈晓文,季小玲.厄米-高斯光束通过湍流大气的传输特性.四川师范大学学报,2008,31(2):207-210
    [80] W. Cheng, W. Joseph, Q. Zhan. Propagation of vector vortex beams through a turbulentatmosphere. Opt. Express.,2009,17(20):17829-17836
    [81]葛成良,黄志伟.基于“猫眼效应”的目标识别.强激光与粒子束,2003,15(7):632-634
    [82]卞学丽.光学镜头“猫眼”效应分析及在短距离信息交换中的应用:[硕士学位论文].成都:电子科技大学,2005,24-30
    [83]李俊昌.菲涅耳衍射及柯林斯公式的快速傅里叶变换计算.光电子激光,2001,12(5):529-532
    [84]李俊昌.柯林斯公式的D-FFT计算.计算物理,2008,25(3):330-334
    [85]韩勇.随机光场入射时的猫眼效应研究:[硕士学位论文].成都:电子科技大学,2008,40-50
    [86]聂辉,翁兴涛,李松.角锥棱镜的远场衍射特性.光学学报,2003,23(12):1470-1474
    [87]石岩,李松,周辉,等.MATLAB在处理角锥棱镜菲涅耳衍射问题中的应用.光电子技术与信息,2005,18(3):85-88
    [88] L. Song, T. Bei, Z. Hui. Calculation on diffraction aperture of cube corner retroreflector. Chin.Opt. Let.,2008,6(11):833-836
    [89]王英俭,吴毅.扩展物体漫反射光传输及成像的数值模拟研究.光学学报,1998,18(10):1470-1472
    [90]韦宏艳,吴振森,彭辉.斜程大气湍流中漫射目标的散射特性.物理学报,2007,57(10):6666-6672
    [91]赵延仲,宋丰华,孙华燕,等.基于猫眼效应的激光主动探测系统探测能力分析.装备指挥技术学院学报,2008,19(6):80-84
    [92]王豹亭.零差激光测振技术的研究:[硕士学位论文].成都:电子科技大学,2011,14-35
    [93]何武光,王豹亭,杨春平,等.零差激光测振系统中含噪多普勒信号处理方法.光电子激光,2011,22(12):1842-1846
    [94] P. L. Heydemann. Determination and correction of quadrature fringe measurement error ininterferometers. Appl. Opt.,1981,20(19):3382-3384
    [95]郝磊,梅海平,钱仙妹,等.大气光学湍流光纤测量技术中的解调算法研究.光子学报,2008,37(11):2292-2295
    [96]肖树妹,梅海平,钱仙妹,等.大气湍流随机相位差的相关解调算法研究.光学学报,2011,31(2):1-5
    [97]葡桃园.高能激光大气传输热晕效应分析:[硕士学位论文].成都:电子科技大学,2011,14-35
    [98]税奇军.气溶胶所致热晕的数值研究:[硕士学位论文].成都:电子科技大学,2007,1-47
    [99]丁祖荣.流体力学.北京:高等教育出版社,2001:95-122
    [100]任宏岩,李刚,沈洪斌,等.稳态热晕对激光束大气传输特性的影响.激光与红外,2010,40(1):15-17
    [101]雷广玉.高能激光大气传输非线性问题的数值计算.计算物理,1995,12(3):383-389
    [102]强希文.强激光大气传输非线性热畸变效应的解析分析.红外与激光工程,2000,29(6):6-10
    [103]孙中涛,孙晓泉,邹继伟.脉冲激光大气传输热晕数值分析.红外与激光工程,2007,36:190-193
    [104]冯晓星.脉冲激光大气传输热晕效应的初步分析:[硕士学位论文].合肥:中国科学院安徽光学精密机械研究所,2006,10-18
    [105]黄印博,王英俭.热晕效应数值模拟中对计算参数的选取.强激光与粒子束,2005,17(1):1-4
    [106] H. Breaux, W. Evers, R. Sepucha. Algebraic model for cw thermal-blooming effects. Appl.Opt.,1979,18(15):2638-2644
    [107]李文学,华卫红,张碧会.一种基于VC的激光远程大气传输仿真方法.大气与环境光学学报,2006,1(3):266-168
    [108]董海燕,李伟,戴明,等.大功率光纤激光大气传输特性的研究.光学技术,2007,33(6):830-832
    [109] P. Sprangle, A. Ting, J. Penano. High-Power Fiber Lasers for Directed-Energy Applications.Feat. Res.,2008,1:89-99
    [110] S. Phillip, T. Antonio, P. Joseph. Incoherent Combining and Atmospheric Propagation ofHigh-Power Fiber Lasers for Directed-Energy Applications. JQE.,2009,45(2):138-148
    [111]赵尚弘.光纤激光非相干组束技术.空军工程大学学报(自然科学版),2010,11(4):52-56
    [112]凌宁.大口径大角位移的两维高速压电倾斜反射镜.量子电子学报,1998,15(2):52-56
    [113] E. A. Sziklas, A. E. Siegman. Mode calcutions in unstable resonators with flowing saturablegain2: Fast Fourier transform method. Appl. Opt.,1975,14(8):1874-1889
    [114]杜燕贻.无源虚共焦非稳腔光束特性模拟.强激光与粒子束,2000,12(2):164-168
    [115]葛卫国,刘永欣,马善钧.硬边光阑、超高斯光阑和锯齿光阑的比较研究.激光杂志,2005,26(5):48-49
    [116]吕百达.激光光学-光束描述,传输变换与光腔技术物理.北京:高等教育出版社,2003:43-53
    [117]杨葭荪.光学原理(上册).北京:电子工业出版社,2005:382-385
    [118]吴健,严高师.光学原理教程.北京:国防工业出版社,2007,100-101
    [119]杨成龙.非稳腔激光光束质量评价的几个问题.激光杂志,1997,18(4):4-10
    [120]何武光,吴健.环形光束大气传输数值模拟与分析.激光与红外,2011,41(2):136-140
    [121] F. Gori. Flattened gaussian beams. Opt. Commun.,1994,107:335-341
    [122]陈晓文,季小玲.湍流对环状光束扩展的影响.物理学报,2009,58(4):2435-2442
    [123] H. M. Mohammad, L. Babak. Two-dimensional-simulation of thermal blooming effects inring pattern laser beams. Opt. Engin.,2005,44(9):1-8
    [124]刘泽金,周朴,许晓军.高能激光光束质量通用评价标准的探讨.中国激光,2009,36(4):773-778
    [125]袁仁民,曾宗泳,马成胜.利用气象要素估算近地面光学湍流.量子电子学报,2001,18(1):87-91
    [126]戴福山,李有宽.利用气象要素估算海洋大气近地层光学湍流.光学学报,2007,27(2):191-196
    [127] V. Thiermann, A. Kohnle. A simple model for the structure constant of temperaturefluctuations in the lower atmosphere. Jour. Physci.,1988,21(8):37-40
    [128]何武光,吴健,杨春平,等.近地面光学湍流估算与测量.电子科技大学学报,2008,37(6):893-896

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700