用户名: 密码: 验证码:
可见/红外双波段航空光电侦察平台光学系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国外竞相研制高分辨、全天候航空侦察平台。据文献报道,在20000m高空分辨力已经优于0.1m。我国航空侦察平台研制技术与国外相比还有较大差距,尤其在质量和体积方面,其主要原因在于框架结构,材料,光学小型化设计和加工制造水平。已有的可见/红外双波段航空侦察平台由于采用折射式双镜头分别成像,造成平台体积和质量的增加,限制了其他载荷的应用,因此从光学结构方面取得突破具有一定的实际意义。
     本文在查阅国内外文献,广泛调研当前航空平台的发展现状和动态基础上,分析总结了纯折射式、纯反射式以及折反射式三种实现双波段的光学结构形式,提出了一种适用于当前航空侦察平台φ480mm的球柱,实现可见、红外双波段光学系统的新方案。该方案采用前端卡塞格林共光路结构设计,利用二向色分光镜将可见光和红外光分别引入各自的光路结构中。可见光通道设计成两档变倍结构,焦距为0.5m/1m,相对孔径为1:4/1:8,像面CCD采用1’’/3靶面, 1024×766象元,象元尺寸为4.7μm,在20000m高空,地面分辨距离GRD(Ground resolvable distance)达到0.188m/0.094m,采用了切档变倍方案设计。红外光通道设计为定焦结构,焦距为0.5m,相对孔径为1:4,采用640×480制冷型红外焦平面阵列,象元尺寸为15μm,地面分辨距离为0.6m。最后对系统几个关键问题进行了分析,结果表明,光学系统总体体积(d×h)在350mm×280mm以内,系统实现了小体积、高分辨、全天候侦察的目标,满足当前航空平台对体积和成像质量的高要求。
There is a growing need for dual band cameras in airborne reconnaissance systems having simultaneous multi-band measurement recently. Performance about 0.1m of ground resolvable distance (GRD) at 20000m altitude has been realized in the UAV abroad. The dual band requirement stems from considerations of system performance and cost as well as installation on the platform.
     There are three optical system structures as reflective systems, refractive systems and catadioptric systems. Based on the information of domestic and overseas literatures, this article reports a new dual band airborne camera, within sphere platforms about 480mm in diameter, designed for simultaneous registration of both visible and IR imagery. The camera design uses a common front end Cassegrain optical system and several relay optical sub-systems capable of delivering both high spatial resolution visible and IR images to the detectors. To enable the operation of the dual band, a unique dichroic beam splitter with special coating and broad band anti-reflection coating is required. The visible optical path is designed dual field-of-view with 0.5m/1m focal length, relative aperture of 1:4/1:8,1’’/3 with 1024×766pixels of detector format and pixel size of 4.7μm , obtaining GRD of 0.188m/0.094m at 20000m altitude and the MWIR optical portion designed with fixed focal length of 0.5m, relative aperture of 1:4,with 640×480 IR cool FPA of 15μm pixel size reaching GRD of 0.6m. Three fundamental issues have been analyzed, of which the result indicates this system within 350mm×280mm(diam×h) provides high-resolution images in the thermal IR at night and simultaneous IR and visible images during day, completely meeting the requirement of the airborne reconnaissance platforms currently.
引文
[1]贾平,张葆.航空光电侦察平台关键技术研究及其发展[J].光学精密工程. 2003,11(1):82-88.
    [2]Scott W. Sparrold. Arch Corrector for Conformal Optical Systems [J].SPIE. 1999, 3705:189-200.
    [3]余分子.世界各国的机载传感器转塔(上)[J].现代军事.2005,1:43-45.
    [4]余分子.世界各国的机载传感器转塔(下)[J].现代军事.2005,2:50-51.
    [5]张以谟.应用光学[M].北京:电子工业出版社,2008.
    [6]Lawson, DUAL-BAND LENS. United States Patent. US 6,870,690 B1.
    [7]Jay N.Vizgaitis. Dual f/number optics for 3rd generation FLIR systems[J]. SPIE.2005,5783:875-886.
    [8]潘君骅.非球面的设计、加工与检验[M].北京:科学出版社,1994:10-87.
    [9]丛杉珊.大视场、长焦距、反射式空间光学系统设计[D].长春理工大学. 2008.4.
    [10]A.Bergeron, H.Jerominek, M.Doucet, et al. Dual-Band Dual Field-Of-View TVWS Protoype[J].SPIE.2006,6206 62061O1-9.
    [11]史光辉.卫星对地观测高分辨率光学系统和设计问题[J].光学精密工程. 1999.7(1):16-24.
    [12]Partynski.DUAL BAND FRAMING RECONNAISSANCE CAMERA. United States Patent. US 6,477,326 B1.
    [13]任德清,B.J.Rauscher.红外双视场透镜系统的光学设计[J].红外技术. 1995,20(3):19-22.
    [14]郜洪云,熊涛.中波红外两档变焦光学系统[J].光学精密工程. 2008,16(10): 1891-1894.
    [15]白瑜.非制冷红外热成像折衍两档变焦光学系统研究[D].中国科学院西安光学精密机械研究所.2009.5.
    [16]电影镜头设计组.电影摄影物镜光学设计[M].北京:中国工业出版社, 1971: 183-187.
    [17]杨为锦,孙强.中波红外连续变焦系统设计[J].中国光学与应用光学. 2010.3(2):164-169.
    [18]K H Lee.First-Order Optics Computation for Re-Imaging IR Optical Systems[J]. SPIE.2003,5076:123-129.
    [19]Muhammad Nadeem Akram.Design of a Dual Field-of-View Optical System for Infra-Red Focal-Plane Arrays[J].SPIE.2002,4767:13-23.
    [20]Muhammad Nadeem Akram.A Step-Zoom Dual Field-of-View IR Telescope[J]. SPIE.2002,4832:328-333.
    [21]Muhammad Nadeem Akram,Muhammad Hammad Asghar.Step-zoom dual-field- of-view infrared telescope[J].APPLIED OPTICS. 2003,42(13): 2312-2316.
    [22]Muhammad Nadeem Akram.Design of a multiple-field-of-view optical system for 3- to 5-μminfrared foca-plane arrays[J].Optical Engineering.2003,42(6):1704- 1714.
    [23]Li Yong,Yang Changcheng,Li Shenghui.Design of Infrared Zoom System with Rotating Lens Groups[J].SPIE.2007,6834,68343Y1-9.
    [24]王海涛,耿安兵,杨长城.切换变倍光学系统设计[J].光学学报.2010, 30(3):872-875.
    [25]白瑜,杨建峰,马小龙,等.长波红外两档5倍变焦光学系统设计[J].红外技术.2008,30(8):439-441.
    [26]刘琳,薛鸣球,沈为民.提高离轴三反射镜系统成像质量的途径[J].光学技术.2002,28(2):181-184.
    [27]常军,翁志成,姜会林,等.长焦距空间三反光学系统的设计[J].光学精密工程.2001,9(4):315-318.
    [28]韩昌元.高分辨力空间相机的光学系统研究[J].光学精密工程.2008, 16(11):2165-2172.
    [29]李荣刚,杨栋梁,刘琳,等.中波红外双视场光学系统的设计[J].激光与红外.2009,39(6):640-642.
    [30]李刚,张恒金.红外两档变倍光学系统设计[J].红外与激光工程. 2006,35(4):472-475.
    [31]Jay Vizgaitis. Third Generation Infrared Optics[J]. SPIE. 2008,6940,69400S -1-10.
    [32]Jian Bai, Xiyun Hou,Yibing Shen,et al.Design and Fabrication of infrared hybrid refractive/diffractive optical system for 3-5μm band[J].SPIE.2002,4927:109-117.
    [33]Sehyun Seong, Jinhee Yu, Dongok Ryu, et al. Imaging and radiometric performance simulation for a new high performance dual band airborne reconnaissance camera[J].SPIE.2009, 7307,730705-1-13.
    [34]Dov Freiman, Zinovy Elgart, Arie Chernoborov. Dichroic Beamsplitter for a Dual-wavelength Camera in a Long-range Airborne Reconnaissance System[J].SPIE. 2005,5783:827-834.
    [35]AndréG. Lareau, Andrew Partynski. Dual band framing cameras:technology and status[J].SPIE.2000,4127:148-156.
    [36]Davis Lange, William Abrams, Mrinal Iyengar, et al. The Goodrich DB-110 System:Multi-Band Operation Today and Tomorrow[J].SPIE.2003,5109:22-36.
    [37]李婕,张志明,冯生荣.弹载红外光学系统被动消热技术[J].2005,27(3): 196-201.
    [38]Allen Mann. Athermalization of an infrared zoom lens system for target detection[J].SPIE.2001,4487:118-129.
    [39]赵秀丽.红外光学系统设计[M].北京:机械工业出版社,1986:6-51.
    [40]孟庆超,潘国庆,张运强.等.红外光学系统的无热化设计[J].红外与激光工程.2008,37(SUP):723-727.
    [41]沈宏海,王国华,丁金伟,等.主动补偿无热化技术在机载红外光学系统中的应用[J].光学精密工程.2010,18(3):593-601.
    [42]程珂.红外变焦系统的研究[D].中国科学院西安光学精密机械研究所. 2005.6.
    [43]王涌天,崔桂华.红外扫描成像系统中冷像的分析和抑制[J].光学学报. 1994,14(6):650-655.
    [44]杨正,屈恩世,曹剑中,周泗忠,闫阿奇,刘宇波.对凝视红外热成像冷反射现象的研究[J].激光与红外.2008,38(1):35-38.
    [45]张良,凝视型红外光学系统中的冷反射现象[J].红外与激光工程.2006,35 (SUP): 8-11.
    [46]CODE V说明书.NAR-Narcissus Analysis,23-29-23-52.
    [47]金宁.对红外热成象系统中冷反射现象的分析[J].红外技术.1998,20(3): 10-14.
    [48]栾亚东.红外扫描成像系统中冷反射的光学抑制[J].红外与激光工程.2006, 35(SUP): 26-30.
    [49]Lawrence M. Scherr, Harold J. Orlando, James T. Hall, et al. Narcissus Considerations in Optical Designs for Infrared Staring Arrays[J].SPIE.1996, 2864:442-452.
    [50]M. Nadeem Akram. Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3–5μm waveband[J].APPLIED OPTICS.2010,49(6):964-975.
    [51]CODE V说明书. TOL - Primary Aberration-Based Tolerancing,20-49-20-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700