用户名: 密码: 验证码:
聚合物/无机物/生物质杂化复合材料及其陶瓷材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文开展了基于聚合物/无机物/生物质杂化复合材料及其陶瓷材料的探索研究,即利用天然木材独特的构造,制备了聚合物/SiO_2/木粉杂化复合材料及其陶瓷材料,并对这些材料的微观结构及性能进行了研究。
     1、通过系统的研究NaOH溶液浓度对杉木粉组成、结构和热性能的影响,结果发现,NaOH溶液使部分氢键被破坏,破坏了纤维素结晶结构,使更多的羟基能够参与反应,提高了木粉的可反应性。碱处理改善了杉木粉的微孔结构,使管胞与纹孔的多层次、规整有序的孔隙结构更清晰,有利于反应试剂在其中的渗透、扩散。
     2、采用溶胶凝胶-水热耦合的新方法,成功制备了具有互穿网络结构的无机/木粉杂化材料。在水热条件所提供的特殊物理化学环境中,前驱体ZrOCl2溶液进入到木粉的微孔结构中,水解产物的羟基与木粉的羟基发生缩合反应,形成了较强的Zr-O-C键,水解产物的自身的缩合反应生成了ZrO_2,填充在木粉的孔隙中,最终制得了具有无机氧化物凝胶纤维与木粉纤维质网络互穿结构的杂化材料。这种网络结构提高了杂化材料的耐热性能。在空气中800℃处理ZrO_2/木粉杂化材料制得了具有独特的、孔形规则的管状“网笼”结构的ZrO_2多孔陶瓷材料。以正硅酸乙酯(TEOS)为无机物前驱体,分别采用酸催化、非催化的溶胶凝胶-水热耦合法制备了具有无机物与木粉骨架互穿网络结构SiO_2/木粉杂化材料。傅立叶变换红外光谱(FTIR)、X-射线衍射(XRD)和热重(TG)分析结果表明,酸催化过程能形成更多的Si-O-C化学键结合,提高杂化材料的增重率和热性能。酸催化和非催化过程制得的SiO_2/木粉杂化材料的热分解起始温度分别为325℃和314℃,比木粉分别提高了50℃和39℃。在空气中1000℃热处理酸催化法制得的SiO_2/木粉杂化材料可制备具有木粉有序孔结构的SiO_2陶瓷材料,孔径主要分布在2~40nm之间。
     3、在苯酚:萘酚:甲醛的摩尔比为0.9:0.1:1.35,氨水作催化剂(pH=8~9),反应温度为90℃,反应时间为2.0h的最佳反应条件下,制备了以萘酚部分替代苯酚的高残碳热固性酚醛树脂。FTIR和TG分析结果表明,萘酚醛树脂具有较好的耐热性能,800℃时的残碳率为61.3%,是良好的碳/碳复合陶瓷材料树脂基体和粘合剂。
     以易于成型的SiO_2/木粉/萘酚醛树脂复合材料为陶瓷前驱体,在1550℃、氮气保护下发生碳热还原反应,得到了具有分级、有序孔结构的SiC陶瓷。FTIR、XRD的研究结果表明SiC多孔陶瓷的主要组成是β-SiC,场发射扫描电镜(FESEM)形态学研究表明陶瓷保留了木材组织分级、有序多孔结构。
     以SiO_2/木粉/萘酚醛树脂复合材料的高温裂解产物作为硅源和碳源,成功制备了具有独特的链珠状β-SiC长纤维。形态学研究结果表明,纤维的直径1~2μm,长度可达几百微米,在长链上均匀的分布着直径为3~5μm的微珠。实验的分析、检测结果表明,链珠状SiC纤维的生长过程为:碳热还原反应过程中,先按[111]方向外延性生长成直线型SiC晶须,而在(111)晶面内存在结构缺陷(堆垛层错),再围绕SiC长链晶须表面的缺陷处生成新的SiC晶核,由此外延性生长形成包裹在长链上的SiC微珠,最后形成链珠状SiC纤维。
     4、以具有“韧”“硬”特性的SiO_2/木粉杂化材料作为填料、尼龙6(PA6)为高分子基体,采用双螺杆熔融挤出,成功制备了PA6/SiO_2/木粉杂化复合材料。XRD的研究结果表明,SiO_2/木粉杂化材料起着晶型转变剂的作用,促进了PA6的α晶型向γ晶型转变。DSC的研究结果表明,SiO_2/木粉杂化材料显著的提高了PA6的结晶温度和结晶速率。PA6/SiO_2/木粉杂化复合材料具有优良的力学性能。随着SiO_2/木粉杂化材料含量的增加,复合材料的拉伸、弯曲强度增大。与PA6相比,SiO_2/木粉杂化材料的含量为25 wt.%时,复合材料的拉伸强度由48.6MPa增加到59.7MPa,提高了23.3%;弯曲强度由55.0 MPa增大到87.9 MPa,提高了59.8%。KH550偶联剂、E-44环氧树脂的表面处理提高了SiO_2/木粉杂化材料与PA6基体的相容性,提高了复合材料的力学性能。
     5、采用混炼法分别制备了甲基乙烯基硅橡胶与木粉、SiO_2/木粉杂化材料的杂化复合材料,探讨了填料用量对复合材料力学性能的影响。实验结果表明,随着木粉、SiO_2/木粉杂化材料加入量的增大,复合材料的拉伸强度和拉断伸长率降低。撕裂强度先提高后降低,当木粉加入量为20phr时,达到最大值kN/M15.9和13.1kN/M最大值。木粉、SiO_2/木粉杂化材料的加入提高了硅橡胶的硬度。对木粉、SiO_2/木粉杂化材料表面改性的硅烷偶联剂KH570的用量分别为2和1 wt.%时,可以改善填料与硅橡胶的界面相容性,提高硅橡胶复合材料的综合力学性能。
     以可成型的甲基乙烯基硅橡胶/SiO_2/木粉杂化复合材料在氮气氛中、高温裂解原位生成SiO_2/SiC陶瓷。硅橡胶先裂解形成无定形的SiC_xO_y陶瓷,再发生结构重排生成SiO_2/SiC,而SiO_2/木粉杂化材料裂解生成C和SiO_2。1500℃高温下,复合材料的裂解产物发生碳热还原反应,生成了具有木材有序孔结构的SiC陶瓷,孔径为5~20μm。
In this work, hybrid polymer/Inorganic/biomass composite and its ceramic material were fabricated from natural wood with hierarchical structures. Furthermore, their microstructures and properties were studied.
     1. To increase the chemical reactive activity, fir flour was treated by NaOH solution, and the effects of alkali concentration on the component, structure and properties of fir flour were characterized by means of FTIR, XRD, FESEM and TG. The results showed that the hydrogen-bonds among celluloses have been broken partly and the degree of crystallinity of celluloses decreased during the high alkali concentration treatment, and the reaction activity of cellulose increased. Furthermore, the cross-porous network structure of the tracheid and the pit of wood appeared clearly, which made it easy for chemical penetration.
     2. Inorganic/wood flour hybrid materials with interpenetrating network were prepared using a novel Sol-gels hydrothermal couple method. Under hydrothermal condition, Zr precursor was infiltrated into the tracheid and the pit of wood flour, the hydroxyl groups from the hydrolysis of ZrOCl_2 reacted with the hydroxyl groups of the wood and interpenetrating network micro structure of the hybrid material was lastly formed. TG showed that the decomposition temperature increased from 275℃for wood flour to 298℃for the hybrid material. Polyporous ZrO2 ceramics were obtained after the hybrid material being treated under 800℃and the diameter of the pore was about 10~20μm.
     Using tetraethylorthosilicate (TEOS) as precursor, SiO_2/wood flour hybrid materials with interpenetrating network were fabricated by non-catalytic, acid catalytic Sol-gels hydrothermal couple method, respectively. Under hydrothermal condition, the precursor penetrated the cell wall, hydrolyzed and condensed with wood tissues, and SiO_2 formed in pores of fir flour resulting in formation of organic/inorganic interpenetrating network. The analysis of FTIR, XRD and TG revealed that acid catalytic process promoted the formation of Si-O-C bonds, and increased the thermal property. The decomposition temperature increased from 275℃for wood flour to 325, 314℃for the hybrid materials obtained acid catalytic, non-catalytic process, respectively. Polyporous SiO_2 ceramics were obtained after SiO_2/wood flour hybrid materials being treated under 1000℃. The final oxide products retained the ordered pores structure, and also showed unique pore size and distribution with hierarchy on nanoscale derived from the fir flour.
     3. Naphthol modified thermosetting phenolic resin (PF) with high char yield was synthesized. The factors influencing the synthesis, concentration of naphthol, amount of catalyst, condensation temperature and reaction time were discussed. The optimum conditions were determined as follows: the molar ratio of phenol, naphthol and formaldehyde is 0.9:0.1:1.35, ammonia as catalyst (pH value 8~9), reaction temperature of 90℃and reaction time of 2.0h. The analysis results showed that naphthol has been actually grafted on the chain of PF, which had lower content of instability aether bonds. The decomposition temperature, the highest char yield of the modified PF was 460℃and 61.3%, respectively. Naphthol modified PF is suitable for use as the typical precursors used to fabricate carbon/carbon composite materials and ablative materials.
     The novel SiO_2/wood flour/phenolic composite was chosen to convert into SiC ceramic with hierarchically porous structures via the carbothermal reduction reaction. XRD, FTIR and FESEM were employed to characterize the phase identification and microstructural changes during the wood flour/SiO_2/phenolic composite to porous SiC ceramic conversion. The results showed that at 1550 0C the wood flour/SiO_2/phenolic composite converted into porous SiC ceramic with pore diameters of 10~40μm in a flowing ultra-high purity N2 atmosphere. The porous ceramic consisted ofβ-SiC located at the position of former wood cell walls.
     Long SiC micro-whiskers with necklace-like morphology have been successfully synthesized by carbothermal reduction process. In the process, the SiO_2/wood flour/phenolic composite was chosen as both silicon and carbon sources. The morphology and structure were investigated by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Studies found that the as-synthesized whiskers were grown as single crystallineβ-SiC along (111) direction with the length up to hundreds of micrometers. The every string with 1-2μm in diameter is regularly decorated with numerous equal-sized beads of 3-5μm diameters. On the basis of characterization results, a growth mechanism is proposed to clarify the formation of necklace-like whiskers. During the carbothermal reduction process, initially, the freshly formed carbon atoms and silicon atoms from the pyrolysis of wood flour/SiO_2/phenolic composite, which are not stable because of high-energy, react and create SiC nuclei. Then, the SiC strings along [111] direction, which has the lower energy than those of others inβ-SiC, grow fast by absorbing gas-phase carbon atoms and silicon atoms. The longer strings can be formed along with the consecutive growth of SiC. With the extension of the reaction time, SiC strings are circumvented by gas-phase carbon atoms and silicon atoms, which nucleate around the defects on the surface of strings in the nucleation process. With an increasing supply of carbon atoms and silicon atoms diffusing to the nucleation regimes, the spherical SiC beads are gradually created by an epitaxial growth process. The epitaxial orientation relationship is preserved to reduce the lattice mismatch energy. Further asymmetrical growth of the beads forms the necklace-like SiC micro-whisker.
     4. The composites of polyamide-6 (PA6) reinforced with the SiO_2/wood flour hybrid materials were firstly prepared by melt-mixing in twin-screw extruder. Part of SiO_2/wood flour hybrid materials was treated withγ-aminopropyltriethyoxysilane or epoxy resin as compatibilizer, to improve its adhesion to PA6. XRD analysis results showed that the SiO_2/wood flour hybrid materials could induce PA6 to transit fromαtoγcrystal form. DSC analysis results indicated that the addition of the SiO_2/wood flour hybrid materials raised the crystallization temperature and increased the crystallization rate of PA6. The effects of SiO_2/wood flour hybrid materials content and the compatibilizer on mechanical properties of the composites were discussed. Tensile strength of the composites with 25 wt.% of the SiO_2/wood flour hybrid materials increased from 48.6 to 59.7 MPa representing 23.3% increase over pure PA6 , whereas 59.8% increase in flexural strength was observed. Two kinds of compatibilizer could enhance the interfacial adhesion between the SiO_2/wood flour hybrid materials and PA6, resulting in the impact strength of the composites efficiently increasing.
     5. Silicon rubbers (methyl vinyl siloxane rubber, MVS) composites reinforced with wood flour or the SiO_2/wood flour hybrid materials were prepared in a two-roll mill, and the properties of two series of composites such as tensile strength, tear strength, elongation at break and hardness were investigated. The experimental results showed that the rubber composites exhibited an increase in hardness, however, their tensile strength and tensile elongation at break decreased with increasing filler loading. Tear strength firstly increased and then decreased with increasing filler loading, and the maximum values are 15.9 kN/M at 20 phr of wood flour and 13.1kN/M at 10 phr of the SiO_2/wood flour hybrid materials, respectively. A silane coupling agent,γ-glycidoxypropyltrimethy- oxysilane (KH570) was used to modify filler surfaces, 2 wt.% for wood flour and 1 wt.% for the SiO_2/wood flour hybrid materials, respectively. It was found that the silane coupling agent improved the rubber matrix-filler interaction and consequently enhanced strength properties. Porous SiO_2/SiC ceramic was fabricated by carbonizing and sintering MVS/SiO_2/wood flour composites at high temperature. The fabrication process involved the following steps: (1) transforming the silicon rubbers by pyrolysis into silicon oxycarbide (SiOC), and (2) fabricating porous SiO_2/SiC ceramic by carbothermal reduction and subsequent sintering. The resulting porous ceramic exhibited hierarchical porous structures with pore diameters of 5~20μm.
引文
[1] N. S. H. David, N. Shiraishi. Wood and Cellulosic Chemistry. J. Am.Chem. Soc., 2001, 123(36): 8880-8891
    [2]乔冠军,金志浩.用木材制备生物结构陶瓷.材料导报, 2003, 17(4): 66-69
    [3]王天驰.基于木材模板的铝/生态陶瓷复合材料的制备及性能研究.上海:上海交通大学博士论文, 2006
    [4] H. Sasaki, S. Kawai. Recent Research and Development Work on Wood Composites in Japan. Wood Sci. Technol., 1994, 28(4): 241-248
    [5]左铁镛.材料产业可持续发展与环境保护.关州大学学报(自然科学版)环境材料专辑, 1996, (32): 1-8
    [6]孙炳合.植物材料的遗态转化及微观组织研究.上海:上海交通大学博士论文, 2005
    [7] D. klemm, B. Heublein, H. Fink, et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed., 2005, 44(22): 3358-3393.
    [8]徐有明.木材学.北京:中国林业出版社, 2006
    [9]高洁,汤烈贵.纤维素科学.北京:科学出版社, 1996
    [10]卢灿辉,陈晓.利用木材介孔结构制备新型复合材料研究进展.高分子材料科学与工程, 2003, 19(6): 32-36
    [11]赵广杰.木材中的纳米尺度、纳米木材及木材-无机纳米复合材料.北京林业大学学报, 2002, 24(5/6): 204-207
    [12]陈志林,王群,张雪莲,等.木材无机非金属复合材料的研究进展.北京工业大学学报, 2003, 29(1): 116-121
    [13]山本良一.环境材料.北京:化学工业出版社, 1997
    [14] P. Fratzl, R. Weinkamer. Nature’s hierarchical materials. Prog. Mater. Sci., 2007, 52(8): 1263-1334
    [15]饶久平.木质复合材料的发展与展望.福建林学院学报, 2003, 23(3): 284-287
    [16] M. A. Khan, K. I. Ali, M. S. Jahan. Characterization of Wood and Wood-Plastic Composite. Polym.-Plast. Technol. Eng., 1999, 38(4): 753-765
    [17] W. D. Ellis. Wood-Polymer Composites: Review of Processes and Properties. Mol. Cryst. Liq. Cryst., 2000, 353(1): 75-84
    [18] S. Kalia, B.S. Kaith, I. Kaur. Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites--A Review. Polym. Eng. Sci., 2009, 49(7): 1253-1272
    [19] D. N. Saheb, J. P. Jog. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol., 1999, 18(4): 351-363
    [20] M. J. John, S. Thomas. Biofibres and Biocomposites. Carbohydr. Polym., 2008, 71(3): 343-364
    [21] A. K. Bledzki, O. Faruk. Wood Fiber Reinforced Polypropylene Composites: Compression and Injection Molding Process. Polym.-Plast. Technol. Eng., 2004, 43(3): 871-888
    [22] N. M. Stark, L. M. Matuana. Surface Chemistry Changes of Weathered HDPE/wood-flour Composites Studied by XPS and FTIR Spectroscopy. Polym. Degrad. Stab., 2004, 86(1): 1-9
    [23] M. Bengtsson, P. Gatenholm, K. Oksman.The Effect of Crosslinking on the Properties of Polyethylene/wood Flour Composites. Compos. Sci. Technol., 2005, 65(10): 1468-1479
    [24] J. P. Kim, T. H. Yoon, S. P. Mun, et al. Wood–polyethylene Composites Using Ethylene–vinyl Alcohol Copolymer as Adhesion Promoter. Bioresour. Technol., 2006, 97(3): 494-499
    [25] M. Kazayawoko, J. J. Balatinecz, R. T. Woodhams, et al. Effects of Wood Fiber Surface Chemistry on the Mechanical Properties of Wood Fiber-Polypropylene Composites. Intern. J . Polym. Mater., 1997, 37(3): 231-261
    [26] S. Borysiak, D. Paukszta, M. Helwig. Flammability of Wood-polypropylene Composites. Polym. Degrad. Stab., 2006, 91(12): 3339-3343
    [27] A. K. Bledzki, O. Faruk. Injection Moulded Microcellular Wood Fibre-polypropylene Composites. Composites Part A., 2006, 37(9): 1358-1367
    [28] S. M. B. Nachtigall, G. S. Cerveira, S. M. L. Rosa. New Polymeric-coupling Agent for Polypropylene/wood-flour Composites. Polym. Test., 2007, 26(5): 619-628
    [29] D. Maldas, B. V. Kokta. Surface Modification of Wood Fibers Using Maleic Anhydride and Isocyanate as Coating Components and Their Performance in Polystyrene Composites. J. Adhes. Sci. Technol., 1991, 5(9): 727-740
    [30] J. Simonsen, T.G. Rials. Morphology and Properties of Wood-Fiber Reinforced Blends of Recycled Polystyrene and Polyethylene. J. Thermoplast. Compos. Mater., 1996, 9(3): 292-302.
    [31] H. Jiang, D. P. Kamdem. Development of Poly(vinyl chloride)/Wood Composites. A Literature Review. J. Vinyl. Addit. Technol.,2004, 10(2): 59-69
    [32] L. Augier, G. Sperone, C. Vaca-Garcia, et al. Influence of the Wood Fibre Filler on the Internal Recycling of Poly(vinyl chloride)-based Composites. Polym. Degrad. Stab., 2007, 92(7): 1169-1176
    [33] B. L. Shah, L. M. Matuana. Novel Coupling Agents for PVC/Wood-Flour Composites. J. Vinyl. Addit. Technol., 2005, 11(4): 160-165
    [34]方征平,蔡国平,曾敏峰,等. EAA对LLDPE/木粉复合材料的改性.中国塑料, 1999, 13(11): 44-46
    [35]朱晓群,周亨近,魏浩,等.木粉/HDPE复合材料的力学性能与流动性能.北京化工大学学报, 2001, 28(1): 56-58
    [36]雷文,余旺旺,骆嘉言,等.高密度聚乙烯/木粉复合材料的热氧老化(Ⅰ)—增容剂及抗氧剂对复合材料耐热氧老化的效果对比.材料导报:研究篇, 2009, 23(1): 102-105
    [37]苑会林,李运德,闫雪晶,等.木粉填充聚氯乙烯发泡体系的力学性能研究.聚氯乙烯, 2002, (6): 29-32
    [38] P. S. Razi, A. Raman, R. Portier. Studies on Mechanical Properties of Wood-polymer Composites. J. Compos. Mater., 1997, 31(23): 2391-2401
    [39] E. McHenry, Z. H. Stachurski. Composite Materials Based on Wood and Nylon Fibre. Composites Part A, 2003, 34(2): 171-181
    [40] A. Valadez-Gonzaleza, J. M. Cervantes-Uc, R. Olayob, et al. Effect of Fiber Surface Treatment on the Fiber–matrix Bond Strength of Natural Fiber Reinforced Composites. Composites Part B, 1999, 30(3): 309-320
    [41] P. A. Santos, M. A. S. Spinacé, K. K. G. Fermoselli, et al. Polyamide-6/Vegetal Fiber Composite Prepared by Extrusion and Injection Molding. Composites Part A, 2007, 38(12): 2404-2411
    [42] M. N. Ichazo, C. Albano, J. González, et al. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct., 2001, 54(2-3): 207-214
    [43] L. M. Matuana, D. P. Kamdem. Accelerated Ultraviolet Weathering of PVC/Wood-flour Composites. Polym. Eng. Sci., 2002, 42(8): 1657-1666
    [44] J. Z. Lu, T. W. Doyle, K. Li. Preparation and Characterization of Wood-(Nylon 12) Composites. J. Appl. Polym. Sci., 2007, 103(1): 270-276
    [45] J. Varna, R. Joffe, L. A. Berglund. Effect of Voids on Failure Mechanisms in RTM Laminates. Compos. Sci. Technol., 1995, 53(2): 241-249
    [46] B. Madsen, A. Thygesen, H. Lilholt. Plant Fibre Composites-porosity and Volumetric Interaction. Compos. Sci. Technol., 2007, 67(7-8): 1584-1600
    [47] B. Madsen, H. Lilholt. Physical and Mechanical Properties of Unidirectional Plant Fibre Composites- an Evaluation of the Influence of Porosity. Compos. Sci. Technol., 2003, 63(9): 1265-1272
    [48]李坚.走向21世纪的木质复合材料.世界林业研究, 1995, 8(3) : 34-40
    [49] S. Saka, M. Sasaki, M. Tanahashi. Wood-inorganic Composites Prepared by the Sol-gel Process I: Wood-inorganic Composites with Porous Structure. Mokuzai Gakkaishi, 1992, 38(11): 1043-1049
    [50] S. Saka. Wood-inorganic Composites as by the Sol-gel Process and Its Top Chemistry on Wood Property Enhancement. Mokuzaikogyo, 1995, 50(9) : 400-406.
    [51] K. Ogiso, S. Saka. Wood-inorganic Composite Prepared by Sol-gel Processing(Ⅱ): Effects of Ultrasonic Treatments on Preparation of Wood-inorganic Composite. Mokuzai Gakkaishi, 1993, 39(3): 301-307
    [52] K. Ogiso, S. Saka. Wood-inorganic Composites Prepared by Sol-gel Process IV: Effects of Chemical Bonds between Wood and Inorganic Substances on Property Enhancement. MokuzaiGakkaishi, 1994, 40(10): 1100-1106
    [53] T. Furuno, K. Shimada, T. Uehara, et al. Combination of Wood and Silicate. Water-mineral Composites Using Water Glass and Reactants Barium Chloride, Boric Acid and Borax and Their Properties. Mokuzai Gakkaishi, 1992, 38(5) : 448-457
    [54] Yamaguchi H. Preparation and Physical Properties of Wood Fixed With Solicit Acid Compounds. Mokuzai Gakkaishi, 1994, 40(8): 838-845
    [55]王西成,程之强,莫小洪,等.木材二氧化硅原位复合材料的界面研究.材料工程, 1998, (5): 16-18
    [56]王西成,田杰.陶瓷化木材的复合机理.材料研究学报, 1996, 10(4): 435-439
    [57]符韵林.二氧化硅/木材复合材料的微细构造与物性.北京:北京林业大学博士论文, 2006
    [58]邱坚,李坚.超临界干燥制备木材-SiO2气凝胶复合材料及其纳米结构.东北林业大学学报, 2005, 33(3): 3-5
    [59]陈志林.陶瓷化复合木材复合方法与性能的基础性研究.北京:北京工业大学博士论文, 2003
    [60] A. Singh, B. Dawson, R. Franich, et al. The Relationship between Pit Membrane Ultrastucture and Chemical Impergnability of Wood. Holzforschung, 1999, 53: 341-346
    [61]符韵林,赵广杰.溶胶-凝胶法在木材/无机纳米复合材料上的应用.林产工业, 2005, 32(1): 6-9
    [62] T. Fumie, S. Saka. Antimicrobial TMSAH-added Wood-inorganic Composites Prepared by the Sol-gel Process. Holzforchung, 1998, 52: 365-370.
    [63]马荣,乔冠军,金志浩.木材陶瓷.兵器材料科学与工程, 1998, 21(6): 45-48
    [64]孙炳合,张荻,范同祥,等.木质材料陶瓷化的研究进展.功能材料, 2003, 34(1): 20-23
    [65]吴庆定,向仕龙.木基陶瓷材料制造技术的研究进展.中南林学院学报, 2006, 26(4): 132-140
    [66] T. Suda, N. Kondo, T. Okabe, et al. Electrical Properties of Woodceramics. J. Porous Mater., 1999, 6(3): 255-258
    [67] J. M. Qian, J. P. Wang, Z. H. Jin. Preparation and Properties of Porous Microcellular SiC Ceramics by Reactive Infiltration of Si Vapor into Carbonized Basswood. Mater. Chem. Phys., 2003, 82(3): 648-653
    [68] M. Mizutani, H. Takase, N. Adachi, et al.Porous Ceramics Prepared by Mimicking Silicified Wood. Sci. Technol. Adv. Mater., 2005, 6(1): 76-83
    [69] T. Okabe, K. Saito, K. Hokkirigawa. New Porous Carbon Materials, Woodeeramics: Development and Fundamental Properties. J. Porous Mater., 1996, 2(3): 207-213
    [70] T. Okabe, K. Saito, M. Fushitani, et al. Mechanical Properties of Porous Carbon Material:Woodceramics. J. Porous Mater., 1996, 2(3): 223-228
    [71] H. Iizuka, M. Fushitani, T. Okabe, et al. Mechanical Properties of Woodceramics: A Porous Carbon Material. J. Porous Mater., 1999, 6(3): 175-184
    [72] K.J. Duchow, R.A. Gerhardt. Dielectric Characterization of Wood and Wood Infiltrated with Ceramic Precursors. Mater. Sci. Eng. C, 1996, 4(2): 125-131
    [73]B.Y. Zhao, T. Hirose, T. Okabe, et al. Woodceramics Prepared from Wood Powder/Phenolated Wood Composite. J. Porous Mater., 2002, 9(3): 195-201,
    [74] J. Qian, Z. Jin, J. Wang. Structure and Basic Properties of Woodceramics Made from Phenolic Resin–basswood Powder Composite. Mater. Sci. Eng. A, 2004, 368(1-2): 71-79
    [75]马荣,乔冠军,金志浩.木材陶瓷的制备与性能研究.西安交通大学学报, 1998, 32(8): 57-61
    [76]T. Hirose, T. Fujino, T. Fan, et al. Effect of Carbonization Temperature on the Structural Changes of Woodceramics Impregnated with Liquefied Wood. Carbon, 2002, 40(5): 761-765
    [77] T. Hirose, T. X. Fan, T. Okabe, et al. Effect ofCcarbonization Temperature on the Basic Properties of Woodceramics Impregnated with Liquefied Wood. J. Mater. Sci., 2001, 36(16): 4145-4149
    [78]钱军民,金志浩,王继平.酚醛树脂/木粉复合材料制备木材陶瓷结构变化过程研究.复合材料学报, 2004, 21(4): 18-23
    [79]李淑君,李坚,刘一星.木陶瓷的制造(I)-实木陶瓷.东北林业大学学报, 2002, 30(4): 5-7
    [80]马荣,乔冠军,金志浩.木材渗透性改良与木材陶瓷化.材料导报, 2000, 14(专辑): 271-273
    [81]王于刚,史铁钧,李忠,等.聚芳基乙炔/杉木粉木材陶瓷的制备与表征.应用化学, 2010, 27(4): 418-423
    [82] A. R. D. Arellano-López, J. Martínez-Fernández, P. González, et al. Biomorphic SiC: A New Engineering Ceramic Material. Int. J. Appl. Ceram. Technol., 2004,1(1): 56-67
    [83]周向阳,王辉,刘宏专,等.碳化硅多孔陶瓷制备技术研究进展.材料导报, 2007, 21(专辑Ⅷ): 398-400
    [84] E. Vogli, J. Mukerji, C. Hoffman, et al. Conversion of Oak to Cellular Silicon Carbide Ceramic by Gas-Phase Reaction with Silicon Monoxide. J. Am. Ceram. Soc., 2001, 84(6): 1236-1240
    [85]Y. Shin, C. Wang, G. J. Exarhos. Synthesis of SiC Ceramics by the Carbothermal Reduction of Mineralized Wood with Silica. Adv. Mater., 2005, 17(1): 73-77
    [86] P. Greil, T. Lifka, A. Kaindl. Biomorphic Cellular Silicon Carbide Ceramics from Wood: I.Processing and Microstructure. J. Eur. Ceram. Soc., 1998, 18(14): 1961-1972
    [87] P. Greil, T. Lifka, A. Kaindl. Biomorphic Cellular Silicon Carbide Ceramics from Wood: II.Mechanical Properties. J. Eur. Ceram. Soc., 1998, 18(14): 1975-1983
    [88] E. Vogli, H. Sieber, P. Greil. Biomorphic SiC-ceramic Prepared by Si-vapor Phase Infiltration ofWood. J. Eur. Ceram. Soc., 2002, 22(14-15): 2663-2668
    [89]钱军民,金志浩.木材陶瓷制备多孔SiC的研究.西安交通大学学报, 2004, 38(1): 93-96
    [90] C. R. Rambo, H. Sieber. Novel Synthetic Route to Biomorphic Al2O3 Ceramics. Adv. Mater., 2005, 17(8): 1088-1091
    [91] X. Li, T. Fan, Z. Liu., et al. Synthesis and Hierarchical Pore Structure of Biomorphic Manganese Oxide Derived from Woods. J. Eur. Ceram. Soc., 2006, 26(16): 3657-3664
    [92] Z. Liu, T.Fan, W. Zhang,et al. The Synthesis of Hierarchical Porous Iron Oxide with Wood Templates. Microporous Mesoporous Mater., 2005, 85(1-2): 82-88
    [93] Z. Liu, T. Fan, J. Ding, et al. Synthesis and Cathodoluminescence Properties of Porous Wood (fir)-templated Zinc Oxide. Ceram. Int., 2008, 34(1): 69-74
    [94] T. Fan, X. Li, J. Ding, et al. Synthesis of Biomorphic Al2O3 Based on Natural Plant Templates and Assembly of Ag Nanoparticles Controlled within the Nanopores. Microporous Mesoporous Mater., 2008, 108(1-3): 204-212
    [95] T. Fan, X. Li, Z. Liu, et al. Microstructure and Infrared Absorption of Biomorphic Chromium Oxides Templated by Wood Tissues. J. Am. Ceram. Soc., 2006, 89(11): 3511-3515
    [96] H.Sieber, C. Rambo, J. Cao, et al. Manufacture of Porous Oxides Ceramics by Replication of Plant Morphologies. Key Eng. Mater., 2001, 206-213: 2009-2012
    [97] J. Cao, O. Rusina, H. Sieber. Processing of Porous TiO2-ceramics from Biological Preforms. Ceram. Int., 2004, 30(7): 1971-1974
    [98]李忠,史铁钧,郭立颖.杉木粉/ZrO2网络互穿杂化材料的制备、形态、结构和性能.化工学报, 2008, 59(11): 2922-2928
    [99] Z. Li, T. Shi, L. Guo. Preparation and Morphology of Porous SiO2 Ceramics Derived from Fir Flour Templates. J. Serb. Chem. Soc., 2010, 75 (3): 385-394
    [100]钱军民,金志浩,乔冠军.木材陶瓷研究进展.无机材料学报, 2003, 18(4): 715-724
    [1] S. Andersson, R. Serimaa, T. Paakkari, et al. Crystallinity of Wood and the Size of Cellulose Crystallites in Norway Ppruce (prcea abies). J. Wood Sci., 2003, 49(6): 531-537
    [2]卢灿辉,陈晓.利用木材介孔结构制备新型复合材料研究进展.高分子材料科学与工程, 2003, 19(6): 32-36
    [3] M. J. John, B. Francis, K. T. Varughese, et al. Effect of Chemical Modification on Properties of Hybrid Fiber Biocomposties. Composites Part A, 2008,39(2): 352-363
    [4] L. Y. Mwaikambo, M. P. Ansell. Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization. J. Appl. Polym. Sci.,2002, 84(12): 2222-2234
    [5]王献玲,方桂珍,胡春平.超声波活化处理对微晶纤维素结构和氧化反应性能的影响.高等学校化学学报, 2007, 28(3): 565-567
    [6]张琳,顾汉泉,高仁孝.辐射对纤维素结晶度的影响.火炸药学报, 2002, (1): 76-77
    [7]殷延开,陈玉放,哈成勇.乙醇中碱纤维素的结构变化.纤维素科学与技术,2005, 13(4): 37-41
    [8]陈玉和,黄文豪,常德龙,等.氢氧化钠预处理对木材漂白促进作用的研究.林产化学与工业, 2000, 20(1): 52-56.
    [9]王喜明,薛振华,石丽慧,等.微波改性木材的初步研究.木材工业, 2002, 16(6): 16-19.
    [10]薛振华,赵广杰.不同处理方法对木材结晶性能的影响.西北林学院学报, 2007, 22(2): 169-171
    [11] S. Ouajai, R. A. Shanks. Composition, structure and thermal degradation of hemp cellulose after chmical treatments. Polym. Degrad. Stab., 2005, 89(2): 327-335
    [12] M. Akerholm, B. Hinterstoisser, L. Salmén. Characterization of the Crystalline Structure of Cellulose Using Static and Dynamic FT-IR Spectroscopy. Carbohydr. Res., 2004, 339(3): 569-578
    [13]任海青,黄安民,刘君良,等.杉木加工利用研究进展及建议.木材工业, 2006, 20(1): 25-27
    [14] S. Y. Oh, S. I. Yoo, Y. Shin, et al. Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-ray Diffraction and FTIR spectroscopy. Carbohydr. Res., 2005, 340(15): 2376-2391
    [15] L. Segal, J. J. Creely, A. E. Martin. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Res. J., 1959, 29(10): 786-794
    [16] X. Colom, F. Carrillo, F. Nogués, et al. Structural Analysis of Photodegraded Wood by Means of FTIR Spectroscopy. Polym. Degrad. Stab. 2003, 80(3): 543-549
    [17] F. Carrillo, X. Colom, J. J. Sunol, et al. Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-type Fibres. Eur. Polym. J., 2004, 40(9): 2229-2234
    [18] P. Mansikkamaki, M. Lahtinen, K. Rissanen. The Conversion from Cellulose I to Cellulose II in NaOH Mercerization Performed in Alcohol-water Systems: An X-ray Powder Diffraction Study. Carbohydr. Polym., 2007, 68(1): 35-43
    [19] X. Colom, F. Carrillo. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur. Polym. J., 2002, 38(11):2225-2230.
    [20] P. Fratzl, R. Weinkamer. Nature’s hierarchical materials. Prog. Mater. Sci., 2007, 52(8): 1263-1334
    [1] S. Saka. Wood-inorganic Composites as by the Sol-gel Process and Its Top Chemistry on Wood Property Enhancement. Mokuzaikogyo, 1995, 50(9): 400-406.
    [2] S. Saka, M. Sasaki, M. Tanahashi. Wood-inorganic Composites Prepared by the Sol-gel Process I: Wood-inorganic Composites with Porous Structure. Mokuzai Gakkaishi, 1992, 38(11): 1043-1049
    [3] K. Ogiso, S. Saka. Wood-inorganic Composites Prepared by Sol-gel Process IV: Effects of Chemical Bonds between Wood and Inorganic Substances on Property Enhancement. Mokuzai Gakkaishi, 1994, 40(10): 1100-1106
    [4] K. Ogiso, S. Saka. Wood-inorganic Composite Prepared by Sol-gel Processing(Ⅱ): Effects of Ultrasonic Treatments on Preparation of Wood-inorganic Composite. Mokuzai Gakkaishi, 1993, 39(3): 301-307
    [5]王西成,程之强,莫小洪,等.木材二氧化硅原位复合材料的界面研究.材料工程, 1998, (5): 16-18
    [6]廖秋霞,卢灿辉,许晨.原位溶胶-凝胶制备木材-PMMA-SiO2复合材料及其显微结构.福建化工, 2001, (1): 21-23
    [7]陈志林.陶瓷化复合木材复合方法与性能的基础性研究.北京:北京工业大学博士论文, 2003
    [8]王西成,田杰.陶瓷化木材的复合机理.材料研究学报, 1996, 10(4): 435-439
    [9]陈志林,王群,张雪莲,等.木材/无机非金属复合材料的研究进展.北京工业大学学报, 2003, 29(1): 116-121.
    [10]卢灿辉,陈晓.利用木材介孔结构制备新型复合材料研究进展.高分子材料科学与工程, 2003, 19(6): 32-36
    [11] C. R. Rambo, J. Cao, O. Rusina, et al. Manufacturing of Biomorphic (Si, Ti, Zr)-carbide Ceramics by Sol-gel Processing. Carbon, 2005, 43(6): 1174-1183
    [12]符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微观结构与物理性能.复合材料学报, 2006, 23(4): 52-59
    [13]谢贤清,张荻,范同祥,等.具有网络互穿结构的木质陶瓷复合材料.材料研究学报, 2002, 16(3): 259-262
    [14] C. Zollfrank, H. Sieber. Microstructure and Phase Morphology of Wood Derived Biomorphous SiSiC-ceramics. J. Eur. Ceram. Soc., 2004, 24(2): 495-506
    [15]林兰英,陈志林,傅峰.无机质复合木材研究进展.世界林业研究, 2008, 21(2): 38-43
    [16] A. Singh, B. Dawson, R. Franich, et al. The Relationship between Pit Membrane Ultrastucture and Chemical Impergnability of Wood. Holzforschung, 1999, 53: 341-346
    [17]符韵林,赵广杰.溶胶-凝胶法在木材/无机纳米复合材料上的应用.林产工业, 2005, 32(1):6-9
    [18] T. Fumie, S. Saka. Antimicrobial TMSAH-added Wood-inorganic Composites Prepared by the Sol-gel Process. Holzforchung, 1998, 52: 365-370.
    [19]符韵林.二氧化硅/木材复合材料的微细构造与物性.北京:北京林业大学博士论文, 2006
    [20] J. Mendez-vivar, P. Bosch, V. H. Lara. The Role of 2-(Methacryloyloxy) Ethyl Acetoacetate in the Polymerization of Hybrid Multicomponent (Si, Ti, Zr) Sols. J. Sol-Gel Sci. Technol., 2002, 25(3): 249-254
    [21] P. Mansikkamaki, M. Lahtinen, K. Rissanen. The Conversion from Cellulose I to Cellulose II in NaOH Mercerization Performed in Alcohol–water Systems: An X-ray Powder Diffraction Study. Carbohydr. Polym., 2007, 68(1): 35-43
    [22] L. Segal, J. J. Creely, A. E. Martin. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Res. J., 1959, 29(10): 786-794
    [23]王昕,李镇江,杨丰科,等.单分散纳米水合氧化锆的制备.化工学报, 1999, 50(4): 519- 523
    [24] J. Qian, J. Wang, Z. Jin, et al. Preparation of Macroporous SiC from Si and Wood Powder Using Infiltration-reaction Process. Mater. Sci. Eng., A, 2003, 358(1-2): 304-309.
    [25] S. Saka, Y. Yakake. Wood-inorganic Composites Prepared by Sol-gel Process III: Chemically - Modified wood-inorganic Composites. Mokuzai Gakkaishi, 1993, 39(3): 308-314.
    [26]袁光明,刘元,吴义强,等.杉木-纳米SiO2复合材料结构表征及复合机理研究.湖南大学学报(自然科学版), 2009, 36(9): 59-62
    [27]王西成,史淑兰,程之强,等. (Si-, Al-)陶瓷化木材的化学方法.材料研究学报, 2000, 14(1): 51-55
    [28]郑斌,李元庆,朱路平,等.模板法制备二氧化硅纳米管及其表征.化工学报, 2007, 58(10): 2641-2646
    [29]殷明志,姚熹,吴小清.纳米多孔二氧化硅薄膜的制备及性能.材料研究学报, 2003, 17(2): 220-224
    [30] X. Li, T. Fan, Z. Liu, et al Synthesis and Hierarchical Pore Structure of Biomorphic Manganese Oxide Derived from Woods. J. Eur. Ceram. Soc., 2006, 26(16): 3657-3664
    [31] W. Makowski, L. Chmielarz, P. Kustrowski. Determination of the Pore Size Distribution of Mesoporous Silicas by Means of Means of Quasi-equilibrated Thermodesorption of n-nonane. Microporous Mesoporous Mater., 2009, 120(3): 257-262
    [32]吴谨光.近代傅立叶变换红外光谱技术及应用.北京:科学技术文献出版社, 1994
    [33]张叔良,易大年,吴天明.红外光谱分析与新技术.北京:中国医药科技出版局社, 1993
    [34]张广强,许大鹏,王德涌,等.纳米SiO2在高压高温下的结构转化.吉林大学学报(理学版), 2008, 46(2): 311-313
    [1] A. R. D. Arellano-López, J. Martínez-Fernández, P. González, et al. Biomorphic SiC: A New Engineering Ceramic Material. Int. J. Appl. Ceram. Technol., 2004, 1: 56-67
    [2]周向阳,王辉,刘宏专,等.碳化硅多孔陶瓷制备技术研究进展.材料导报, 2007, 21(专辑Ⅷ): 398-400
    [3]章林,曲选辉,段柏华,等. SiC多孔陶瓷的研究进展.粉末冶金技术, 2007, 25(2): 139-144
    [4]孙莹,谭寿洪,江东亮.多孔碳化硅材料的制备及其催化性能.无机材料学报, 2003, 18(4): 830-836
    [5]刘冬,张求慧,余雁,等.木基SiC生物陶瓷的制备.北京林业大学学报, 2009, 31(增刊1): 117-119
    [6]张建,陈志林,周建斌,等.生物质结构SiC陶瓷材料的研究现状及发展趋势.木材工业, 2009, 23(2): 31-33
    [7]钱军民,金志浩,王继平.酚醛树脂-木粉复合材料制备木材陶瓷结构变化过程研究.复合材料学报, 2004, 21(4): 18-23
    [8]蔡宁,马荣,乔冠军,等.木材陶瓷化反应机理的研究.无机材料学报, 2001, 16(4): 763-768
    [9] E. Vogli, J. Mukerji, C. Hoffman, et al. Conversion of Oak to Cellular Silicon Carbide Ceramic by Gas-Phase Reaction with Silicon Monoxide. J. Am. Ceram. Soc., 2001, 84: 1236-1240
    [10] Y. Shin, C. Wang, G. J. Exarhos. Synthesis of SiC Ceramics by the Carbothermal Reduction of Mineralized Wood with Silica. Adv. Mater., 2005, 17: 73-77
    [11]张建,陈志林,周建斌,等.竹炭基SiC陶瓷材料的显微结构及能谱分析.材料工程, 2009, (增刊1): 254-257
    [12]江泽慧,任海青,费本,等.竹炭及SiC陶瓷材料的结构与性能.新型炭材料, 2006, 21(1): 1-8
    [13]王启宝,郭梦熊,贾仁和. BP-SiC晶须的特性及显微结构研究.化工新型材料, 1996, 24(5): 36-39
    [14] Z. Pan, H. L. Lai, F. C. K. Au, et al. Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties. Adv. Mater., 2000, 12: 1186-1189
    [15]裴立宅.一维SiC纳米材料的研究现状.稀有金属与硬质合金, 2009, 37(3): 52-58
    [16] W. Yang, H. Araki, A. Kohyama, et al. Process and Mechanical Properties of in Situ Silicon Carbide-Nanowire-Reinforced Chemical Vapor Infiltrated Silicon Carbide/Silicon Carbide Composite. J. Am. Ceram. Soc., 2004, 87: 1720-1725
    [17] Z. Ryu, J. Zheng, M. Wang, et al. Synthesis and Characterization of Silicon Carbide Whiskers. Carbon, 2001, 39: 1929-1941
    [18] G. W. Ho, A. S. W. Wong, D. J. Kang, et al. Three-dimensional Crystalline SiC Nanowire Flowers. Nanotechnology, 2004, 15: 996-999
    [19] J. J. Niu, J. N. Wang, Q. F. Xu. Aligned Silicon Carbide Nanowire Crossed Nets with High Superhydrophobicity. Langmuir, 2008, 24: 6918-6923
    [20]韩伟强,范守善,李群庆,等.碳化硅纳米晶须生长和显微结构.材料研究学报, 1998, 12(3): 335-336
    [21]戴长虹,水丽.碳化硅纳米晶须的制备.硅酸盐学报, 2001, 29(3): 275-277
    [22]白朔,成会明,苏革,等.哑铃形碳化硅晶须生长的机理.材料研究学报, 2002, 16(2): 136- 140
    [23]张颖,蒋明学,崔曦文,等.碳热还原法制备SiC晶须试验研究.西安建筑科技大学学报(自然科学版), 2008, 40(6): 788-791
    [24] G. Urretavizcaya, J.M. P. Lopez. Growth of SiC Whiskers by VLS Process. J. Mater. Res., 1994, 9: 2981-2986
    [25] G. Wei, W. Qin, R. Kim, et al. Large-scale Synthesis and Photoluminescence Properties of SiC Networks. Appl. Phys. A, 2009, 96: 521-527
    [26]陶毓博,李淑君,李鹏,等.酚醛树脂用量对木陶瓷性能的影响.材料热处理学报, 2010, 31(2): 26-29
    [27]伊廷会.高性能酚醛树脂改性研究进展.化工进展, 2001, 22(9): 13-16
    [28] S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [29]雷毅,王俊山.碳/碳复合材料用基体先驱体研究进展.宇航材料工艺, 2000, 30(5): 6-9
    [30]欧育湘,陈宇,王莜梅.阻燃高分子材料.北京:化学工业出版社, 2001
    [31]欧阳兆辉,伍林,易德莲,等.钼改性酚醛树脂黏结剂的研究.化工进展, 2005, 24(8): 901-904
    [32] K. D. Whan, Y. D. Kuk, J. S. Hwan. Synthesis and Characterization of Rosinester Modified with p-nonylphenolic Resole. J. Ind. Eng. Chem., 2000, 6: 256-261
    [33]狄西岩,梁国正,秦华宇.烯丙基硼酚醛树脂的合成.高分子材料科学与工程, 2000, 16(2): 44-46.
    [34]王井岗,黄晓松,刘育建,等.新型高残碳酚醛树脂的研究I.高残碳酚醛树脂的合成及其残碳率.宇航材料工艺, 2001, 31(6): 47-51
    [35] R. L. Bindu, C. P. N. Reghunadhan, K. N. Ninan. Phenolic Resins with Phenyl Maleimide Functions: Thermal Characteristics and Laminate Composite Properties. J. Appl. Polym. Sci., 2001, 80: 1664-1674.
    [36]张衍,荆建芬,王井岗,等.高碳酚醛树脂的结构改性.玻璃钢/复合材料, 2001, 156(1): 10-11
    [37]潘才元.高分子化学.合肥:中国科学技术大学出版社, 2003
    [38]祁景玉.现代分析测试技术.上海:同济大学出版社, 2006
    [39] Y. Yamashita, K. Ouchi. A study on Carbonization of Phenol-formaldehyde Resin Labelled with Deuterium and 13C. Carbon, 1981, 19: 89-94.
    [40] J. Qian, J. Wang, G. Qiao, et al. Preparation of Porous SiC Ceramic with a Woodlike Microstructure by Sol-gel and Carbothermal Reduction Processing. J. Eur. Ceram. Soc., 2004, 24: 3251-3259
    [41] S. Dhage, H. C. Lee, M. S. Hassan, et al. Formation of SiC Nanowhiskers by Carbothermic Reduction of Silica with Activated Carbon. Mater. Lett., 2009, 63: 174-176
    [42] D. Shin, S. S. Park. Silicon/Silicon Carbide Composites Fabricated by Infiltration of a Silicon Melt into Charcoal. J. Am. Ceram. Soc., 1999, 82: 3251-3253
    [43] R. Wu, J. Chen, G. Yang, et al. Self-assembled One-dimensional Hierarchical SiC Nanostructures: Microstructure, Growth Mechanism, and Optical Properties. J. Cryst. Growth, 2008, 310: 3573-3578
    [44] G. Z. Yang, H. Cui, Y. Sun, et al. Simple Catalyst-Free Method to the Synthesis ofβ-SiC Nanowires and Their Field Emission Properties. J. Phys. Chem. C, 2009, 113: 15969-15973
    [45] R. B. Wu, G. Y. Yang, Y. Pan, et al. Synthesis of Silicon Carbide Hexagonal Nanoprisms. Appl. Phys. A, 2007, 86: 271-274
    [46] E. I. Givargizov. Fundamental Aspects of VLS Growth. J. Cryst. Growth, 1975, 31: 20-30
    [47] H. Kohno, S. Takeda. Periodic Instability in Growth of Chains of Crystalline-Silicon Nanospheres. J. Cryst. Growth, 2000, 216: 185-191
    [48] C. Dai, and X. Zhang. Microwave Synthesis of Ultrafine Silicon Carbide Whiskers. J. Am. Ceram. Soc., 1997, 80: 1274-1276
    [49] G. W. Meng, Z. Cui, L.D. Zhang, et al. Growth and Characterization of Nanostructuredβ-SiC via Carbothermal Reduction of SiO2 Xerogels Containing Carbon Nanoparticles. J. Cryst. Growth, 2000, 209: 801-806
    [50] J. Wei, K. Z. Li, H. J. Li, et al. Growth and Morphology of One-Dimensional SiC Nanostructures without Catalyst Assistant. Mater. Chem. Phys., 2006, 95: 140-144
    [51] S. M. Pickard, B. Derby. TEM Study of Silicon Carbide Whisker Microstructures. J. Mater. Sci., 1991, 26: 6207-6217
    [52] W. S. Seo, K. Koumoto. Morphology and Stacking Faults ofβ-Silicon Carbide whisker Synthesized by Carbothermal Reduction. J. Am. Ceram. Soc., 2000, 83: 2584-2592
    [1]孔杰,宁荣昌,赫丽华,等.尼龙6共混改性的研究进展.工程塑料应用, 2001, 29(10): 47-49
    [2] A. V. S. Sainath, T. Inoue, Y. Hatakeyama, et al. Polyacrylonitrile/nylon 6 Blends: Prearation and Characterization. Macromol. Mater. Eng., 2004, 289: 264-268
    [3] N. Dencheva, T. Nunes, M. J. Oliveira, et al. Microfibrillar Composites Based on Polyamide/polyethylene Blends. 1. Structure Investigations in Oriented and Isotropic Polyamide 6. Polymer, 2005, 46: 887-901
    [4] M. Todo, K. Takahashi, P. Béguelin, et al. Strain-rate Dependence of the Tensile Fracture Behaviour of Woven-cloth Reinforced Polyamide Composites. Compos. Sci. Technol., 2000, 60: 763-771
    [5] C. R. Chiang, F. C. Chang. Polymer Blends of Polyamide-6 (PA6) and Poly (phenlene ether) (PPE) Compatibilized by a Multifunctional Epoxy Coupler. J. polym. Sci. Part B, 1998, 36: 1805- 1819
    [6]麦堪成,张声春,高庆福,等.聚苯硫醚/尼龙6共混物界面对结晶行为的影响.高分子学报, 2001, 5(1): 121-123
    [7] I. Y. Phang, J. Ma, L. Shen, et al. Crystallization and Melting Behavior of Multi-walled Carbon Nanotube-reinforced Nylon-6 Composites. Polym. Int., 2006, 55: 71-79
    [8] D. Yan, G. Yang. A Novel Approach of in Situ Grafting Polyamide 6 to the Surface of Multi- walled Carbon Nanotubes. Mater. Lett., 2009, 63: 298-300
    [9] J. Shi, Y. Wang, L. Liu, et al. Tensile Fracture Behaviors of T-ZnOw/Polyamide 6 Composites. Mater. Sci. Eng. A, 2009, 512: 109-116
    [10]李强,赵竹第,漆宗能,等.尼龙6/蒙脱土纳米复合材料的结晶行为.高分子学报, 1997, 2(2): 188-193
    [11] X. Liu, Q. Wu, L. A. Berglund, et al. Investigation on Unusual Crystallization Behavior in Polyamide 6/Montmorillonite Nanocomposites. Macromol. Mater. Eng., 2002, 287: 515-522
    [12] D. R. Hones, C. W. Bunn, D. J. Smith. The Crystal Structure of Polycapraomide: Nylon 6. J. Polym. Sci. Part A, 1955, 17: 159-172
    [13] H. Arimoto, M. Ishibashi, M. Hirai, et al. Crystal Structure ofγ- form of Nylon 6. J. Polym. Sci. Part A, 1965, 3: 317-326
    [14] H. Arimoto.α-γTransition of Nylon 6. J. Polym. Sci. Part A, 1964, 2: 2283-2295
    [15] M. Yuan, L. S. Turng. Crystallization and Thermal Behavior of Microcellular Injection-molded Polyamide-6 Nanocomposites. Polym. Eng. Sci., 2006, 46: 904-918
    [16] C. F. Kuan, H. C. Kuan, C. C. M. Ma, et al. Mechanical, Thermal and Morphological Propertiesof Water-crosslinked Wood Flour Reinforced Linear Low-density Polyethylene Composites. Composites Part A, 2006, 37: 1696-1707
    [17] P. Nygard, B. S. Tanem, T. Karlsen, et al. Extrusion-based Wood Fibre-PP Composites: Wood Flour and Pelletized Wood Fibres--a Comparative Study. Compos. Sci. Technol., 2008, 68: 3418-3424
    [18] Z. Dominkovics, L. Dányádi, B. Pukánszky. Surface modification of Wood Flour and Its Effect on thePproperties of PP/Wood composites. Composites Part A, 2007, 38: 1893-1901
    [19] K. L. Pickering, A. Abdalla, C. Ji, et al. The Effect of Silane Coupling Agents on Radiata Pine Fibre for Use in Thermoplastic Matrix Composites. Composites Part A, 2003, 34: 915-926
    [20] Y. Jahani. The Effect of Ppoxy-polyester Hybrid Resin on Mechanical Properties, Rheological Behavior, and Water Absorption of Polypropylene Wood Flour Composites. Polym. Eng. Sci., 2007, 47: 2041-2048
    [21] M. Bengtsson, P. Gatenholm, K. Oksman. The Effect of Crosslinking on the Properties of Polyethylene/Wood Flour Composites. Compos. Sci. Technol., 2005, 65: 1468-1479
    [22] H. S. Yang, M. P. Wolcott, H. S. Kim, et al. Effect of Different Compatibilizing Agents on the Mechanical Properties of Lignocellulosic Material Filled Polyethylene Bio-composites. Compos. Struct., 2007, 79: 369-375
    [23] J. Móczó, B. Pukánszky. Polymer Micro and Nanocomposites: Structure, Interactions, Properties. J. Ind. Eng. Chem., 2008, 14: 535-563
    [1]尹昌平,刘钧,曾竟,等.硅橡胶在聚合物基复合材料成型中的应用.材料导报,2006, 20 (11): 35-39
    [2] L. Yang, Y. Hu, H. Lu, et al. Morphology, Thermal, and Mechanical Properties of Flame- Retardant Silicone Rubber/Montmorillonite Nanocomposites. J. Appl. Polym. Sci., 2006, 99: 3275-3280
    [3] S. Wang, C. Long, X. Wang, et al. Synthesis and Properties of Silicone Rubber/ Organomontmorillonite Hybrid Nanocomposites. J. Appl. Polym. Sci., 1998, 69: 1557-1561
    [4] K. E. Polmanteer. Silicone Rubber, Its Development and Technological Rrogress. Rubber Chem. Technol., 1987, 61: 470-502
    [5] H. Cochrane, C. S. Lin. The Influence of Fumed Silica Properties on the Processing, Curing, and Reinforcement Properties of Silicone Rubber. Rubber Chem. Technol., 1992, 66: 48-60
    [6]沈玲,邹华,田明,等.高导电镀银玻璃微珠/硅橡胶复合材料的结构与性能.合成橡胶工业, 2006, 29(5): 375-379
    [7] E. S. Park. Mechanical Properties and Processibilty of Glass-Fiber-, Wollastonite-, and Fluoro-Rubber-Reinforced Silicone Rubber Composites. J. Appl. Polym. Sci., 2007, 105: 460-468
    [8]陈莉,黄旭,方显力,等.纳米SiO2对甲基乙烯基硅橡胶结构和性能的影响.南京工业大学学报(自然科学版), 2009, 31(6): 1-6
    [9]吴菊英,周成喜,朱庆文,等.高压阻重复性的纳米颗粒复合硅橡胶.中国科学E辑, 2009, 39(12): 1934-1939
    [10]王锦成,陈月辉,王继虎,等.甲基乙烯基硅橡胶/有机蒙脱土母炼胶纳米复合材料的制备、结构与性能.合成橡胶工业, 2008, 31(3): 227-233
    [11]程青民,丁国芳,罗世凯.四针状氧化锌晶须改性硅橡胶的性能.化工进展, 2009, 28(11): 1974-1977
    [12]方守林,吴礼林.硅橡胶/有机凹凸棒土纳米复合材料的制备及性能.应用化学, 2009, 26(4): 383-387
    [13]涂春潮,齐暑华,周文,等.氮化硼填充甲基乙烯基硅橡胶导热复合材料的性能.合成橡胶工业, 2009, 32(3): 238-240
    [14]刘静,田春蓉,王建华. CNTs/硅橡胶纳米复合材料导电性能的研究.橡胶工业, 2008, 55(11): 665-668
    [15] A. R. D. Arellano-López, J. Martínez-Fernández, P. González, et al. Biomorphic SiC: A New Engineering Ceramic Material. Int. J. Appl. Ceram. Technol., 2004, 1: 56-67
    [16]周向阳,王辉,刘宏专,等.碳化硅多孔陶瓷制备技术研究进展.材料导报, 2007, 21(专辑Ⅷ): 398-400
    [17] Y. W. Kim, J. H. Eom, C. Wang. Processing of Porous Silicon Carbide Ceramics from Carbon- Filled Polysiloxane by Extrusion and Carbothermal Reduction. J. Am. Ceram. Soc., 2008, 91: 1361-1364
    [18] T. Gumula, C. Paluszkiewicz, S. Blazewicz. Study on Thermal Decomposition Processes of Polysiloxane Polymers-From Polymer to Nanosized Silicon Carbide. J. Anal. Appl. Pyrolysis, 2009, 86: 375-380
    [19] Q. Wei, E. Pippel, J. Woltersdorf, et al. Interfacial SiC Formation in Polysiloxane-derived Si–O–C ceramics. Mater. Chem. Phys., 2002, 73: 281-289
    [20]原效坤,李树杰,张听.用有机硅树脂YR3370连接RBSiC陶瓷.航空学报, 2007, 28(2): 451-455
    [21] M. A. Schiavon, E. Radovanovic, I. V. P. Yoshida. Microstructural Characterisation of Monolithic Ceramic Matrix Composites from Polysiloxane and SiC Powder. Powder Technol., 2002, 123: 232-241
    [22] H. D. Akkas, M. L.Ovecoglu, M. Tanoglu. Silicon Oxycarbide-based Composites Produced from Pyrolysis of Polysiloxanes with Active Ti Filler. J. Eur. Ceram. Soc., 2006, 26: 3441-3449
    [23] H. Ismail, M. R. Edyham, B. Wirjosentono. Bamboo Fibre Filled Natural Rubber Composites: the Effects of Filler Loading and Bonding Agent. Polym. Test., 2002, 21: 139-144
    [24] M. Abdelmouleh, S. Boufi, M. N. Belgacem. Short Natural-fibre Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibres Loading. Compos. Sci. Technol., 2007, 67: 1627-1639
    [25] G. Camino, S. M. Lomakin, M. Lageard. Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer, 2002, 43: 2011-2015
    [26] T. Gumula, C. Paluszkiewicz, M. Blazewicz. Structural characterization of polysiloxane- derived phases produced during heat treatment. J. Mol. Struct., 2004, 704: 259-262
    [27]原效坤,许并社.一种SiC/SixOyCz非连续增强陶瓷基复合材料的制备及性能.复合材料学报, 2007, 24(1): 104-109
    [28] S. B. Mishra, A. K. Mishra, R. W. Krause, et al. Growth of Silicon Carbide Nanorods from the Hybrid of Lignin and Polysiloxane Using Sol-gel Process and Polymer Blend Technique. Mater. Lett., 2009, 63: 2449-2451
    [29] G. Z. Yang, H. Cui, Y. Sun, et al. Simple Catalyst-Free Method to the Synthesis ofβ-SiC Nanowires and Their Field Emission Properties. J. Phys. Chem. C, 2009, 113: 15969-15973
    [30] W. S. Seo, K. Koumoto. Morphology and Stacking Faults ofβ-Silicon Carbide whisker Synthesized by Carbothermal Reduction. J. Am. Ceram. Soc., 2000, 83: 2584-2592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700