用户名: 密码: 验证码:
小麦真菌毒素在加工过程中的消解、转移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真菌毒素是危害食品安全的重要污染物之一,为减少毒素对粮食的污染,同时为受毒素污染的小麦作为口粮食用的风险评估奠定基础,对受赤霉病(Fusarium head bligh,FHB)侵染的小麦中真菌毒素的含量进行了调查,深入研究了赤霉病发生程度与真菌毒素含量之间的相关性,同时对毒素在小麦磨粉、制品加工、贮藏环节的转化机制及降解规律,以及微生物对真菌毒素的清除机制和能力做了研究,主要结论如下:
     1.2012年对我国四个省份赤霉病小麦真菌毒素含量的调查结果显示,小麦赤霉病的发生通常都会伴随着真菌毒素的污染,同时,赤霉病的发生与毒素的产生受天气条件影响较大。此次调查的发病小麦中污染的主要是脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)及其两种衍生物15-乙酰基脱氧雪腐镰刀菌烯醇(15-acetyldeoxynivalenol,15-ADON)、3-乙酰基脱氧雪腐镰刀菌烯醇(3-acetyldeoxynivalenol,3-ADON),以及玉米赤霉烯酮(Zearalenone,ZEN)和杂色曲霉素(Sterigmatocystin,SMC)等。DON超标率达67.11%,ZEN超标率为28.95%,无论是从毒素检出率、超标率还是含量水平,都以A省的污染情况最为严重。
     2.小麦赤霉病发生程度与DON及其代谢物脱氧雪腐镰刀菌烯醇-3-葡萄糖苷(Deoxynivalenol-3-glucoside,D3G)含量之间存在显著的正相关,线性回归方程分别为YDON=257.78XDI+2315.61(r=0.96)和YD3G=41.81XDI-43.79(r=0.96)。根据回归方程对赤霉病麦中DON和D3G的估测值分别比实测值高59%和低42%,这可能是由于自然条件下赤霉病的发生与产毒受小麦品种、镰刀菌菌种类型以及天气条件等一系列复杂因素的影响,因而难以根据赤霉病的发生情况准确预测真菌毒素的污染水平。
     3.小麦经磨粉加工后,粗麸皮中DON和D3G的含量分别达小麦籽粒的1.2~2.2倍和2.9~4.4倍,细麸皮中的毒素含量稍低于粗麸皮。与小麦籽粒相比,面粉中DON和D3G的含量分别降低了79~90%和23~39%。磨粉后DON总量降低,而D3G总量升高,粗麸皮、细麸皮、面粉中DON的量分别为小麦籽粒的35%、27%和9%,D3G的量分别为小麦籽粒的77%、58%和37%,这可能是由于DON在磨粉过程的高温和磨辊的摩擦力与剪切力作用下与淀粉结合,转化为D3G。
     4.经加工制作,馒头和面包中DON的含量比面粉增高了大约1倍,而D3G的含量显著降低,这可能是由于发酵过程中使用的酵母产生的水解酶作用于面粉中的D3G,使其释放出DON,导致馒头和面包中DON含量升高,而D3G含量降低。面条加工过程中,部分毒素向水中发生了迁移,因此熟面条中DON与D3G的含量仅分别约为面粉的50%和20%。
     5.小麦磨粉后,85%以上的ZEN残留在粗麸皮和细麸皮中,不到15%的ZEN残留在面粉中;粗麸皮和细麸皮中ZEN的含量达小麦籽粒的2倍以上,面粉中ZEN的含量比籽粒降低46~89%。面粉加工成馒头和面包后,ZEN的含量升高近1倍,而加工成面条后因ZEN在煮制过程中部分迁移至水中而降低50%以上。
     6.粮食状态对贮藏过程中DON和D3G的含量变化有显著影响,而贮藏温度、贮藏时间和包装材料等对DON及D3G的含量没有影响。小麦籽粒在不同的温度条件及包装材料中贮藏时,随着贮藏时间的延长,DON的含量呈降低趋势,贮藏30~90天时DON含量降低幅度最大,平均约为40%;面粉在不同的温度条件及包装材料中贮藏时,DON的含量随着贮藏时间的延长而逐渐升高。小麦籽粒在不同温度条件及不同包装材料贮藏180天后,绝大多数贮藏条件下籽粒D3G的含量有所升高,平均升高约31.76%;面粉在不同的温度条件及包装材料中贮藏时,D3G的含量基本随着贮藏时间的延长逐渐升高。
     7.乳酸菌对DON有清除作用,其作用机制是物理吸附,而非降解为其他代谢物。戊糖乳杆菌Lp23130、鼠李糖乳杆菌Lr23119和戊糖片球菌Pp23190对液体环境中DON的吸附率都达到了80%以上,脱毒效果明显。热处理及酸处理能够显著提高乳酸菌对DON的吸附能力,热处理后融合魏斯氏菌Wc23465对DON的吸附能力比活菌细胞提高40%以上,碱处理的作用不明显。
Mycotoxin is one of the most important contaminants hazarding food safety, to minimize thecontamination on grains, and set a foundation for the safety risk assessment of wheat contaminated withmycotoxins, mycotoxins levels in wheat infected by Fusarium head blight (FHB) were investigated, andthe relationship between severity levels of FHB and mycotoxin levels was studied. In the meanwhile,the transformation mechanism and degradation rules of mycotoxins in wheat milling, wheat-basedproducts processing and storage, and the mechanism and ability of microorganism on mycotoxinsclearing were studied, and the main conclusions are as follows:
     1. The investigation of mycotoxin levels in wheat infected by FHB in four provinces in2012demonstrated that, the occurrence of FHB was generally accompanied by the contamination ofmycotoxins, and the occurrence of FHB and production of mycotoxins were influenced by weathercondition. Deoxynivalenol (DON),15-acetyldeoxynivalenol (15-ADON),3-acetyldeoxynivalenol(3-ADON), Zearalenone (ZEN) and Sterigmatocystin (SMC) were the main mycotoxins detected in thisinvestigation, and the over-limit rates of DON and ZEN were67.11%and28.95%, respectively. Wheatcollected from A province was the most severely mycotoxin-contaminated in relation to the detectionrate, over-limit rate and contamination levels.
     2. There were distinct linear correlations between the severity levels of wheat infected by FHBand DON, deoxynivalenol-3-glucoside (D3G) contents, and the linear regression models werecalculated as YDON=257.78XDI+2315.61(r=0.96) and YD3G=41.81XDI-43.79(r=0.96). According to themodels, the predictive contents of DON when compared with the measured contents were overestimatedby59%whereas the predictive contents of D3G when compared with the measured contents wereunderestimated by42%, when predicting mycotoxin levels of wheat infected by FHB. This may beexplained that the occurrence of FHB and production of mycotoxin in the filed influenced by wheatvarieties, Fusarium species, and epidemiological conditions, thus it is difficult to accurately forecastmycotoxin contamination levels.
     3. Concentrations of DON and D3G were1.2to2.2times and2.9to4.4times higher in bran thanthat in wheat grain,and they were slightly lower in shorts compared to bran. Reductions of79to90%for DON and23to39%for D3G in flour were observed, respectively, compared to wheat grain. Withrespect to wheat grain, the distribution of DON was35%in bran,27%in shorts, and9%in flour, andthe distribution of D3G was77%in bran,58%in shorts, and37%in flour. Milling decreased the totalamount of DON but increased the amount of D3G, which may be explained that, wheat grains weresubjected to extrusion and shear forces of the grinder roll during milling, and the temperature becameincreasingly high as milling time continued, thus modification of mycotoxin structure by interactionwith wheat components may occur, and DON bound to starch.
     4. DON levels approximately doubled when flour was processed into Chinese steamed bread (CSB)and baked bread, whereas D3G levels were significantly lower. This may be explained by the conversion of D3G to DON under the influence of hydrolase released by yeast during CSB and bakedbread processing. DON and D3G concentrations in noodles decreased after cooking due to leaching ofthe mycotoxins into the cooking water. Retention levels of DON and D3G from flour to cooked Asiannoodles were nearly50%and20%, respectively, of the original levels.
     5. More than85%of ZEN in wheat remained in bran and shorts and less than15%in flour afterwheat was milled. ZEN concentrations doubled in bran and shorts and decreased by46~89%in wheatflour as compared to that in wheat. ZEN levels approximately doubled when flour was processed intoCSB and baked bread, while decreased about50%when flour was processed into noodles and cookeddue to ZEN leaching into the cooking water.
     6. Storage might exert significant influences on the concentrations of DON and D3G. As theincreasing of storage time, DON contents in wheat stored under different temperatures and in differentpackaging materials deceased, and DON levels decreased averagely by40%during storage30~90days.DON in wheat flour stored under different temperatures and in different packaging materials increasedgradually as time increasing. After storing for180days, D3G contents in most wheat samples storedunder different temperatures and in different packaging materials increased, which increased averagelyby31.76%; D3G contents in wheat flour samples stored under different temperatures and in differentpackaging materials increased as the storage time extension.
     7. Lactic acid bacteria has the ability of clearing DON, and the mechanism was physical binding,rather than degrading DON to other metabolites. The binding rate of Lactobacillus pentosus23130,Lactobacillus rhamnosus23119, and Pediococcus pentosaceus23190to DON in liquid were all higherthan80%. Heat treatment and acid treatment were able to increase the binding ability of LAB to DON.After heat treatment, the binding ability to DON of Weissella confuse23465increased by more than40%comparing with viable LAB, while alkali treatment had no significant impact.
引文
1.陈丽星.真菌毒素研究进展[J].河北工业科技,2006,23(20):124-126.
    2.陈宁庆.实用生物毒素学[M].北京:中国科技出版社,2001.
    3.戴学敏,何学超.赤霉病毒素(DON)去毒技术的研究[J].粮食储藏,1992,(4):36-39.
    4.高懿.食品中真菌毒素的分析[J].检验检疫科学,1999,9(1):58-60.
    5.胡骁飞,职爱民,刘庆堂,等.真菌毒素ELISA检测方法新进展[J].中国农学通报,2010,26(8):100-103.
    6.李慧芸,王军,张宝善.毒素对食品的污染及防止措施[J].食品研究与开发,2004,25(3):26-30.
    7.李培武,马良,杨金娥.粮油产品黄曲霉毒素B1检测技术研究进展[J].中国油料作物学报,2005,(6):77-81.
    8.李鹏,赖卫华,金晶.食品中真菌毒素的研究[J].农产品加工,2005,(3):12-15.
    9.李群伟,王绍萍,鲍文生.真菌毒素与人类疾病的研究进展与展望[J].中国地方病防治杂志,2001,16(1):24-25.
    10.李书国,陈辉,李雪梅,等.粮油食品中黄曲霉毒素检测方法综述[J].粮油食品科技,2009,17(2):62-65.
    11.李为喜,孙娟,董晓丽,等.新修订真菌毒素国家标准与CAC最新限量标准的对比与分析[J].现代农业科技,2011,(23):41-43.
    12.李晓蓓,欧杰,王婧.食品中微生物源毒素检测方法研究进展[J].食品科学,2011,32(11):334-339.
    13.李兴霞,王国霞,潘家荣.免疫分析新方法在食品安全检测中的应用[J].生物技术通报,2006,(10):42-45.
    14.刘小杰,何国庆,陈启和,等.赭曲霉毒素A的研究进展[J].粮油加工与食品机械,2002,38(2):38-39.
    15.刘晓庚.储粮中真菌毒素及其防控[J].粮食与油脂,2008,(8):37-41.
    16.陆刚,高永清,薛英.“分层碾磨”制粉法去除小麦中“致吐毒素”的研究[J].中国粮油学报,1996,11(5):29-32.
    17.孟昭赫,张国柱,宋圃菊.真菌毒素研究进展[M].北京:人民卫生出版社,1979.
    18.孟昭赫.食品卫生检验方法注解—微生物学部分[M].北京:人民卫生出版社,1990.
    19.孙建和,陆苹,顾红香.真菌毒素的微生物脱毒技术[J].微生物学通报,2003,30(1):60-63.
    20.汪世华,张峰,袁军,等.生物毒素检测技术新进展[J].应用与环境生物学报,2008,14(5):726-731.
    21.王春红,张宝善,孟泉科.常见真菌毒素对人体的危害及生物降解研究进展[J].陕西农业科学,2009,(4):99-101.
    22.王红星,陶正国.饲料中的真菌毒素的危害性及其防止措施[J].兽药与饲料添加剂,2000,5(3):19-20.
    23.王少康.伏马菌素污染情况及毒性研究进展[J].环境与职业医学,2003,20(2):129-133.
    24.吴永宁.现代食品安全科学[M].北京:化学工业出版社,2003.
    25.夏红民,岳宁,张鹏.出入境农产品安全卫生检验的重要对象—真菌毒素[J].检验检疫学,2000,10(5):56-59.
    26.谢茂昌,王明祖.用化学方法脱除赤霉病麦毒素的研究[J].粮食储藏,1999,28(6):37-40.
    27.于钏钏,邵兵,李风琴,等.粮食中隐蔽型脱氧雪腐镰刀菌烯醇等多组分真菌毒素协同检测技术[J].中华预防医学杂志,2010,(44)8:736-740.
    28.于钏钏,于红霞,李风琴.隐蔽型脱氧雪腐镰刀菌烯醇的形成、转化与检测研究进展[J].卫生研究,2009,38(2):241-243.
    29.张国辉,何瑞国,齐德生.饲料中黄曲霉毒素脱毒研究进展[J].中国饲料,2004,(16):36-40.
    30. Abbas H.K., Mirocha C.J., Pawlosky R.J., et al. Effect of cleaning, milling, and baking ondeoxynivalenol in wheat[J]. Applied and Environmental Microbiology,1985,50(2):482-486.
    31. Adegoke G.O., Otumu E.J., Akanni A.O. Influence of grain quality, heat, and processing time onthe reduction of aflatoxin B1levels in ‘tuwo’ and ‘ogi’: two cereal-based products[J]. Plant Foodsfor Human Nutrition,1994,45:113-117.
    32. Ales K., Andrej S., Stanislav V., et al. Fate of deoxynivalenol and nivalenol during storage oforganic whole-grain wheat flour[J]. Journal of Stored Products Research,2010,46:66-71.
    33. Alldrick A.J. The effects of processing on the occurrence of ochratoxin A in cereals[J]. FoodAdditives and Contaminants,1996,13(Suppl27):27-28.
    34. Andrew W., Alan R., Zoe B. Review of the effect of fermentation on naturally occurring toxins[J].Food Control,1997,8(5/6):329-339.
    35. Angelo V., Edith Miriam H., Michelangelo P., et al. Reduction of deoxynivalenol during durumwheat processing and spaghetti cooking[J]. Toxicology Letters,2004,153:181-189.
    36. Araguás C., González-Pe as E., López de Cerain A. Study on ochratoxin A in cereal-derivedproducts from Spain[J]. Food Chemistry,2005,92:459-464.
    37. Ardic M., Karakaya Y., Atasever M., et al. Determination of aflatoxin B1levels in deep-red groundpepper (isot) using immunoaffinity column combined with ELISA[J]. Food and ChemicalToxicology,2008,46:1596-1599.
    38. Arroyo M., Aldred D., Magan N. Environmental factors and weak organic acid interactions havedifferential effects on control of growth and ochratoxin A production by Penicillium verrucosumisolates in bread[J]. International Journal of Food Microbiology,2005,98:223-231.
    39. Bai G., Shaner G. Scab of wheat: prospects for control[J]. Plant Disease,1994,78:760-766.
    40. Bai G.H., Plattner R., Desjardins A., et al. Resistance to Fusarium head blight and deoxynivalenolaccumulation in wheat[J]. Plant Breeding,2001,120:1-6.
    41. Bakan B., Pinson L., Cahagnier B., et al. Toxigenic potential of Fusarium culmorum strainsisolated from French wheat[J]. Food Additives and Contaminants,2001,18:998-1003.
    42. Bata A., Lasztity R. Detoxification of mycotoxin-contaminated food and feed by microorganisms[J]. Trends in Food Science and Technology,1999,10(6):223-228.
    43. Bennett J.W., Klich M. Mycotoxins[J]. Clinical Microbiology Reviews,2003,16(3):497-516.
    44. Bento J.M.V., Pena A., Lino C.M., et al. Determination of ochratoxin A content in wheat breadsamples collected from the Algarve and Bragan a regions, Portugal: winter2007[J].Microchemical Journal,2009,91:165-169.
    45. Bergamini E., Catellani D., Dall'asta C., et al. Fate of Fusarium mycotoxins in the cereal productsupply chain: the deoxynivalenol (DON) case within industrial bread-making technology[J]. FoodAdditives and Contaminants,2010,27(5):677-687.
    46. Berghofer L.K., Hocking A.D., Miskelly D., et al. Microbiology of wheat and flour milling inAustralia[J]. International Journal of Food Microbiology,2003,113:137-149.
    47. Berthiller F., Dall’Asta C., Schuhmacher R., et al. Masked mycotoxins: determination of adeoxynivalenol glucoside in artificially and naturally contaminated wheat by liquidchromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2005,53(9):3421-3425.
    48. Berthiller F., Dall'asta C., Corradini R., et al. Occurrence of deoxynivalenol and its3-beta-D-glucoside in wheat and maize[J]. Food Additives and Contaminants,2009a,26(4):507-511.
    49. Berthiller F., Krska R., Domig K.J., et al. Hydrolytic fate of deoxynivalenol-3-glucoside duringdigestion[J]. Toxicology Letters,2011,206(3):264-267.
    50. Berthiller F., Schuhmacher R., Adam G., et al. Formation, determination and significance ofmasked and other conjugated mycotoxins[J]. Analytical and Bioanalytical Chemistry,2009b,395(5):1243-1252.
    51. Berthiller F., Sulyok M., Krska R., et al. Chromatographic methods for the simultaneousdetermination of mycotoxins and their conjugates in cereals[J]. International Journal of foodMicrobiology,2007,119(1-2):33-37.
    52. Berthiller F., Werner U., Adam G., et al. Bildung von maskierten Fusarium mykotoxinen inPflanzen[J]. Ern hrung-Nutrition,2006a,30(11):477-481.
    53. Berthiller F., Werner U., Sulyok M., et al. Liquid chromatography coupled to tandem massspectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone inthe model plant Arabidopsis thaliana[J]. Food Additives and Contaminants,2006b,23(11):1194-1200.
    54. Beyer M., Klix M.B., Verreet J.A. Estimating mycotoxin contents of Fusarium-damaged winterwheat kernels[J]. International Journal of Food Microbiology,2007,119:153-158.
    55. Beyer M., Verreet J.A., Ragab W.S.M. Effect of relative humidity on germination of ascosporesand macroconidia of Gibberella zeae and deoxynivalenol production[J]. International Journal ofFood Microbiology,2005,98:233-240.
    56. Bol J., Smith J.E. Biotransformation of aflatoxin[J]. Food Biotechnology,1989,3:127-144.
    57. Bowles D., Lim E.K., Poppenberger B., et al. Glycosyltransferases of lipophilic small molecules[J].Annual Review of Plant Biology,2006,57:567-597.
    58. Boyacioglu D., Hettiarachchy N.S., Dappolonia B.L. Additives affect deoxynivalenol (vomitoxin)flour during breadbaking[J]. Journal of Food Science,1993,58:416-418.
    59. Brera C., Catano C., de Santis B., et al. Effects of industrial processing on the distribution ofaflatoxins and zearalenone in corn-milling fractions[J]. Journal of Agricultural and Food Chemistry,2006,54:5014-5019.
    60. Brera C., Debegnach F., Grossi S., et al. Effect of industrial processing on the distribution offumonisin B1in dry milling corn fractions[J]. Journal of Food Protection,2004,67(6),1261-1266.
    61. Brera C., Marina M., Marta C. Evaluation of the impact of mycotoxins on human health: sourcesof errors[J]. Microchemical journal,1998,59:45-49.
    62. Bretz M., Beyer M., Cramer B., et al. Synthesis of stable isotope labeled3-acetyldeoxynivalenol[J].Molecular Nutrition&Food Research,2005,49(12):1151-1153.
    63. Buerstmayr H., Ban T., Anderson J.A. QTL mapping and marker-assisted selection for Fusariumhead blight resistance in wheat: a review[J]. Plant Breeding,2009,128(1):1-26.
    64. Bullerman L.B., Bianchini A. Stability of mycotoxins during food processing[J]. InternationalJournal of Food Microbiology,2007,119:140-146.
    65. Caba as R., Bragulat M.R., Abarca M.L., et al. Occurrence of Penicillium verrucosum in retailwheat flours from the Spanish market[J]. Food Microbiology,2008,25:642-647.
    66. Castella`M.M., Katta S.K., Sumner S.S., et al. Extrusion cooking reduces recoverability offumonisin B1from extruded corn grits[J]. Journal of Food Science,1998,63;696-698.
    67. Castells M., Marin S., Sanchis V., et al. Distribution of fumonisins and aflatoxins in corn fractionsduring industrial corn flakes processing[J]. International Journal of Food Microbiology,2008,123:81-87.
    68. Castelo M.M. Stability of mycotoxins in thermally processed corn products. Section VI. Loss offumonisin B1during the corn flake process with and without sugars[PhD Dissertation]. Universityof Nebraska, Lincoln NE,1999.
    69. Cenkowski S., Dexter J.E., Scanlon M.G. Mechanical compaction of flour: the effect of storagetemperature on dough rheological properties[J]. Canadian Agricultural Engineering,2000,42(1):33-41.
    70. Champeil A., Fourbet J.F., Doré T., et al. Influence of cropping system on Fusarium head blightand mycotoxin levels in winter wheat[J]. Crop Protection,2004,23:531-537.
    71. Cheftel J.C. Extrusion cooking and food safety. In: Mercier C., et al., eds. Extrusion Cooking[C].American Association of Cereal Chemists, Minessota,1989,435-461.
    72. Chelkowski J., Golinski P., Szebiotko K. Mycotoxins in cereal grain. Part II. The fate of ochratoxinA after processing of wheat and barley grain[J]. Nahrung,1981,25(5):423-426.
    73. Chelkowski J., Perkowski J. Mycotoxins in cereal grains–distribution of deoxynivalenol innaturally contaminated wheat kernels[J]. Mycotoxin Research,1992,8:27-30.
    74. Chen H.G., Cai Z.X., Chen F., et al. The types of resistance to Fusarium head blight anddeoxynivalenol content in the heads of different wheat germplasms[J]. Acta Phytophylacica Sinica,2007,34:32-36.
    75. Cirlini M., Dall'Asta C., Galaverna G. Hyphenated chromatographic techniques for structuralcharacterization and determination of masked mycotoxins[J]. Journal of Chromatography A,2012,1255:145-152.
    76. Clare M.H., Sue P. Influence of processing on trichothecene levels[J]. Toxicology Letters,2004,153:51-59.
    77. Cook E., Wang X., Robiou N., et al. Measurement of staphylococcal enterotoxin B in serum andculture supernatant with a capture enzymelinked immunosorbent assay[J]. Clinical and VaccineImmunology,2007,14(9):1094-1110.
    78. Creppy E.E. Update of survey, regulation and toxic effects of mycotoxins in Europe[J]. ToxicologyLetters,2002,127(1-3):19-28.
    79. Cromey M.G., Lauren D.R., Parkes R.A., et al. Control of Fusarium head blight of wheat withfungicides[J]. Australasian Plant Pathology,2001,30:301-308.
    80. Czerwiecki L., Czajkowska D., Witkowska-Gwiazdowska A. On ochratoxin A and fungal flora inpolish cereals from conventional and ecological farms-part1: occurrence of ochratoxin A and fungiin cereals in1997[J]. Food Additives and Contaminants,2002,19:470-477.
    81. Dada L.O., Muller H.G. The fate of aflatoxin Blin the production of ogi, a Nigerian fermentedsorghum porridge[J]. Journal of Cereal Science,1983,1:63-70.
    82. Dall'Asta C., Galaverna G., Aureli G., et al. A LC/MS/MS method for the simultaneousquantification of free and masked fumonisins in maize and maize-based products[J]. WorldMycotoxin Journal,2008,1(3):237-246.
    83. Dall'Asta C., Galaverna G., Mangia M., et al. Free and bound fumonisins in gluten-free foodproducts[J]. Molecular Nutrition&Food Research,2009,53(4):492-499.
    84. De-Girolamo A., Solfrizzo M., Visconti A. Effect of processing on fumonisin concentration in cornflakes[J]. Journal of Food Protection,2001,64(5):701-705.
    85. Desmarchelier A., Seefelder W. Survey of deoxynivalenol and deoxynivalenol-3-glucoside incereal-based products by liquid chromatography electrospray ionization tandem massspectrometry[J]. World Mycotoxin Journal,2011,4(1):29-35.
    86. Dexter J.E., Clear R.M., Preston K.R. Fusarium head blight: effect on the milling and baking ofsome Canadian wheats[J]. Cereal Chemistry,1996,73:695-701.
    87. Dexter J.E., Marchylo B.A., Clear R.M., et al. Effect of Fusarium head blight on semolina millingand pasta-making quality of durum wheat[J]. Cereal Chemistry,1997,74:519-525.
    88. Duarte S.C., Bento J.M.V., Pena A., et al. Ochratoxin A exposure assessment of the inhabitants ofLisbon during winter2007/2008through bread and urine analysis[J]. Food Additives andContaminants,2009,26:1411-1420.
    89. El-Banna A.A., Lau P.Y., Scott P.M. Fate of mycotoxins during processing of foodstuffs.II-Deoxynivalenol (vomitoxin) during making of Egyptian bread[J]. Journal of Food Protection,1983,46:484-486.
    90. El-Banna A.A., Scott P.M. Fate of mycotoxins during processing of foodstuffs. I. Aflatoxin Blduring processing of foodstuffs. I. Aflatoxin Blduring making of Egyptian bread[J]. Journal ofFood Protection,1983,46(4):301-304.
    91. El-Nezami H.S., Chrevatidis A., Auriola S., et al. Removal of common Fusarium toxins in vitro bystrains of Lactobacillus and Propionibacterium[J]. Food Additives and Contaminants,2002,19:680-686.
    92. El-Sharkawy S.H., Selim M.I., Afifi M.S., et al. Microbial transformation of zearalenone to azearalenone sulfate[J]. Applied and Environmental Microbiology,1991,57(2):549-552.
    93. Engelhardt G., Ruhland M., Walln fer P.R. Metabolism of mycotoxins in plants[J]. Advances InFood Sciences,1999,21:71-78.
    94. Engelhardt G., Zill G., Wohner B., et al. Transformation of the Fusarium mycotoxin zearalenone inmaize cell suspension cultures[J]. Naturwissenschaften,1988,75(6):309-310.
    95. European Commission. Commission Regulation (EC) No.1881/2006of19December2006settingmaximum levels for certain contaminants in foodstuffs. Official Journal of the European Union,2006, L364,5-24.
    96. Eyles M.J., Moss R., Hocking A.D. The microbial status of Australian flour and the effects ofmilling procedures on the microflora of wheat and flour[J]. Food Australia,1989,41:704-708.
    97. Feng W., Liu T.G., Zhang M., et al. Analysis of deoxynivalenol (DON) accumulation in wheatgrains[J]. Acta Phytopathologica Sinica,2012,42:25-31.
    98. Fuchs E., Binder E.M., Heidler D., et al. Structural characterization of metabolites after themicrobial degradation of type A trichothecenes by the bacterial strain BBSH797[J]. FoodAdditives and Contaminants,2002,19(4):379-386.
    99. Gareis M. Maskierte mykotoxine. übersichten zur Tierern hrung,1994,22:104-113.
    100. Gareis M., Bauer J., Thiem J., et al. Cleavage of zearalenone-glycoside, a “masked” mycotoxin,during digestion in swine[J]. Journal of Veterinary Medicine,1990,37(1-10):236-240.
    101. González-Osnaya L., Soriano J.M., Moltó J.C., et al. Dietary intake of ochratoxin A fromconventional and organic bread[J]. International Journal of Food Microbiology,2007,118:87-91.
    102. Hameed H.G. Extrusion and chemical treatments for destruction of aflatoxin in naturallycontaminated corn[PhD Dissertation]. Tucson: University of Arizona,1993.
    103. Hasegawd Y., Nakamura Y., Tonogai Y., et al. Determination of ethyl carbamate in variousfermented foods by selected ion monitoring[J]. Journal of Food Protection,1990,53:1058-1061.
    104. Hatcher D.W. Asian noodle processing. In: Owens G., ed., Cereals processing technology.Cambridge, UK: Woodhead Publishing,2001,131-157.
    105. Hemery Y., Rouau X., Lullien-Pellerin V., et al. Dry processes to develop wheat fractions andproducts with enhanced nutritional quality[J]. Journal of Cereal Science,2007,46:327-347.
    106. Holzapfel W. Use of starter cultures in fermentation on a household scale. Background paperprepared for WHO/FAO Workshop:‘Assessment of fermentation’, Pretoria, South Africa,1995.
    107. Humpf H.U., Voss K.A. Effects of thermal food processing on the chemical structure and toxicityof fumonisin mycotoxins[J]. Molecular Nutrition&Food Research,2004,48(4):255-269.
    108. Huwig A., Freimund S., K ppeli O., et al. Mycotoxin detoxification of animal feed by differentadsorbents[J]. Toxicology Letters,2001,122:179-188.
    109. Ingle M.B., Martin B.W. Precocious puberty in Puerto Rico[J]. Journal of Pediatrics,1986,109:390-391.
    110. Jackson L.S., Voss K.A., Ryu D. Effects of different extrusion conditions on the chemical andtoxicological fate of fumonisin B1in maize: a short review[J]. World Mycotoxin Journal,2012,5:251-260.
    111. Jesperson L., Halm M., Kpodo K., et al. Significance of yeasts and moulds occurring maize doughfermentation for ‘kenkey’[J]. International Journal of Food Microbiology,1994,24:239-248.
    112. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Safety Evaluation of CertainMycotoxins in Food. WHO Food Additives Series47,2001; FAO Food and Nutrition Paper74.Retrieved from: http://www.inchem.org/documents/jecfa/jecmono/v47je01.htm
    113. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certaincontaminants in food: Seventy-second report of the Joint FAO/WHO Expert Committee on FoodAdditives. WHO technical report series,2011,959.
    114. Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series44,2000. Retrieved from: http://www.inchem.org/documents/jecfa/jecmono/v44jec14.htm
    115. Jun-Ho Hwang, Kwang-Geun Lee. Reduction of aflatoxin B1contamination in wheat by variouscooking treatments[J]. Food Chemistry,2006,98:71-75.
    116. Kadota T., Kimura M., Hirano S., et al. Development of a simultaneous liquidchromatography/tandem mass spectrometric method for the determination of type B trichothecenes,their derivatives, and precursors in wheat[J]. Rapid Communications in Mass Spectrometry,2011,25(23):3481-3490.
    117. Kaniou-Grigoriadou I., Eleftheriadou A., Mouratidou T., et al. Determination of aflatoxin M1inewes milk samples and the produced curd and Feta cheese[J]. Food Control,2005,16:257-261.
    118. Kanittha S. Kan khat luak chuara ti salai san aflatoxin (Degradation of aflatoxin by selected molds)Report, Kasetsart University, Bangkok, Thailand,1990.
    119. Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and foodproduction[J]. Natural Toxins,1999,7:1-23.
    120. Katta S.K., Cagampang A.E., Jackson L.S., et al. Distribution of Fusarium molds and fumonisinsin dry-milled corn fractions[J]. Cereal Chemistry,1997,74:858-863.
    121. Katta S.K., Jackson L.S., Sumner S.S., et al. Effect of temperature and screw speed on stability offumonisin B1in extrusion cooked corn grits[J]. Cereal Chemistry,1999,76:16-20.
    122. Kerkadi A., Barriault C., Marquardt R.R., et al. Cholestyramine protection against ochratoxin Atoxicity: role of ochratoxin A sorp tion by the resin and bile acid enterohepatic circulation[J].Journal of Food Protection,1999,62(12):1461-1465.
    123. Kim E.K., Scott P.M., Lau B.P.Y. Hidden fumonisin in corn flakes[J]. Food Additives andContaminants,2003,20(2):161-169.
    124. K ppen, R., Koch, M., Siegel, D., et al. Determination of mycotoxins in foods: Current state ofanalytical methods and limitations[J]. Applied Microbiology and Biotechnology,2010,86(6):1595-1612.
    125. Kostelanska M., Dzuman Z., Malachova A., et al. Effects of milling and baking technologies onlevels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside[J]. Journal ofAgricultural and Food Chemistry,2011a,59(17):9303-9312.
    126. Kostelanska M., Hajslova J., Zachariasova M., et al. Occurrence of deoxynivalenol and its majorconjugate, deoxynivalenol-3-glucoside, in beer and some brewing intermediates[J]. Journal ofAgricultural and Food Chemistry,2009,57(8):3187-3194.
    127. Kostelanska M., Zachariasova M., Lacina O., et al. The study of deoxynivalenol and its maskedmetabolites fate during the brewing process realized by UPLC-TOFMS method[J]. Food Chemistry,2011b,126(4):1870-1876.
    128. Kuiper G.G., Lemmen J.G., Carlsson B., et al. Interaction of estrogenic chemicals andphytoestrogens with estrogen receptor beta[J]. Endocrinology,1998,139:4252-4263.
    129. Kuiper-Goodman T., Scott P.M., Watanabe H. Risk assessment of the mycotoxin zearalenone[J].Regul Toxicol Pharmacol,1987,3:253-306.
    130. Lamourex G.L., Rusness D.G. Xenobiotic conjugation in higher plants. In: Xenobiotic conjugationchemistry (Chapter4,62-105). Washington D.C.: ACS–American Chemical Society Publications,1986.
    131. Lancova K., Hajslova J., Kostelanska M.,et al. Fate of trichothecene mycotoxins during theprocessing: milling and baking[J]. Food Additives and Contaminants,2008a,25:650-659.
    132. Lancova K., Hajslova J., Poustka J., et al. Transfer of Fusarium mycotoxins and ‘masked’deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer[J]. FoodAdditives and Contaminants,2008b,25(6):732-744.
    133. Langseth W., Hoie R., Gullord M. The influence of cultivars, location and climate ondeoxynivalenol contamination of Norwegian oats1985–1990[J]. Acta Agriculturae Scandinavica,1995,45:63-67.
    134. Larsen J.C., Hunt J., Perrin I., et al. Workshop on trichothecenes with a focus on DON: summaryreport[J]. Toxincology Letters,2004,153(1):1-22.
    135. Lee U.S., Jang H.S., Tanaka T., et al. Effect of milling on decontamination of Fusarium mycotoxinsnivalenol, deoxynivalenol, and zearalenone in Korean wheat[J]. Journal of Agricultural and FoodChemistry,1987,3:126-129.
    136. Legarda T.M., Burdaspal P.A. Occurrence of ochratoxin A in samples of bread marketed in Spainand twelve other countries[J]. Alimentaria,2001,321:89-96.
    137. Lemmens M., Scholz U., Berthiller F., et al. The ability to detoxify the mycotoxin deoxynivalenolcolocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat[J].Molecular Plant–Microbe Interactions,2005,18(12):1318-1324.
    138. Li F.Q., Yu C.C., Shao B., et al. Natural occurrence of masked deoxynivalenol andmulti-mycotoxins in cereals from China harvested in2007and2008[J]. Chinese Journal ofPreventive Medicine,2011,45(1):57-63.
    139. Li F.Q., Luo X.Y., Yoshizawa T. Mycotoxins (trichothecenes, zearalenone and fumonisins) incereals associated with human red-mold intoxications stored since1989and1991in China[J].Natural Toxins,1999,7:93-97.
    140. Linko P., Linko Y.Y., Olkku J. Extrusion cooking and bioconversions. In: Jowitt, R.(Ed.).Extrusion Cooking Technology[C]. Elsevier Applied Science Publishers, London,1984,143-157.
    141. Liu Y., Walker F., Hoegleninger B., et al. Solvolysis procedures for the determination of boundresidues of the mycotoxin deoxynivalenol in Fusarium species infected grain of two winter wheatcultivars preinfected with barley yellow dwarf virus[J]. Journal of Agricultural and Food Chemistry,2005,53(17):6864-6869.
    142. Lloyd B. Bullerman, Bianchini, A. Stability of mycotoxins during food processing[J]. InternationalJournal of Food Microbiology,2007,119:140-146.
    143. Lugauskas A., Raila A., Railiene M., et al. Toxic micromycetes in grain raw material during itsprocessing[J]. Annals of Agricultural and Environmental Medicine,2006,13:147-161.
    144. Malachova A., Dzuman Z., Veprikova Z., et al. Deoxynivalenol, deoxynivalenol-3-glucoside, andenniatins: the major mycotoxins found in cereal-based products on the Czech market[J]. Journal ofAgricultural and Food Chemistry,2011,59(24):12990-12997.
    145. McMullen M., Jones R., Gallenberg D. Scab of wheat and barley: a reemerging disease ofdevastating impact[J]. Plant Disease,1997,81:1340-1348.
    146. Meister U. Investigations on the change of fumonisin content of maize during hydrothermaltreatment of maize. Analysis by means of HPLC methods and ELISA[J]. European Food Researchand Technology,2001,213:187-193.
    147. Mesterházy á. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F.culmorum and in resistance to Fusarium head blight[J]. Acta Agriculturae Scandinavica,2002,108:675-684.
    148. Miedaner T., Schneider B., Geiger H.H. Deoxynivalenol (DON) content and Fusarium head blightresistance in segregating populations of winter rye and winter wheat[J]. Crop Science,2003,43:519-526.
    149. Miller J.D., Young J.C., Trenholm H.L. Fusarium toxins in field corn. I. Time course of fungalgrowth and production of deoxynivalenol and other mycotoxins[J]. Canadian journal of botany,1983,61(12):3080-3087.
    150. Mirocha C.J., Xie W.P., Xu Y.C., et al. Production of trichothecene mycotoxins by Fusariumgraminearum and Fusarium culmorum on barley and wheat[J]. Mycopathologia,1994,128:19-23.
    151. Moazami-Farahany E., Jinap S. Influence of noodle processing (industrial protocol) ondeoxynivalenol[J]. Food Control,2011,22:1765-1769.
    152. Molinié A., Faucet V., Castegnaro M., et al. Analysis of some breakfast cereals on the Frenchmarket for their contents of ochratoxin A, citrinin and fumonisin B1: development of a method forsimultaneous extraction of ochratoxin A and citrinin[J]. Food Chemistry,2005,92:391-400.
    153. Moorthy J., Mensing G.A., Kim D., et al. Microfluidic tectonics platform: A colorimetric,disposable botulinum toxin enzyme-linked immunosorbent assay system[J]. Electrophoresis,2004,25(10/11):1705-1713.
    154. Neira, M.S., Pacin A.M., Martinez E.J., et al. The effects of bakery processing on naturaldeoxynivalenol contamination[J]. International Journal of Food Microbiology,1997,37:21-25.
    155. Nishio Z., Takata K., Ito M.,et al. Relationship between physical dough properties and theimprovement of breadmaking quality during flour aging[J]. Food Science and TechnologyResearch,2004,10:208-213.
    156. Nout M.J.R. Fermented foods and food safety[J]. Food Research International,1994,27:291-298
    157. Nowicki T.W., Gaba D.G., Dexter J.E., et al. Retention of the Fusarium mycotoxin deoxynivalenolin wheat during processing and cooking of spaghetti and noodles[J]. Journal of Cereal Science,1988,8:189-202.
    158. Ogunsanwo B.M., Faboya O.O., Idowu O.R., et al. The fate of aflatoxins during the production of‘Oeiri’. a West African fermented melon seed condiment from artificially contaminated seeds[J].Nahrung,1989,33:983-988.
    159. Osborne B.G., Ibe F., Brown G.L., et al. The effects of milling and processing on wheatcontaminated with ochratoxin A[J]. Food Additives and Contaminants,1996,13:141-153.
    160. Ough G.H. Ethyl carbamate in fermented beverages and foods[J]. Journal of Agriculture and FoodChemistry,1976,24:323-331.
    161. Pacin A., Ciancio Bovier E., Cano G., et al. Effect of the bread making process on wheat flourcontaminated by deoxynivalenol and exposure estimate[J]. Food Control,2010,21:492-495.
    162. Palencia E., Torres O., Hagler W., et al. Total fumonisins are reduced in tortillas using thetraditional nixtamalization method of Mayan communities[J]. Journal of Nutrition,2003,133:3200-3203.
    163. Park D.L. Effect of processing on aflatoxin[J]. Advances in Experimental Medicine and Biology,2002,504:173-179.
    164. Park J.W., Scott P.M., Lau B.P.Y., et al. Analysis of heat-processed corn foods for fumonisins andbound fumonisins[J]. Food Additives and Contaminants,2004,21(12):1168-1178.
    165. Paul P.A., Lipps P.E., Madden L.V. Relationship between visual estimates of Fusarium head blightintensity and deoxynivalenol accumulation in harvested grain: A meta-analysis[J]. Phytopathology,2005,95:1225-1236.
    166. Phillips T.D., Kubena L.F., Harvey R.B., et al. Hydrated sodium calcium aluminosilicate: a highaffinity sorbent for aflatoxin [J]. Poultry Science,1988,67(2):243-247.
    167. Pinson-Gadais L., Barreau C., Chaurand M., et al. Distribution of toxigenic Fusarium spp. andmycotoxin production in milling fractions of durum wheat[J]. Food Additives and Contaminants,2007,24:53-62.
    168. Plasencia J., Mirocha C.J. Isolation and characterization of zearalenone sulfate produced byFusarium spp[J]. Applied and Environmental Microbiology,1991,57(1):146-150.
    169. Poppenberger B., Berthiller F., Lucyshyn D., et al. Detoxification of the Fusarium mycotoxindeoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana [J]. Journal of BiologicalChemistry,2003,278:47905-47914.
    170. Quan Y., Zhang Y., Wang S., et al. A rapid and sensitive chemiluminescence enzyme-linkedimmunosorbent assay for the determination of fumonisin B1in food samples[J]. Analytica ChimicaActa,2006,580:1-8.
    171. Refai M.K., Aziz N.H., El-Far F., et al. Detection of ochratoxin produced by Aspergillus ochraceusin feedstuffs and its control by radiation[J]. Applied Radiation and Isotopes,1996,(47)7:617-621.
    172. Resch P., Shier W.T. The fate of fumonisin during thermal food processing[J]. Lebensmittelchemie,2000,54:31-44.
    173. Rheeder J.P., Marasas W.F.O., Thiel P.G. Fusarium moniliforme and fumonisins in corn in relationto human oesophageal cancer in Transkei [J]. Phytopathology,1992,82:353-357.
    174. Rossi V., Giosuè S., Girometta B., et al. Dynamic simulation of Fusarium head blight epidemics. In:Canty S.M., et al., eds, Proceedings of the2nd International Symposium on Fusarium Head Blight,incorporating the8th European Fusarium Seminar. Orlando, Florida, USA. Michigan StateUniversity, East Lansing (MI),2004,2,46-48.
    175. Salas B., Steffenson B.J., Casper H.H., et al. Fusarium species pathogenic to barley and theirassociated mycotoxins[J]. Plant Disease,1999,83:667-674.
    176. Samar M., Resnik S.L., González H.H.L., et al. Deoxynivalenol reduction during the fryingprocess of turnover pie covers[J]. Food Control,2007,18:1295-1299.
    177. Samar M.M., Neira M.S., Resnik S.L., et al. Effect of fermentation on naturally occurringdeoxynivalenol (DON) in Argentinean bread processing technology[J]. Food Additives andContaminants,2001,18:1004-1010.
    178. Sasanya J.J., Hall C., Wolf-Hall C. Analysis of deoxynivalenol, masked deoxynivalenol, andFusarium graminearum pigment in wheat samples, using liquid chromatography–UV–massspectrometry[J]. Journal of Food Protection,2008,71(6):1205-1213.
    179. Savard M.E. Deoxynivalenol fatty acid and glucoside conjugates[J]. Journal of Agricultural andFood Chemistry,1991,39(3):570-574.
    180. Schaafsma W. Economic changes imposed by mycotoxins in food grains: case study ofdeoxynivalenol in winter wheat[J]. Advances in Experimental Medicine and Biology,2002,504(4):271-276.
    181. Schneweis I., Meyer K., Engelhardt G., et al. Occurrence of zearalenone-4-β-D-glucopyranoside inwheat[J]. Journal of Agricultural and Food Chemistry,2002,50(6):1736-1738.
    182. Schweiger W., Boddu J., Shin S., et al. Validation of a candidate deoxynivalenol-inactivatingUDP-glucosyltransferase from barley by heterologous expression in yeast[J]. MolecularPlant-Microbe Interactions,2010,23(7):977-986.
    183. Scott P.M, Kanhere S.R., Dexter J.E., et al. Distribution of DON during the milling of naturallycontaminated hard red spring wheat and its fate in baked products[J]. Food Additives andContaminants,1984,1(4):313-323.
    184. Scott P.M. Industrial and farm detoxification processes for mycotoxins[J]. Revue de MédecineVeterinaire,1998,149:543-548.
    185. Scott, P.M., Kanhere, S.R., Lau, P.Y., et al. Effects of Experimental flour milling and breadbakingon retention of deoxynivalenol (vomitoxin) in hard red spring wheat[J]. Cereal Chemistry,1983,60:421-424.
    186. Scudamore K.A., Banks J., MacDonald S.J. Fate of ochratoxin A in the processing of whole wheatgrains during milling and bread production[J]. Food Additives and Contaminants,2003,20(12):1153-1163.
    187. Scudamore K.A., Banks J.N., Guy R.C.E. Fate of ochratoxin A in the processing of whole wheatgrain during extrusion[J]. Food Additives and Contaminants,2004,21:488-497.
    188. Seitz L.M., Eustace W.D., Mohr H.E., et al. Cleaning, milling and baking tests with hard redwinter wheat containing deoxynivalenol[J]. Cereal Chemistry,1986,63:146-150.
    189. Sewald N., Von Gleissenthall J.L., Schuster M., et al. Structure elucidation of a plant metabolite of4-desoxynivalenol[J]. Tetrahedron: Asymmetry,1992,3(7):953-960.
    190. Sharma S.K., Ferreira J.L., Eble B.S., et al. Detection of type A, B, E, and F Clostridium botulinumneurotoxins in foods by using an amplified enzyme-linked immunosorbent assay withdigoxigenin-labeled antibodies[J]. Applied and Environmental Microbiology,2006,72(2):1231-1238.
    191. Shima J., Takase S., Takahashi Y., et al. Novel detoxification of the trichothecene mycotoxindeoxynivalenol by a soil bacterium isolated from enrichment culture[J]. Applied andEnvironmental Microbiology,1997,63(10):3825-3830.
    192. Simsek S., Burgess K., Whitney K.L., et al. Analysis of Deoxynivalenol andDeoxynivalenol-3-glucoside in wheat[J]. Food Control,2012,26(2):287-292.
    193. Smith J.E., Lewis C.W., Anderson J.G., et al. Mycotoxins in human nutrition and health. EuropeanUnion Directorate-General XII Report16048EN,1994.
    194. Snijders C.H.A. Breeding for resistance to Fusarium in wheat and corn. In: Miller J.D., et al., eds,Mycotoxins in grain-compounds other than aflatoxin. Eagan Press, St. Paul, USA,1994,37-58.
    195. Snijders C.H.A., Perkowski J. Effect of head blight caused by Fusarium culmorum on toxincontent and weight of wheat kernels[J]. Phytopathology,1990,80:566-570.
    196. Steyn P.S. Mycotoxins, general view, chemistry and structure[J]. Toxicology letters,1995,82,83:843-851.
    197. Stratton J.E., Hutkins R.W., Taylor S.L. Biogenic amines in cheese and other fermented foods–areview[J]. Journal of Food Protection,1991,54:460-470.
    198. Subirade I. Fate of ochratoxin A during breadmaking[J]. Food Additives and Contaminants,1996,13(Suppl):25-26.
    199. Sugita-Konishi Y., Park B.J., Kobayashi-Hattori K., et al. Effect of cooking process on thedeoxynivalenol content and its subsequent cytotoxicity in wheat products[J]. BioscienceBiotechnology and Biochemistry,2006,70:1764-1768.
    200. Sulyok M., Berthiller F., Krska R., et al. Development and validation of a liquidchromatography/tandem mass spectrometric method for the determination of39mycotoxins inwheat and maize[J]. Rapid communications in Mass spectrometry,2006,20(18):2649-2659.
    201. Suman M., Bergamini E., Catellani D., et al. Development and validation of a liquidchromatography/linear ion trap mass spectrometry method for the quantitative determination ofdeoxynivalenol-3-glucoside in processed cereal-derived products[J]. Food Chemistry,2013,136(3-4):1568-1576.
    202. Suman M., Bergamini E., Catellani D., et al. Proceedings of Food Integrity and TraceabilityConference, Belfast, Ireland,2011, March21-24.
    203. Sur R., Nagi H.P.S., Sharma S., et al. Storage changes in the quality of sound and sprouted flour[J].Plant Foods for Human Nutrition,1993,44:35-44.
    204. Takahashi-Ando N., Kimura M., Kakeya H., et al. A novel lactonohydrolase responsible for thedetoxification of zearalenone: enzyme purification and genecloning[J]. Biochemical Journal,2002,365(1):1-6.
    205. Tanaka T., Hasegawa A., Yamamoto S., et al. Residues of Fusarium mycotoxins, nivalenol,deoxynivalenol and zearalenone, in wheat and processed food after milling and baking[J]. Journalof the Food Hygienic Society of Japan,1986,27:653-655.
    206. Tangni E.K., Motte J.C., Callebaut A., et al. Cross-reactivity of antibodies in some commercialdeoxynivalenol test kits against Some fusariotoxins[J]. Journal of Agricultural and Food Chemistry,2010,58(24):12625-12633.
    207. Torsten Berg. How to establish international limits for mycotoxins in food and feed?[J]. FoodControl,2003,14:219-224.
    208. Tran S.T., Smith T.K. Determination of optimal conditions for hydrolysis of conjugateddeoxynivalenol in corn and wheat with trifluoromethanesulfonic acid[J]. Animal Feed Science andTechnology,2011,163(2-4):84-92.
    209. Trigo-Stockli D.M., Deyoe C.W., Satumbaga R.F., et al. Distribution of deoxynivalenol andzearalenone in milled fractions of wheat[J]. Cereal Chemistry,1996,73:388-391.
    210. Turner N.W., Subrahmanyam S., Piletsky S.A. Analytical methods for determination of mycotoxins:a review[J]. Analytica Chimica Acta,2009,632(2):168-180.
    211. Valle-Algarra F.M., Mateo E.M., Medina á., et al. Changes in ochratoxin A and type Btrichothecenes contained in wheat flour during dough fermentation and breadbaking[J]. FoodAdditives and Contaminants,2009,26:896-906.
    212. Vendl O., Berthiller F., Crews C., et al. Simultaneous determination of deoxynivalenol, zearalenone,and their major masked metabolites in cereal-based food by LC-MS-MS[J]. Analytical andBioanalytical Chemistry,2009,395(5):1347-1354.
    213. Vendl O., Crews C., MacDonald S., et al. Occurrence of free and conjugated Fusarium mycotoxinsin cereal-based food[J]. Food Additives and Contaminants,2010,27(8):1148-1152.
    214. Ver ilovskis A., Huybrecht B., Tangni E.K., et al. Cross-reactivity of some commercially availabledeoxynivalenol (DON) and zearalenone (ZEN) immunoaffinity columns to DON-andZEN-conjugated forms and metabolites[J]. Food Additives and Contaminants,2011,28(12):1687-1693.
    215. Visconti A., De-Girolamo A. Fusarium mycotoxins in cereals: storage, processing anddecontamination. In: Sholten et al.(Eds.), Food Safety of Cereals: A Chain-Wide Approach toReduce Fusarium mycotoxins[C]. European Commission, Brussels,2002,29-40.
    216. Visconti A., Hidukowski E.M., Pascale E., et al. Reduction of deoxynivalenol during durum wheatprocessing and spaghetti cooking[J]. Toxicology Letters,2004,153,181-189.
    217. Voss K.A., Snook, M.E. Stability of the mycotoxin deoxynivalenol (DON) during the productionof flour-based foods and wheat flake cereal[J]. Food Additives and Contaminants,2010,27(12):1694-1700.
    218. Wang S., Zhang H.Y., Wang L., et al. Analysis of sulphonamide residues in edible animalproducts:a review[J]. Food Additives and Contaminants,2006,23(4):362-384.
    219. Wang Y.Z., Miller J.D. Toxin producing potential of Fusarium graminearum from China[J]. ActaMycologica Sinica,1994,13:229-234.
    220. Weidenborner M. Encyclopedia of Food Mycotoxins[M]. Springer.2001,267.
    221. Weidenborner M., Wieczorek C., Appel S., et al. Whole wheat and white wheat flour—themycobiota and potential mycotoxins[J]. Food Microbiology,2000,17:103-107.
    222. WHO Food Additives Series47. Safety Evaluation of Certain Mycotoxins in Food.Deoxynivalenol,2001,419-528.
    223. Wiseman D.W., Marth E.E. Behaviour of toxin M in yogurt, buttermilk and kefir[J]. Journal ofFood Protection,1983,46:115-118.
    224. Young J.C., Fulcher R.G., Hayhoe J.H., et al. Effect of milling and baking on deoxynivalenol(vomitoxin) content of eastern Canadian wheats[J]. Journal of Agricultural and Food Chemistry,1984,32(3):659-664.
    225. Zachariasova M., Hajslova J., Kostelanska M., et al. Deoxynivalenol and its conjugates in beer: Acritical assessment of data obtained by enzyme-linked immunosorbent assay and liquidchromatography coupled to tandem mass spectrometry[J]. Analytica Chimica Acta,2008,625(1):77-86.
    226. Zhang D.H., Li P.W., Zhang Q., et al. Production of ultrasensitive generic monoclonal antibodiesagainst major aflatoxins using a modified two-step screening procedure[J]. Analytica Chimica Acta,2009,636:63-69.
    227. Zhou B., He G.Q., Schwarz P.B. Occurrence of bound deoxynivalenol in fusarium headblight-infected barley (Hordeum vulgare L.) and malt as determined by solvolysis withtrifuoloroacetic acid[J]. Journal of Food Protection,2008a,71(6):1266-1269.
    228. Zhou B., Schwarz P., He G.Q., et al. Effect of enzyme pretreatments on the determination ofdeoxynivalenol in barley[J]. Journal of the American Society of Brewing Chemists,2008b,66:103-108.
    229. Zhou W.C., Kolb F.L., Bai G.H., et al. Effect of individual Sumai3chromosomes on resistance toscab spread within spikes and deoxynivalenol accumulation within kernels in wheat[J]. Hereditas,2002,137:81-89.
    230. Zinedine A., Soriano J.M., Molto J.C., et al. Review on the toxicity, occurrence, metabolism,detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin[J]. Food andChemical Toxicology,2007,45:1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700