用户名: 密码: 验证码:
硝基芳烃衍生物结构—毒性定量关系和致毒机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基芳烃是一类重要的污染物,应用广泛且在环境中大量存在,对生态环境造成了严重污染,威胁到人们的生产、生活和身体健康,因此对硝基芳烃的毒性进行系统研究具有重要意义。定量结构-活性关系(Quantitative Structure-Activity Relationship,QSAR)是一种非常重要的毒性研究方法,已广泛用于硝基芳烃类化合物的毒性研究。目前,在建立硝基芳烃毒性QSAR模型过程中,普遍存在如何获得分子描述符的问题,先前的研究主要通过实验或采用半经验分子轨道计算获得,前者费时费力且误差较大,后者属于近似研究,结果欠准确。随着计算机和量子化学理论的飞速发展,考虑了电子相关的第一性原理方法密度泛函理论(Density Functional Theory,DFT)得以广泛应用,其计算结果较为精确,又比较节省机时,但迄今为止,尚未见有将DFT方法应用于硝基芳烃毒性研究的文献报道。此外,文献研究表明,2,4,6-三硝基甲苯(TNT)及其代谢产物可与血红蛋白(Hemoglobin,Hb)发生共价结合,且Hb加合物水平与动物的染毒剂量相关。其它硝基芳烃也有类似报道。但是至今亦未见有与此相关的动态理论计算工作报道。对硝基芳烃衍生物的致毒机理有待深入研究。
     在此背景下,本论文围绕硝基芳烃衍生物的毒性进行了系统的理论计算研究,全部工作主要分为三章。
     1.以硝基芳烃对黑呆头鱼的急性毒性研究为例,运用不同理论水平的量子化学计算方法,包括半经验AM1和PM3方法,从头算HF/6-31G~*和DFT-B3LYP/6-311G~(**)方法等计算28种硝基芳烃化合物的分子几何和电子结构,获得它们的分子结构描述符,结合硝基芳烃对黑呆头鱼的急性毒性实验值,建立了相应的QSAR模型。结果表明,基于DFT-B3LYP方法计算所得QSAR模型稳定性和显著性明显优于AM1和PM3方法;相比于HF方法,B3LYP模型能对硝基芳烃的致毒机理作出更为合理的解释。故就本例而言,B3LYP方法更适合于硝基芳烃急性毒性的QSAR研究。
     2.运用DFT-B3LYP方法研究硝基芳烃的分子结构与其毒性之间的定量关系(QSAR),寻找影响其毒性大小的关键结构因素,对同系物的已有毒性进行阐明、对未知毒性进行预测,并为硝基芳烃的毒性降解处理提供有意义的建议。
     采用DFT-B3LYP方法,在6-311G~(**)基组水平下,对单(多)硝基苯、单(多)硝基甲苯、硝基苯胺、卤代硝基苯等多系列的硝基芳烃化合物进行分子几何全优化计算,获得相关量子化学参数作为分子描述符,结合硝基芳烃对梨形四膜虫、圆腹雅罗鱼和斜生栅列藻等不同物种的急性毒性实验数据,分类建立了毒性QSAR模型,讨论了硝基、氨基和卤素等取代基对化合物毒性的影响。结果表明,硝基是硝基芳烃衍生物的主要致毒基团,硝基数越多,化合物的毒性越大。单硝基取代芳烃和多硝基取代芳烃具有不同的致毒机理,前者为极性麻醉型毒性化合物,其毒性大小由疏水性和电子反应性共同决定,毒性作用主要为对细胞膜的穿透刺激作用;后者为反应性毒性化合物,其毒性大小主要由电子反应性决定,分子可能发生单电子还原或亲核取代等反应而致毒。苯环上的其它取代基视其电子特性不同对硝基芳烃的毒性影响也不同,给电子基团如氨基会削弱硝基芳烃的毒性;吸电子基团如卤素则会增强化合物的毒性。故采用合适的包覆剂将硝基包覆或用微生物对其进行降解应该是治理硝基芳烃类化合物污染的有效途径。文中给出的稳健QSAR模型可用于相应化合物对不同物种急性毒性的预测。
     3.在前两章研究的基础上,以乙硫醇(C_2H_5SH)作为含还原性巯基的生物蛋白大分子(R-SH)的简单模型物,对TNT及其代谢产物、硝基苯和二硝基苯以及卤代硝基芳烃等不同类型的硝基芳烃的还原代谢中间体亚硝基芳烃与乙硫醇的反应,进行了量子化学动态计算,寻找反应过渡态,求得反应活化能,从理论上探讨了硝基芳烃的致毒机理。
     以DFT-B3LYP/6-31G~*方法全优化计算了TNT、2-氨基-4,6-二硝基甲苯和4-氨基-2,6-二硝基甲苯在生物体内的代谢还原中间体亚硝基芳烃及其与乙硫醇反应各驻点的结构,求得质子化亚硝基芳烃中亚硝基氮与巯基硫间距离分别为2.005(?)、1.935(?)和1.955(?)时的反应过渡态(TS1,TS2和TS3)以及相应的活化能15.443 kJ/mol、36.286kJ/mol和45.994 kJ/mol。表明硝基数越多,反应越易进行;氨基具致钝作用;当亚硝基处于甲基邻位时,因受到位阻作用,故反应活化能增高。
     以类似方法和步骤计算研究了硝基苯、1,3-二硝基苯和1,4-二硝基苯的亚硝基化合物与乙硫醇的反应机理,获得类似结果和结论。求得氮-硫原子间距分别等于1.966(?)、2.045(?)和2.054(?)的三个反应过渡态和相应的活化能35.707kJ/mol、17.783kJ/mol和12.702kJ/mol。表明反应速度受硝基数目和位置的影响:硝基数越多反应活化能越小;对二硝基苯快于间二硝基苯。三个反应活化能的大小顺序与硝基芳烃毒性大小排序恰好相反,预示硝基芳烃与生物蛋白大分子中还原性巯基间的反应可能是其致毒的关键步骤。这与第二部分QSAR研究结果相吻合。
     最后,以类似方法和步骤对卤代硝基芳烃的致毒机理进行了计算研究。求得4-氟硝基苯、4-氯硝基苯和4-溴硝基苯的亚硝基代谢产物与乙硫醇的反应过渡态和相应的活化能。过渡态的氮-硫原子间距分别为1.940(?)、1.947(?)和1.941(?),活化能依次为43.397kJ/mol、41.529kJ/mol和44.332kJ/mol。不同卤素在同一位置取代对反应速度几无影响,表明卤代硝基芳烃至少应存在两种致毒反应:一是其被还原代谢前,与卤素相连的苯环碳原子先受到亲核试剂进攻,使卤素原子被取代;二是其亚硝基代谢中间体与含巯基的蛋白质大分子发生了共价加合,形成了加合物。
     总之,本文用第一性原理DFT-B3LYP方法,对硝基芳烃的分子结构与毒性的定量关系进行了系统研究,找到影响硝基芳烃毒性的关键因素,给出了较好的毒性预测模型(QSAR),并提出了硝基芳烃污染物毒性降解的初步建议。首次对硝基芳烃的致毒机理进行了动态理论计算,建议了硝基芳烃在生物体内与蛋白质作用的简单模型和致毒的具体过程,找到关键基元反应的过渡态和活化能,探讨了取代基效应和位阻效应。如上关于硝基芳烃衍生物结构-毒性定量关系和致毒机理的理论研究,为理论化学、材料化学和环境化学的交叉研究和发展,提供了新的示例和结果,提供了丰富的原始数据和相应规律。
Nitroaromatics are widely used either as materials or as intermediates in explosives,dyestuffs, pesticides, and organic synthesis. They exist as industrial wastes and directpollutants in the environment, and are relatively soluble in water and detectable in rivers,ponds, and soil. Nitroaromatics are representative of electrophilic toxicants. Nitroaromaticcompounds have attracted considerable attention because of their varied toxic effects, suchas narcosis, mutagenicity, and carcinogenicity. Furthermore, some of them can be degradedinto more toxic molecules. Thus, it is necessary to study the toxicities of nitroaromatics.
     Quantitative structure-activity relationship (QSAR) is a mathematical modeldescribing the relationship between toxic potency and one or more descriptors of achemical. QSAR has been widely used for studying nitroaromatics' toxicity. However,there is a very serious problem, that is, how to obtain the molecular descriptors for QSAR.In earlier QSAR works, the descriptors were gotten by experiments or semi-empiricalmolecular orbital (MO) calculations. Both of the two means have limitations. The formerneeds more time, money, and manpower, while the latter uses the empirical orexperimental parameters to deal with the Schrodinger equation and omit some molecularintegral calculations, so its result is not accurate. As the development of computer andquantum chemical theory, first principle method density functional theory (DFT) has beenused to study nitroaromatics' structures and activities now, and it can get the compounds'molecular descriptors easily and accurately. But there is still no reference about the DFTapplication for QSAR study of nitroaromatics' toxicity.
     Another evidence obtained in studies on human and model laboratory animals havedemonstrated the formation of hemoglobin (Hb) adducts upon inhalation, ingestion, or skincontact with 2,4,6-trinitrotoluene (TNT), and there is a correlation between total TNTexposure level and its Hb adduct content. The Hb adducts of other nitroaromaties havebeen documented too. The mechanism of covalent binding of TNT or other nitroaromatiesto critical cellular proteins has been of interest. However there is still no dynamictheoretical calculation study on it.
     In this paper, the hybrid density functional scheme B3LYP is employed to give thesystemic theoretical studies on the QSAR of nitroaromatics and an explicit illustration onnitroaromaties' toxic mechanism have been done. The whole work consists of threechapters.
     1. QSAR models of nitroaromatics toxicity to fathead minnow are established based on different theoretical levels, which are compared with each other to select the best one.
     Semiempirical MO AM1 and PM3 methods, ab initio MO HF method with 6-31G~*,and DFT-B3LYP method with 6-311G~(**) were used to calculate the electronic andstructural properties of 28 nitroaromatics. QSARs were established based on theseproperties and the toxicity of nitroaromatics to the fathead minnow. The results show thatthe models established based on the first principle methods (HF and DFT-B3LYP) arebetter than those based on semiempirical methods (AM1 and PM3). HF model is a littlebetter than DFT-B3LYP model on correlation and significance. But the B3LYP model givesmore reasonable interpretation of nitroaromatics toxic mechanism. As far as this exampleis concerned, the B3LYP method is the best choice for nitroaromatics toxicity study.
     2. DFT-B3LYP method was used to study the QSAR of nitroaromatics toxicity. Thekey factors affecting their toxicity are found, the toxic mechanism of nitroaromatics isdiscussed based on the QSAR studies, and the toxic values of some nitroaromatics arepredicted by QSAR models. This work gives significant informations for nitroaromaticstoxic mechanism study and provides usable suggestions for detoxifying the river or soilpolluted by nitroaromatics.
     The DFT-B3LYP method, with the basis set 6-311G~(**), was employed to optimize themolecular geometries and electronic structures of nitroaromatics such as mono- (multi-)nitrobenzene, mono- (multi-) nitrotoluene, nitroaniline, and halogenated nitrobenzenederivatives. The quantum chemical parameters were selected as molecular structuraldescriptors. According to the type and number of substituents, the acute toxicity of suchnitroaromatics to Tetrahymena pyriformis, golden orfe fish, and the algae (Scenedesmusobliguus) along with the structural descriptors, was used to establish the QSARs. The nitro,amido, and halogen substituents' influences on nitroaromatics toxicity were discussed. Theresults indicate that the toxicity of nitroaromatics increases with the increase of the numberof the nitro substituents. The toxic mechanisms of mono-nitrobenzene andmulti-nitrobenzene are different. Mono-nitrobenzenes belong to polar narcosis toxicants,whose toxicity is decided by both its hydrophobicity and electronic activity.Multi-nitroaromatics are reactive toxicants. The electrophilic or nucleophilic reactions willoccur between these chemicals and the proteins in vivo. The other substituents on benzenering have important influences on nitroaromatics toxicity too. The amidoes decrease thetoxicity of nitroaromtics while the halogen substituents increase it. In one word, the nitrogroup is the primary toxic group of nitroaromatics. Therefore, wrapping or reducing thenitro groups on benzene ring is an available approach to degrade the nitroaromatics toxicity. In addition, the stable and remarkable QSAR models established in the part can be used topredict the nitroaromatics toxicity.
     3. The theoretical calculations have been done on the reactions of the nitrosoaromaticswith the ethanethiol instead of protein that has the thiol (-SH) group. The nitrosoaromaticsare the nitrosoarene intrermediates of nitroaromatics yielded by 2-electron reduction ofnitro groups in vivo. The nitroaromatics studied here are TNT and its two metabolites2-amino-4,6-dinitrotoluene (2A) and 4-amino-2,6-dinitrotoluene (4A), nitrobenzene (NB),1,3-dinitrobenzene (13-DNB) and 1,4-dintrobenzene (14-DNB), three halogenatednitrobenzenes including 4-fluoronitrobenzene(4-FNB), 4-chloronitrobenzene (4-CNB), and4-bromonitrobenzene (4-BrNB). Reaction profiles between the nitrosoaromatics and theethanethiol have been studied. Stationary points including their transition states weresuccessfully located and characterized for the first time at the B3LYP/6-31G~* level withoutany restriction on the internal coordinates. Studies on the geometry, charge, and energy ofthe stationary points were carried out to illustrate the adduct process.
     All the nitrosoaromatics studied here could bind covalently with the ethanethiol. Theorder of the activation barrier height is TNT<2A<4A, 14-DNB<13-DNB<NB, 4-FNB≈4-CNB≈4-BrNB. This binding is found to be largely dependent upon the number ofnitro substituents. The type and position of the substituents on the benzene ring is relatedwith the compound's reactivity directly too. The more nitro groups the benzene ring has,the more the reactivity of nitroaromatics are. The compounds with nitro groups positionedortho to each other are more reactive than the isomers having the nitro groups in the metaorientation. The amido on the benzene ring will decrease the activity of nitroaromacties.These relative reactivity orders are consistent with their toxic value orders. These resultsindicate that the covalent binding of nitrosoaromatics with proteins, for example,hemoglobin, may be the key step of nitroaromatics toxic reaction in vivo.
     For 4-FNB, 4-CNB, and 4-BrNB, their near activation barrier heights indicate thedifference of halogen substituents on the same position of the benzene ring have littleinfluence on their reaction with ethanethiol. Further analysis suggests that the halogens onthe benzene ring may be replaced by nuloephilic compounds such as DNA in vivo, whichmay be another toxic action of halogenated nitroaromatics.
     In summary, the first principle DFT-B3LYP method has been employed in this thesisto study the QSAR of nitroaromatics toxicity and their toxic mechanism for the first time.The stable QSAR models of nitroaromtics toxicity to different species have beenestablished, which provide the primary structural factors affecting the compounds' toxicity and can be used to predict some unknown congeneric compounds' toxicity. The dynamictheoretical calculations have been done on nitroaromatics toxic mechanism for the firsttime. A simple model of nitroaromatics' reaction with proteins and the concrete toxicprocedure has been suggested. The transition states and activation energy of the keyelementary reaction have been successfully located here. The substituent effects and sterichindrance in the toxic reaction were discussed. The above theoretical study onnitroaromatics QSAR and toxic mechanism presents new example and results, providesabundant original data and correlating rules to the cross research and the developmentbetween theoretical chemistry, material chemistry and environment chemistry.
引文
1 张印德,高玉芝,傅鸣远编.苯的氨基、硝基化合物中毒的防治.北京:化学工业出版社,1982
    2 Seymour K. M., Encyclopedia of Explosives and Related Items. Vol. 9, T235, US Army Armament Research and Development Command Large Caliber Weapon System Laboratory, 1980
    3 孙荣康,魏运洋.硝基化合物炸药化学与工艺学.北京:兵器工业出版社,1992
    4 武海明,李斌,程先升等.二硝基甲苯对作业工人健康的影响.中国工业医学杂志.2000,13(3):135-137
    5 Myers Steven R., Pinorini-Godly Mafia T. Characterization of Hemoglobin adults of 1,3-dinitrobenzene and 1,3,5-trinitrobenzene. Polycylic. Aromat. Compd. 2000, 21(1-4): 187-201
    6 Maroziene Audrone, Kliukiene Regina, Sarlauskas Jonas, Cenas Narimantas. Methemoglobin formation in human erythrocytes by nitroaromatic explosives. Zeitschrift fuer Naturforschung, C: Journal of Biosciences. 2001, 56(11/12): 1157-1163
    7 Lachance Bernard, Robidoux Pierre Yves, Hawari Jalal, Ampleman Guy, Thiboutot Sonia, Sunahara Geoffrey I. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat. Res. 1999, 444(1): 25-39
    8 Wellington D. R., Mitchell W. R. In vitro cytotoxicity of certain munition nitroaromatic compounds. Chemosphere. 1991, 23(3): 363-373.
    9 Fuchs J. S., Oneto M. L., casabe, N. B. Ecotoxicological characterization of a disposal lagoon from a munition plant. Bulletin of Environmental Contamination and Texicology. 2001, 67(5): 696-7039
    10 Mathur K. C., Chauhan Ugan K., Shrivastava Rahul, Khadikar P. V. Topological studies on toxic effects of organic explosive, propellants and related compounds: Part Ⅰ. Intercorrelations of topological indices. Orental Journal of Chemistry. 2001,17(2): 253-256
    11 Mathjur K. C., Chauhan Ugam K., Shrivastava Rahul, Khadikar P. V. Topological studies on toxic effects of organic explosives,propellants and related compounds, part Ⅱ environmental modeling using Wiener index. Orient. J. Chem. 2001, 17(2): 271-274
    12 Mathur K. C., Khadikar P. V., Chauhan Ugam K. Topological modeling of toxic effect of organic explosives, propellants and related compounds using Szeged index. Res. J. Chem. Environ. 2001, 5(2): 68-70
    13 程忆渤,张宗毅.三硝基甲苯和2,4-二硝基甲苯对小鼠精子畸形的联合毒性研究.劳动医学.1996,13(4):212-214
    14 Dodard S. G., Renoux A. Y., Hawari J. Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere. 1999, 38(9): 2071-2079
    15 Hovatter Patricia S., Talmage Sylvia S., Opresko Dennis M., Robert H. Ecotoxicity of nitroaromatics to aquatic and terrestrial species at army superfund sites. ASTM Spec. Tech. Publ. 1997, STP 1317(Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment, (Six Volume), 117-129
    16 Hermens J. L. M. Quantitative structure-activity relationships of environmental pollutants. In: Hutzinger, O. (Ed.), Handbook of Environmental Chemistry Reactions and Processe, vol, 2E. Springer, Berlin, 1989, pp. 111-162
    17 Blum D. J. W., Speece R. E. Determining chemical toxicity to aquatic species. Environ. Sci. Technol. 1990, 24:284-293
    18 Verhaar H. J. W., van Leeuwen C. J., Hermens J. L. M. Classifying environmental polluants. Chemosphere. 1992, 25(4): 471-491
    19 戴树桂主编.环境化学进展.北京:化学工业出版社.2005
    20 Cenas Narimantas, Nemeikaite Ausra, Dickancaite Egle. The toxicity of aromatic nitrocompounds to bovine leukemia virus-transformed fibroblasts: the role of single-electron reduction. Biochem. Biophys. Acta. 1995, 1268(2): 159-164
    21 Cenas N., Nemeikaite-Ceniene A., Sergediene E. Quantitative structure- activity relationship in enzymatic single-electron reduction of nitroaromatic explosives: implications for their cytotoxicity. Biochim. Biophys. Acta. 2001, 1528(1): 31-38
    22 Bailey H. C., Spanggord R. J. The relationship between the toxicity and structure of nitroaromatic chemicals, In: Bishop, W.E., Cardwell, R.D., Heidolph, B.B. (Eds.), Aquatic Toxicology and Hazard Assessment. Sixth Symposium, ASTM STP 802, American Society for Testing and Materials, Philadelphia, PA, 1983, pp. 98-107
    23 徐镜波,景体淞.鲤鱼组织ATPase活性抑制和构效分析.高等学校化学学报.1998,19(12):1920-1924
    24 程倩.硝基芳烃对隆线蚤的毒性作用及QSAR研究.辽宁师范大学学报(自然科学版).1999,22(2):148-152
    25 袁星,赫奕,郎佩珍.硝基芳族化合物对江水细菌的毒性及QSAR研究.环境科学.1995,16(5):18-21
    26 Hall L. H., Maynard E. L., Kier L. B. Structure-activity relationship studies on the toxicity of benzene derivatives: Ⅲ. Predictions and extension to new substituents. Environ. Toxicol. Chem. 1989, 8(5): 431-4369
    27 Mason R. P., Holtzman J. L. The role of catalytic superoxide for mation in the O_2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun. 1975, 67(4): 1267-1274
    28 Mason R. P. Holtzman J. L. The mechanism of microsomal and mitochondrial nitroductase. Electron spin resonance evidence for nitroaromatic free radical intermediate. Biochem. Biophys. Res. Commun. 1975, 14:1626-1632
    29王 明臣,王俊萍,单杰等.TNT作业工人血清过氧化脂质水平及CuZnSOD活性的研究.职业医学.1999,26(2):55-56
    30 McFarland J. W. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 1970, 13: 1092-1196
    31 Schultz T. W., Cronin M. T. D., Netzeva T. I. The present status of QSAR in toxicology. THEOCHEM. 2003, 622:23-38
    32 Wang X., Yin C., Wang L. Structure-activity relationships and response-surface analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae). Chemosphere. 2002, 46:1045-1051
    33 Zhan C.-G., Nichols J. A., Dixon D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003,107:4184-4195
    34 Karelson M., Lobanov V. S., Katritzky A. R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996, 96:1027-1043
    35 Cronin M. T. D., Manga N., Seward J. R., Sinks G. D., Schultz T. W. Parametrization of Electrophilicity for the Prediction of the Toxicity of Aromatic Compounds. Chem. Res. Toxicol. 2001, 14:1498-1505
    36 Schultz T. W. Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol. 1999,12: 1262-1267
    37 Mekenyan O. G., Veith G. D. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity, and toxicity. SAR QSAR Environ. Res. 1994, 2: 129-143
    38 Cronin M. T. D., Schultz T. W. Structure-toxicity relationships of phenols to Tetrahymena pyriformis. Chemosphere. 1996, 32:1453-1468
    39 Cronin M. T. D., Gregory B. W., Schultz T. W. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Chem. Res. Toxicol. 1998, 11: 902-908
    40 Schultz T. W., Cronin M. T. D. Response-surface analysis for toxicity to Tetrahymena pyriformis: reactive carbonyl-containing aliphatic chemicals. J. Chem. Inf. Comput. Sci. 1999, 39:304-309
    41 Heike S., Rolf A., Bernd J., Gerrit S. Quantitative Structure-Activity Analysis of the Algae Toxicity of Nitroaromatie Compounds. Chem. Res. Toxicol. 2000, 13(6): 441-450
    42 郎佩珍,陆光华.硝基芳烃对黑呆头鱼毒性定量构效关系的研究.高等学校化学学报.1995,16(7):1083-1087
    43 刘静玲,郎佩珍.硝基芳烃对斜生栅列藻的毒性及中毒症状.环境科学.1995,16(2):7-10
    44 陆光华,郎佩珍.硝基芳烃对斜生栅列藻的毒性与结构相关性研究.环境科学.1996,17(2):35-36
    45 Lang P. Z., Ma X. F., Lu G. H., Wang Y., Bian Y. QSAR for Acute Toxicity of Nitroaromaties to the Carp (Cyprinus Carpio). Chemosphere. 1996, 32(8): 1547-1552
    46 王连生主编.定量结构活性相关(QSAR).北京:化学工业出版社,1999
    47 王连生,韩朔睽等著.分子结构、性质与活性.北京:化学工业出版社,1997
    48 籍国东,袁星,赵元慧等.应用次最低空轨道能研究硝基芳烃的生物活性.环境科学.1999,20(2):68-70
    49 Wang X. D., Yin C. S., Wang L. S. Structure-activity relationships and response-surface analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae). Chemosphere. 2002, 46(7): 1045-1051
    50 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000
    51 Zhang J., Xiao H. M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116(24): 10674-10683
    52 Chen L. T., Xiao H. M., Xiao J. J., Gong X. D. DFT Study on Nitration Mechanism of Benzene with Nitronium Ion. J. Phys. Chem. A 2003, 107(51): 11440-11444
    53 陈丽涛,肖鹤鸣,肖继军.甲苯定向硝化的理论研究.化学学报.2003,61(8):1169-1174
    54 肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    55 方家龙,容康泰,刘玉瑛.三硝基甲苯血红蛋白加合物的竞争抑制性酶联免疫吸附试验测定.中国药理学与毒理学杂志.1992,6(3):176-180
    56 刘玉瑛,卢业竤,赵李雪馨.三硝基甲苯蛋白加合物及其结构鉴定.中国药理学与毒理学杂志.1992,6(2):142-150
    57 方家龙,王雅文,刘玉瑛.抗原斑点法检测三硝基甲苯血红蛋白加合物的研究.卫生研究.1994,23(1):5-7
    58 姚明.人血红蛋白及其三硝基甲苯加合物的高效液相色谱分离.色谱.1996,14(2):124-126
    59 Liu Yu-Ying, Yao Ming, Fang Jia-Long, Wang Ya-Wen. Monitoring human risk and exposure to trinitrotoluene (TNT) using haemoglobin adducts as biomarkers. Toxicology Letters. 1995, 77:281-287
    60 Sabbioni G., Liu Y.-Y., Yan H.-F., Sepai O. Hemoglobin adducts, urinary metabolites and health effects in 2,4,6-trinitrotoluene exposed workers. Carcinogenesis. 2005, 26(7): 1272-1279
    61 姚明,梁钧衡.人血中三硝基甲苯血红蛋白加合物的结构鉴定和定量分析.卫生研究.1994,23(1):1-5
    62 Leung K. H., Yao M., Stearns R., Chiu Shuet-Hing Lee. Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene. Chemico-Biological Interactions. 1995, 97: 37-51
    63 Howard P. C., Beland F. A., Cerniglia C. E. Reduction of the carcinogen 1-nitropyrene to 1-aminopyrene by the rat intestinal bacteria. Carcinogenesis. 1983, 4:985-990
    64 Junzo Suzuki, Shin-Ichl Meguro, Osamu Morita, Seiji Hirayama and Shizuo Suzuki. Comparison of in vivo of aromatic nitro and amino compounds to rat hemoglogin. Biochemical Pharmacology. 1989, 38(20): 3511-3519
    65 Li H.-L., Cheng Y., Wang H.-F., Sun H.-F., Liu Y.-F., Liu K.-X., Peng S.-X. Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents. Applied Radiation and Isotopes. 2003, 58:291-298
    66 Reeve I. T., Miller M. G. 1,3-Dinitrobenzene Metabolism and Protein Binding. Chem. Res. Toxicol. 2002, 15:352-360
    67 Jones C. R., Liu Y.-Y., Sepal O., Yah H.-F., Sabbioni G. Hemoglobin adducts in workers exposed to nitrotoluenes. Carcinogenesis. 2005, 26(1): 133-143
    68 IARC (International Agency for Research on Cancer). 2-Chloronitrobenzene, 3-chloronitrobenzene, and 4-chloronitrobenzene. Printing Processes and Printing Inks, Carbon Black and Some Nitro Compounds; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Lyon, France. 1996, 65:263-296
    69 Yoshida T., Tabuchi T., Andoh K. Pharmacokinetic study of p-chloronitrobenzene in humans suffering from acute poisoning. Drug Metab. Dispos. 1993, 21:1142-1146
    70 Sabbioni G. Hemoglobin binding of nitroarenes and quantitative structure-activity relationships. Chem. Res. Toxicol. 1994, 7:267-274
    71 Sabbioni G., Sepai O. Comparison of hemoglobin binding, mutagenicity and carcinogenicity of arylamines and nitroarenes. Chimia. 1995, 49:374-380
    72 Jones C. R., Liu Y. Y., Sepai O., Yan H. F., Sabbioni G. Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ. Sci. Technol. 2006, 40:387-394
    73 Yan X.-F., Xiao H.-M., Gong X.-D., Ju X.-H. A comparison of semiempirical and first principle methods for establishing toxicological QSARs of nitroaromatics. THEOCHEM. 2006, 764(1-3): 141-148
    74 YAN X.-F., XIAO H.-M. QSAR Study of Nitrobenzenes' Toxicity to Tetrahymena Pyriformis Using Semi-empirical Quantum Chemical Methods. Chin. J. Stru. Chem. 2007, 26(1): 7-14
    75 YAN X.-F., XIAO H.-M., JU X.-H., GONG X.-D. DFT Study on the QSAR of Nitroaromatic Compound Toxicity to the Fathead Minnow. Chin. J. Chem. 2005, 2: 947-952
    76 Yan X.-E, Xiao H.-M., Gong X.-D., Ju X.-H. Quantitative structure-activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus). Chemosphere.2005, 59 (4): 467-471
    77 闫秀芬,肖鹤鸣,居学海,贡雪东.硝基芳烃对梨形四膜虫毒性的QSAR研究.化学学报.2006,64(5):375-380
    1 Hartree D. R. (a) Wave mechanics of an atom with a non-coulomb central field. Ⅰ. Theory and methods. Ⅱ. Some results and discussion. Ⅲ. Term values and intensities in series in optical spectra. Prog. Camb. Phil. Soc. 1928, 24:89-110; 426-437; (b) Fock V Z. The initial degrees of freedoms of the electron. Phys. 1931, 68:522-534
    2 Parr R. G., Yang W. Density2Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989
    3 Nagy A. Density functional theory and application to atoms and molecules. Phys. Rep. 1998, 298:1-79
    4 Thomas L. H. The calculation of atomic fields. Proc. Camb. Phil. Soc. 1927, 23: 542-548
    5 Fermi E. Statistical calculation of the Rydberg correction of the system. Z Phys. 1928, 49:550-554
    6 Slater J. C. A simplification of the Hartree-Fock method. Phys. Rev. 1951, 81: 385-390
    7 Hohenberg P., Kohn W. Inhomogenous electron gas. Phys. Rev. 1964, B136:864-871
    8 Bamzai A. S., Deb B. M. The Role of Single2Particle Density in Chemistry. Rev. Mod. Phys. 1981, 53:95
    9 Smith V. H. Electron Densities in Search of Hamiltonians. Phys. Scr. 1977, 15:147
    10 Kohn W., Sham L. Self-consistent equations including exchange and correction effects. J. Phys. Rev. A 1965, 140:1133-1138
    11 Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculation: a critical analysis. Can. J. Phys. 1980, 58: 1200-1211
    12 Perdew J. P., Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. 1986, B33: 8800-8802; Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, ibid, 1989, B40:3399-3400
    13 Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38:3098-3100
    14 Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988, B37:785-789
    15 (a) Perdew J. P., Burke K. Comparison shopping for a gradient-corrected density functional. Int. J. Quantum. Chem. 1996, 57: 309-319; (b) Perdew J. P., Burke K., Emzerhof M. Local and gradient-corrected density functionals. ACS Symp Ser 1996, 629 (Chemical Applications of Density-Functional Theory): 453-46
    16 Ziegler T. Approximate density function theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 1991, 91:651-667
    17 Kohn W., Becke A. D., Parr R. G. Density Functional Theory of Electronic Structures. J. Phys. Chem. 1996, 100: 12974-12980
    18 Deng L., Branchadell V., Ziegler T. Potential energy surface of the gas-phase SN2 reactions X- + CH3X = XCH3 + X- (X=F, Cl, Br, I): A comparative study by Density Functional theory and ab initio methods. J. Am. Chem. Soc. 1994,116: 10645-10656
    19 Berces A., Ziegler T., Fan L. Density functional study of the harmonic force field of cyclopentadienyl anion, cyclopentadienyl lithium, and ferrocene. J. Chem. Phys. 1994, 98:1584-1595
    20 (a) Sch reckenbach G., Ziegler T. The implementation of analytical energy gradients based on a quasi-relativistic density functional method. Int. J. Quantum. Chem. 1996, 60: 753-766; (b) Schreckenbach G., Ziegler T., Li J. The calculation of NMR shielding tensors based density functional theory and the frozen-core approximation. Int. J. Quantum. Chem. 1995, 56 (5): 477-488
    21 Hong G. Y., Lin X. J., Li L. M, Xu G. X. Linkage isomerism and the relativistic effect in interaction of lanthanoid and carbon monoxide. J. Phys. Chem. A 1997,101: 9314-9317
    22 Lu G. H., Li M. L. Density functional study on Zerovalent lanthanide bis (arene)-sandwich complex. Theor. Chem. Acc. 1999,102: 121-126
    23 Roy A. K., Singh R., Deb B. M. Density functional calculations on triply excited states of lithium is electronic sequence. Int. J. Quantum. Chem. 1997, 65: 317-332
    24 Koch W., Holthausen M. C. A Chemist's Guide to Density Functional Theory, Second Edition, Willey-VCH, Weinheim, 2001
    25 Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38: 3098-3010
    26 Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33: 8822-8824
    27 Lee C, Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37: 785-789
    28 Miehlich B., Savin A., Stoll H., Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett 1989, 157(3): 200-206
    29 Burke K., Perdew J. P., Wang Y. in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. Dobson J F, Vignale G, Das M P. (Plenum, 1998)
    30 Perdew J. P., in Electronic Structure of Solids '91, Ed. Ziesche P, Eschrig H. (Akademie Verlag, Berlin, 1991)
    31 Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Atoms and Molecules, Solids, and Surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46:6671-6687
    32 Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Erratum: Atoms and Molecules, Solids, and Surfaces: Applications of the eneralized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48: 4978
    33 Perdew J. P., Burke K., Wang Y. Generalized gradient approximation for exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54:16533-16539
    34 Becke A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98:5648-5652
    35 Stephens P. J., Devlin F. J., Chabalowski C. K., Frish M. J. Ab initio Calculation of Vibrational Absorption and circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98:11623-16539
    36 Slater J. C. (a) Atomic shielding constants; (b) Cohesion in univalent metals; (c) The theory of complex spectra. Phys. Rev. 1930, 36: 57-64; 35: 509-529; 1929, 34:1293-1323
    37 Pople J. A., Beveridre L. Approximation Molecular Orbital Theory. New York: Me Graw-Hill Book Co., 1970
    38 Steiner E. The Determination and Interpretation of Molecular Orbital Wave Functions. Lomdon: Cambridge University Press, 1976
    39 Clementi E., Reimondi D. I. Atomic Screening Constants from SCF functions. J. Chem. Phys. 1963, 38:2686-2689
    40 Petke J. D., Whitten J. I., Douglas A. W. Gaussian Lobe function expansions of Hartree-Fock solutions for the second-row atoms. J. Chem. Phys. 1969, 51: 256-262
    41 Dunning T. H. (a) Comments on the vibronic linewidth of an isolated resonance of a higher electronic state. Chem. Phys. Lett. 1970, 7: 423-425; (b) Gaussian basis functions for use in molecular calculations. Ⅲ. Contraction of (10s6p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1971, 55: 716-723; (c) Dunning T. H. Jr. Gaussian basis functions for use in molecular calculations. Ⅰ. Contraction of (9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1970, 53(7): 2823-2833
    42 Huzinaga S., Amau C. Gaussian-type functions for polyatomic system.Ⅲ. J. Chem. Phys. 1970, 52: 2224-2226; Gaussian-type functions for polyatomic system.Ⅳ. 1970, 53: 348-351
    43 Hehre W. J., Stewart R. F., Pople J. A. Self-Consistent Molecular Orbital Methods. I .Use of Gaussian expansion of slatee-type atomic orbitals. J. Chem. Phys. 1969, 51: 2657-2664; Self-Consistent Molecular Orbital Methods. IV. Use of Gaussian expansion of slatee-type atomic orbitals. Extension to second-row molecules. 1970, 52:2769-2773
    44 Collins J. B., Schleyer P. v R., Binkley J. S., Pople J. A. Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 1976,64: 5142-5151
    45 Binkley J. S., Pople J. A., Hehre W. J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Am. Chem. Soc. 1980, 102: 939-947
    46 Gordon M. S., Binkley J. S., Pople J. A., Pietro W. J. and Hehre W. J. Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104: 2797-2803
    47 Pietro W. J., Francl M. M., Hehre W. J., Defrees D. J., Pople J. A., Binkley J. S. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982,104: 5039-5048
    48 Dobbs K. D., Hehre W. J. Molecular Orbital Theory of the Properties of Inorganic and Organometallic Compounds. 4. Extended Basis Sets for Third and Fourth-row, Main-Group Elements. J. Comp. Chem. 1986,7: 359-378
    49 Dobbs K. D., Hehre W. J. Molecular Orbital Theory of the Properties of Inorganic and Organometallic Compounds. 4. Extended Basis Sets for First-Row Transition Metals. J. Comp. Chem. 1987, 8: 861-879
    50 Dobbs K. D., Hehre W. J. Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals J. Comp. Chem. 1987,8: 880-893
    51 Ditchfield R., Hehre W. J., Pople J. A. Self-Consistent Molecular Orbital Methods. DC. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54: 724-728
    52 (a) Hehre W. J. Ditchfield R., Pople J. A. Self-Consistent Molecular Orbital Methods. XL Further extensions of Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1972, 56: 2257-2261; (b) Hehre W. J. Ethylenebenzenium cations. J. Am. Chem. Soc. 1972, 96 (16): 5919-5920; (c) Hehre W. J., Lathan W. A. Self-Consistent Molecular Orbital Methods. X IV. Extended Gaussian-type basis for molecular orbital studies of orbital studies of organic molecules. Inclusion of second row elements. J. Chem. Phys. 1972, 56 (11): 5255-5257
    53 Hariharan P. C., Pople J. A. Accuracy of AH_n equilibrium geometries by single determinant molecular orbital theory. Mol. Phys. 1974, 27:209-214
    54 Gordon M. S. (a) The isomers of silacyclopropane. Chem. Phys. Lett. 1980, 76: 163-168; (b) Ring strain in cyclopropane, cyclopropene, silacyclopropane and silacyclopropene. J. Am. Chem. Soc. 1980, 102 (25): 7419-7422
    55 Hariharan P. C., Pople J. A. Influence of polarization functions on MO hydrogenation energies. J. Theo. Chim. Acta. 1973, 28:213-222
    56 Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shirley W. A., Mantzaris J. A complete basis set model chemistry. Ⅰ. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 1988, 89:2193-2218
    57 Petersson G. A., Al-Laham M. A. A complete basis set model chemistry. Ⅱ. Open-shell systems and the total energyes of the first-row atoms. J. Chem. Phys. 1991, 94: 6081-6090
    58 (a) Raghavachari K., Pople J. A., Replogle E. S., Head-Gordon M. Fifth-Order Moiler-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth-Order. J. Phys. Chem. 1990, 94: 5579; (b) Raghavachari K., Pople J. A., Replogle E. S., Head-Gordon M., Handy N. C. Size-consistent Brueckner theory limited to double and triple substitutions. Chem. Phys. Lett. 1990, 167 (1-2): 115-121
    59 Raghavachari K., Trucks G. W. Highly correlated systems. Excitation energies of first row transition metals Sc-Cu. J. Chem. Phys. 1989, 91:1062-1065
    60 Clark T., Chandrasekhar J., Spitznagel G. W., Sehleyer P. v R. Efficient diffuse function -angmented basis sets for anion calculations. Ⅲ. The 3-21+G basis sets for first-row elements, lithium to fluorine. J. Comp. Chem. 1983, 4:294-301
    61 Frisch M. J., Pople J. A., Binkley J. S. Self-Consistent Molecular Orbital Methods 25: Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80:3265-3269
    62 肖鹤鸣著.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    63 Hoffmann R. An Extended Huckel Theory. Ⅰ. Hydrocarbons. J. Chem. Phys. 1963, 39(6): 1397-1412
    64 Pople J. A., Santry D. P., Segal G. A. Approximate Self-Consistent Molecular Orbital Theory. Ⅰ. Invariant Procedures. J. Chem. Phys. 1965, 43(10): S129-S135
    65 Pople J. A., Segal G. A. Approximate Self-Consistent Molecular Orbital Theory. Ⅱ. Calculations with Complete Neglect of Differential Overlap. J. Chem. Phys. 1965, 43(10): S136-S151
    66 Pople J. A., Segal G. A. Approximate Self-Consistent Molecular Orbital Theory. Ⅲ. CNDO Results for AB_2 and AB_3 Systems. J. Chem. Phys. 1966, 44(9): 3289-3296
    67 Pople J. A., Beveridge D. L., Dobosh P. A. Approximate Self-Consistent Molecular Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47(6): 2026-2033
    68 a) Dewar M. J. S., Haselbach E. Ground States of o-Bonded Molecules. Ⅳ. The MINDO/2 Method. J. Amer. Chem. Soc. 1970, 92:590-598
    69 Bingham R. C., Dewar M. J. S., and Lo D. H. a) Ground states of molecules. ⅩⅩⅤ. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. 1975, 97(6): 1285-1293; b) Ground states of molecules. ⅩⅩⅥ. MINDO/3 calculations for hydrocarbons. 1975, 97(6): 1294-1301
    70 Dewar M. J. S., Thiel W. Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters. J. Amer. Chem. Soc. 1977, 99:4899-4907
    71 Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. AMI: A New General Purpose Quantum Mechanical Molecular Model. J. Amer. Chem. Soc. 1985, 107: 3902-3909
    72 Stewart J. J. P. Optimization of parameters for semiempirical methods Ⅰ. Method. J. Comp. Chem. 1989, 10, 209-220
    73 Stewart J. J. P. Optimization of parameters for semiempirieal methods Ⅱ. Applications. J. Comp. Chem. 1989, 10, 221-264
    74 Frisch M. J., Trucks G. W., Schlegel H. B., Seuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprieh S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A. Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA, 1998
    1 赵元慧,刘希涛,袁星,陆光华.定量结构-活性相关及定量结构-生物降解性相关.Chem.J.Inte.2001,3:38-44
    2 Schultz T. W., Cronin M. T. D. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships. Environ. Toxicol. Chem. 2003, 22:599-607
    3 Veith G. D., Call D. J., Brooke L. T. Strucrure-toxicity relationships for the fathead minnow. Can. J. Fish. Aquat. Sci. 1983, 40:743-748
    4 Schultz T. W., Wyatt N. L., Lin D. T. Structure-toxicity relationships for nonpolar narcotics: a comparison of data from the tetrahymena, photobacterium and pimephales systems. Bull. Environ. Contam. Toxicol. 1990, 44:47-72
    5 Yu Rui-Lian, Hu Gong-Ren, Zhao Yuan-Hui. Comparative study of four models of aromatic compounds to aquatic organisms. J. Environ. Sci. 2002, 14(4): 552-557
    6 Roberts D. W. Linear Free Energy Relationships for Reactions of Electrophilic Haloand Pseudohalobenzenes, and Their Application in Prediction of Skin Sensitization Potential for S_NAr Electrophiles. Chem. Res. Toxicol. 1995, 8:545-551
    7 马恒俊,冯长君.取代芳烃对月芽藻、大鼠等毒性的构效关系研究.分子科学学报.2003,19(4):233-237
    8 张爱茜,魏东斌,王连生.用分子连接指数研究氯代芳香族化合物对氯藻的毒性及QSAR分析.环境化学.2000,19(3):220-224
    9 Kier L. B., Hall L. H. Molecular Connectivity in Structure-Activity Analysis. Research Studies Press Ltd., Hertfordshire, England and John Wiley and Sons, New York, 1986
    10 Hall L. H., Kier L. B. SAR Studies on the Toxicities of Benzene Derivatives: Ⅱ. An Analysis of Benzene Substituent Effects on Toxicity. Environ. Toxicol. Chem. 1986, 5: 333-337
    11 Cronin M. T. D., Netzeva T.. I., Dearden J. C., Edwards R., Worgan A. D. P. Assessment and Modeling of the Toxicity of Organic Chemicals to Chlorella vulgaris: Development of a Novel Database. Chem. Res. Toxicol. 2004, 17:545-554
    12 裴洪平,许高金.量子化学参数用于苯胺类化合物的QSAR毒性研究.浙江大学学报(理学版).2003,30(3):310-313
    13 籍国东,袁星,赵元慧等.应用次最低空轨道能研究硝基芳烃的生物活性.环境科学.1999,20(2):68-70
    14v琼虹,曹玉广,鲁生业.改进的BP网络应用于部分硝基芳烃的QSAR研究.同济医科大学学报.1999,28(2):117-119,122
    15 Gagne F., Blaise C. Predicting the toxicity of complex mixtures using artificial neural networks. Chemosphere. 1997, 35: 1343-1363
    16 Wan Der Werf H. M., Zimmer C. An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere. 1998, 36:2225-2249
    17 Heike S., Rolf A., Bernd J., Gerrit S. Quantitative Structure-Activity Analysis of the Algae Toxicity of Nitroaromatic Compounds. Chem. Res. Toxicol. 2000, 13(6): 441-450
    18 Zhao Yuan-Hui, Yuan Xing, Guo Dong, Sheng Lian-Xi, Wang Lian-Sheng. Quantitative structure-activity relationships of nitroaromatic compounds to four aquatic organisms. Chemosphere. 1997, 34(8): 1837-1844
    19 Lang Pei-Zhen, Ma Xun-fen, Lu Guang-hua, Wang Yi, Bian Yong. QSAR for the acute toxicity of nitroaromatics to the carp (Cyprinus Carpio). Chemosphere. 1996, 32(8): 1547-1552
    20 Netzeva T. I., Dearden J. C., Edwards R., Worgan A. D. P., Cronin M. T. D. QSAR Analysis of the Toxicity of Aromatic Compounds to Chlorella Wulgaris in a Novel Short-Term Assay. J. Chem. Inf. Comput. Sci. 2004, 44:258-265
    21 Cronin M. T. D., Netzeva T. I., Dearden J. C., Robert Edwards, and Andrew D. P. Worgan. Assessment and Modeling of the Toxicity of Organic Chemicals to Chlorella vulgaris: Development of a Novel Database. Chem. Res. Toxicol. 2004, 17:545-554
    22 余建英,何旭宏编.数据统计分析与SPSS应用.北京:人民邮电出版社,2004
    23 何晓群,刘文卿编.应用回归分析.北京:中国人民大学出版社,2001
    1 Walker J. D. Applications of QSARs in toxicology: a US Government perspective. Theochem. 2003, 622:167-184
    2 Hermens J., Balaz S., Damborsky J., Karcher W., Muller M., Peijnenburg W., Sabljic A., Sjostrom M. Assessment of QSARs for predicting fate and effects of chemicals in the environment: an international European project. SAR QSAR Environ. Res. 1995, 3: 223-236
    3 陈凯先,蒋华良,嵇汝运.计算机辅助药物设计—原理、方法及应用.上海:上海科学技术出版社,2000
    4 Bailey H. C., Spanggord R. J. The relationship between the toxicity and structure of nitroaromatic chemicals. Aquat. Toxicol. Hazard. Assess. 1983, 802: 98-107
    5 Hall L. H., Maynard E. L., Kier L. B. QSAR Investigation of Benzene Toxicity to Fathead Minnow Using Molecular Connectivity. Environ. Toxicol. Chem. 1989, 8: 783-788
    6 Yan X.-F., Xiao H.-M., Gong X.-D., Ju X.-H. A comparison of semiempirical and first principle methods for establishing toxicological QSARs of nitroaromatics. THEOCHEM. 2006, 764(1-3): 141-148
    7 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A. Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA, 1998
    8 Dimitrov S. D., Mekenyan O. G., Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. Theochem. 2003, 622:63-70
    9 余建英,何旭宏编.数据统计分析与SPSS应用.北京:人民邮电出版社,2004
    10 肖鹤鸣,陈兆旭.四唑化学的现代理论研究.北京:科学出版社,2000
    11 Chen L.-T., Xiao H.-M., Xiao J.-J., and Gong X.-D. DFT Study on Nitration Mechanism of Benzene with Nitronium Ion. J. Phys. Chem. A 2003, 107(51): 11440-11444
    12 Chen Z.-X., Xiao J.-M., Xiao H.-M., Chiu Y.-N. Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method. J. Phys. Chem. A 1999, 103:8062-8066
    13 Zhang J., Xiao H.-M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116(24): 10674-10683
    14 Deneer J. W., Sinnige T. L., Seinen W., Hermens J. L. M. Quantitative structure-activity relationships for the toxicity and bioconeentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat. Toxicol. 1987, 10(2-3): 115-129
    15 Lang P.-Z., Ma X.-F., Lu G.-H., Wang Y., Bian Y. QSAR for the toxicity of nitroaromatics to the Carp (Cyprinus carpio). Chemosphere. 1996, 32(8): 1547-1552
    16 Schuurmann G., Segner H., Jung K. Multivariate mode-of-action analysis of acute toxicity of phenols. Aquat. Toxicol. 1997, 38(4): 277-296
    17 Yuan X., Lu G., and Lang P. QSAR study of the toxicity of nitrobenzenes to river bacteria and Photobacterium phosphoreum. Bull. Environ. Contam. Toxicol. 1997, 58: 123-127
    18 Dearden J. C., Cronin M. T. D., Schultz T. W., and Lin D. T. QSAR study of the toxicity of nitrobezenes to Tetrahymena pyriformis. Quant. Struct.-Act. Relat. 1995, 14: 427-432
    1. Veith G. D., Mekenyan O. G. A QSAR approach for estimating the aquatic toxicity of soft electrophiles[QSAR for soft electrophiles]. Quant. Struct.-Act. Relat. 1993, 12: 349-356
    2. Zhao Y.-H., Yuan X., Ji G.-D., Sheng L.-X., Wang L.-S. Quantitative structure-activity relationships of nitroaromaatic compounds to four aquatic organisms. Chemosphere. 1997, 34:1837-1844
    3. Debnath A. K., de Compadre R. L. L., Debnath G., Shusterman A. J., Hansch C. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 1991, 34:786-797
    4. Sera Nobuyuki. Structure-activity relationship between mutagenicity and NO_2 substitution of nitroarenes, and the presence of mutagens/carcinogens in excised lung cancer specimens from Japan and China. Kankyo Hen'igen Kenkyu. 1998, 20(2): 97-105
    5. Bailey H. C., Spanggord R.J. The relationship between the toxicity and structure of nitroaromatic chemicals. Aquat. Toxicol. Hazard Assess. 1983, 802:98-107
    6. Hall L. H., Maynard E. L., Kier L. B. QSAR Investigation of Benzene Toxicity to Fathead Minnow Using Molecular Connectivity. Environ. Toxicol. Chem. 1989, 8: 783-788.
    7. Dimitrov S. D., Mekenyan O. G., Sinks G. D. Global modeling of narcotic chemical: ciliate and fish toxicity. Theochem. 2003, 622:63-70
    8.郎佩珍,陆光华.硝基芳烃对黑呆头鱼毒性定量构效关系的研究.高等学校化学学报.1995,16(7):1083-1087
    9. Lang P.-Z., Ma X.-F., Lu G.-H. QSAR for the acute toxicity of nitroaromatics to the carp (Cyprinus carpio). Chemosphere. 1996, 32(8): 1547-1552
    10.徐镜波,景体淞.鲤鱼组织ATPase的活性抑制和构效分析.高等学校化学学报.1998,19(12):1920-1924
    11.黄庆国,赵元慧,张爱茜.取代芳烃化合物对水生生物的急性毒性与其分子轨道能级的定量关系.科学通报.1995,40(4):351-353
    12.袁星,赵晓明,赵元慧.硝基苯、苯酚衍生物对发光菌毒性定量构效关系研究.中国环境科学.1997,17(5):426-428
    13.赵元慧,王连生,高鸿.有机污染物定量结构与活性相关性研究.科学通报.1993,38(6):516-518
    14.冯长君,李鸣建,陈艳,唐自强.取代芳烃对五种生物急性毒性的QSAR研究.化学学报.2001,59(6):853-861
    15. Lu G.-H., Yuan X., Zhao Y.-H. QSAR study on the toxicity of substituted benzenes to the algae (Scenedesmus obliquus). Chemosphere. 2001, 44:437-440
    16. Bailey H. C., Spanggord R. J. The relationship between the toxicity and structure of nitroaromatic chemicals, In: Bishop, W. E., Cardwell, R. D., Heidolph, B. B. (Eds.), Aquatic Toxicology and Hazard Assessment. Sixth Symposium, ASTM STP 802, American Society for Testing and Materials, Philadelphia, PA, 1983, pp. 98-107
    17. Yan X.-F., Xiao H.-M., Gong X.-D., Ju X.-H. Quantitative structure- activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus). Chemosphere. 2005, 59 (4): 467-471
    18. YAN X.-F., XIAO H.-M. QSAR Study of Nitrobenzenes' Toxicity to Tetrahymena Pyriformis Using Semi-empirical Quantum Chemical Methods. Chin. J. Stru. Chem. 2007, 26(1): 7-14
    19.闫秀芬,肖鹤鸣,居学海,贡雪东.硝基芳烃对梨形四膜虫毒性的QSAR研究.化学学报.2006,64(5):375-380
    20.闫秀芬,舒远杰,王连军,肖鹤鸣.硝基芳烃对圆腹雅罗鱼毒性的DFT研究.化学学报.2007(已定稿)
    21.闫秀芬,于艳春,肖鹤鸣.芳烃化合物对普通小球藻毒性的QSAR研究.淮海工学院学报(自然科学版).2006,15(1),40-44
    22. Schultz T. W. Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyfiformis. Chem. Res. Toxicol. 1999,12:1262-1267
    23. Cronin M. T. D., Gregory B. W., Schultz T. W. Quantitative Structure-Activity Analyses of Nitrobenzene Toxicity to Tetrahymena pyriformis. Chem. Res. Toxieol. 1998, 11: 902-908
    24. IARC (International Agency for Research on Cancer). 2-Chloronitrobenzene, 3-chloronitrobenzene and 4-chloronitrobenzene. Printing Processes and Printing Inks, Carbon Black and Some Nitro compounds; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Lyon, France. 1996; Vol. 65, pp 263-296
    25. Schmitt H., Altenburger R., Jastorff B. Quantitative structure-activity analysis of the algae toxicity of nitroaromatie compounds. Chem. Res. Toxicol. 2000, 13:441-450
    26. Xu M., Zhang A.-Q., Han S.-K., Wang L.-S. Studies of 3D-quantitatives structure-activity relationships on a set of nitroaromatie compounds: CoMFA, advanced CoMFA and CoMSIA. Chemosphere. 2002, 48:707-715
    27. Zhan C.-G, Nichols J. A., Dixon D. A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A 2003, 107: 4184-4195
    28. Hermann R. B. Theory of hydrophobic bonding Ⅱ: The correlation of hydrocarbon solubility with solvent cavity surface area. J. Phys. Chem. 1972, 76(19): 2754-2759
    29. OECD, Test Guideline 201. Paris: Desition of the Council C. 1981, (81): 320-323
    1 Bailey H. C., Spanggord R. J. The relationship between the toxicity and structure of nitroaromatic chemicals. In: Bishop, W.E., Cardwell, R.D., Heidolph, B.B. (Eds.), Aquatic Toxicology and Hazard Assessment. Sixth Symposium, ASTM STP 802, American Society for Testing and Materials, Philadelphia, PA, 1983, P98-107
    2 Xu M., Zhang A.-Q., Han S.-K., Wang L.-S. Studies of 3D-quantitatives structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA. Chemosphere. 2002, 48:707-715
    3 Schmitt H., Altenburger R., Jastorff B. Quantitative Structure-Activity Analysis of the Algae Toxicity of Nitroaromatic Compounds. Chem. Res. Toxicol. 2000, 13:441-450
    4 Voegtin C., Hooper C. W. and Johnson J. N. Trinitrotoluene poisoning—Its nature, diagnosis and prevention. J. Ind. Hyg. 1921, 3:280-292
    5 Snyder R. K. and von Oettingen W. F. Clinical note suggestions and new instruments-A new test for the detection and the appraisal of exposure to trinitrotoluene. J. Am. Med. Assoc. 1942, 123:202-203
    6 Hathaway J. A. Trinitrotoluene: a review of reported dose-related effects providing documentation for a workplace standard. J. Occup. Med. 1977, 19:341-345
    7 Channon H. J., Mills G. T., Williams R. T. The metabolism of 2,4,6-trinitrotoluene (α-TNT). Biochem. J. 1944, 38(1): 70-85
    8 Lemberg R., Callaghan J. P. Isolation of reduction products of 2,4,6-trinitrotoluene from the urine of rats and from human urine. Aust. J. Exp. Biol. Med. Sci. 1945, 23(1): 13-20
    9 Yinon J., Hwang D. G. Metabolic studies of explosives 5. Detection and analysis of 2,4,6-trinitrotoluene and its metabolites in urine of munition workers by micro liquid chromatography/mass spectrometry. Biomed. Chroma. Togr. 1986, 1(3): 123-125
    10 Crawford R. L. The microbiology and treatment of nitroaromatic compounds. Current Opinion in Biotechnology. 1955, 6:329-336
    11 Jonas Sarlauskas, Ausra Nemeikaite-Cniene, Zilvinas Anusevicius, Lina Miseviciene, Marta Martinez Julvez, Milagros Median, Carlos Gomez-Moreno, and Narimantas Cenas. Flavoenzyme-catalyzed redox cycling of hydroxylamino- and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Archives of Biochemistry and Biophysics. 2004, 425:184-192
    12 刘玉瑛,卢业竤,赵李雪馨.三硝基甲苯蛋白加合物及其结构鉴定.中国药理学 与毒理学杂志.1992,6(2):142-146
    13 Liu Y. Y., Lu A. Y. H., Stearns R. A. and Chiu S. H. L.. In vivo covalent binding of [~(14)C]trinitrotoluene to proteins in the rat. Chem. Biol. Interact. 1992, 82: 1-19
    14 Leung K. H., Yao M., R. Stearns, Chiu S. H. L. Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene. Chemico-Biological Interactions. 1995, 97:37-51
    15 Hong S.-J., Piette L. H. Electron spin resonance spin label studies of intercalation of nitrobenzene in DNA. Archives of Biochemistry and Biophysics. 1978, 185(2): 307-315
    16 Haward, P. C., Beland, F. A., Cerniglia, C. E. Reduction of the carcinogen 1-nitropyrene to 1-aminopyrene by the rat intestinal bacteria. Carcinogenesis 1983, 4: 985-990
    17 Goldstein R. S., Rickert D. E. Macromolecular covalent binding of [~(14)C]nitrobenzene in the erythrocyte and spleen of rats and mice. Chemico-Biological Interactions. 1984, 50(1): 27-37
    18 Li H.-L., Wang H.-F., Sun H.-F., Liu Y.-F., Liu K.-X., Peng S.-X. Binding of nitrobenzene to hepatic DNA and hemoglobin at low doses in mice. Toxicology Letters. 2003, 139(1): 25-32
    19 Ellis M. K., Hill S., and Foster P. M. D. Reactions of nitrosonitrobenzenes with biological thiols: identification and reactivity of glutathion-s-yl conjugates. Chem.-Biol. Interact. 1992, 82:151-163
    20 Reeve I. T., Miller M. G. 1,3-Dinitrobenzene metabolism and protein binding. Chem. Res. Toxicol. 2002, 15:352-360
    21 IARC (International Agency for Research on Cancer). 2-Chloronitrobenzene, 3-chloronitrobenzene, and 4-chloronitrobenzene. Printing Processes and Printing Inks, Carbon Black and Some Nitro Compounds; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Lyon, France. 1996, 65:263-296
    22 Yoshida T., Tabuchi T., Andoh K. Pharmacokinetic study of p-chloronitrobenzene in humans suffering from acute poisoning. Drug Metab. Dispos. 1993, 21:1142-1146
    23 Jones C. R., Liu Y. Y., Sepal O., Yan H. F., Sabbioni G. Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ. Sci. Technol. 2006, 40:387-394
    24 Gupta R. L., Saini B. H. K., Juneja T. R. Nitroreductase independent mutagenieity of 1-halogenated-2,4-dinitrobenzenes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1997, 381 (19): 41-47
    25 Sabbioni G. Hemoglobin binding of nitroarenes and quantitative structure-activity relationships. Chem. Res. Toxicol. 1994, 7: 267-274
    26 Sabbioni G., Sepai O. Comparison of hemoglobin binding, mutagenicity and carcinogenicity of arylamines and nitroarenes. Chimia. 1995, 49: 374-380
    27 Bakbtiar R., Leung K. H., Stearns R. A., and Hop C. E. C. A. Evidence for a novel heme adduct generated by the in vitro reaction of 2, 4, 6-trinitrotoluene with human hemoglobin using electrospray ionization mass spectrometry. J. Inorg. Biochem. 1997, 68(4): 273-278
    28 Zhao Y.-H., Yuan X., Ji G.-D., Sheng L.-X., Wang L.-S. Quantitative structure-activity relationships of nitroaromatic compounds to four aquatic organisms. Chemosphere. 1997, 34: 1837-1844
    29 Lu G.-H., Yuan X., Zhao Y.-H. QSAR study on the toxicity of substituted benzenes to the algae (Scenedesmus obliquus ). Chemosphere. 2001, 44: 437-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700