用户名: 密码: 验证码:
生物质热解及焦油热裂解的实验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物质能源的利用技术中,生物质热解气化技术是一种通过热化学反应将固态生物质转换为气体燃料的过程。但是传统的气化技术存在着燃气中焦油含量高、废水难以处理等问题,特别是焦油含量高是目前生物质热解气化技术面临的主要问题。目前能有效解决焦油问题方法之一是高温热裂解法,它是一种简单易行、具有工程应用前景的焦油脱除方法。本文针对生物质利用过程中焦油含量高的问题,提出了生物质热解及焦油高温热裂解的技术路线,通过实验和数值模拟,研究了生物质热解特性,分析了生物质油和焦油的热裂解特性,得到如下结果:
     (1)利用热重分析法研究了典型生物质稻壳、玉米秸秆和白桦木屑的热解过程,分析生物质热解的一般规律。通过比较慢速升温和快速升温条件下生物质热解过程的差异,发现热重法可以定量预测粒径小于0.2mm生物质的热解过程,能够定性描述粒径小于1mm生物质的热解过程。
     (2)设计研制了一种生物质热解及焦油高温热裂解实验系统,该系统将生物质热解和焦油的高温裂解分开,通过改变燃烧器的供热量和蓄热式陶瓷裂解器的截面积,来调节焦油裂解的温度环境和停留时间。实验运行结果表明本文设计的生物质热解及焦油高温热裂解系统不仅能够提供焦油裂解所需的高温温度场,而且能够准确测定焦油在此温度场的停留时间。
     (3)在生物质热解及焦油高温热裂解实验台上考察了裂解温度对焦油种类、热解产物、气体产物成分、焦油中化合物成分的影响以及停留时间对焦油裂解率的影响。结果表明随着温度的升高液体产物产率经历了先升高后减少的过程,温度为500℃时,液体产物产率最高,之后随着温度的提高,液体产物产率逐渐减少,当温度达到1200℃时,生物质气中焦油含量已达到11.7mg/Nm~3;当温度达到1200℃时,焦油含量中的成分主要是三环、四环的芳香族有机物,焦油种类从129种下降到18种;增加停留时间可以明显降低生物质气中的焦油含量,但当温度达到1200℃时,停留时间为0.5s时焦油量急剧下降,再增加时间则焦油量变化不明显。
     (4)建立了生物质热解及液体产物高温热裂解的化学反应动力学模型,该热解模型根据液体产物的特点将可凝挥发份分为生物质油和焦油。将化学反应动力学方程和能量方程耦合,通过数值模拟,分析温度、停留时间、粒径和压力等参数对生物质热解及焦油高温热裂解的影响。结果表明:热解反应的吸热效应对温度场和反应进程有较大的影响,大颗粒在靠近中心的几层在热解反应区出现一段温度近似维持恒定的水平段,在该阶段前后则是纯物质受热升温物理过程中常见的指数温升曲线,预测结果与实验值基本吻合。
Among biomass energy utilization technologies, biomass pyrolysis and gasification technology is a process which is to convert solid biomass into gaseous fuel through thermal chemical reaction whose gas products of biomass pyrolysis can be used for power generation, gas supply and central heating. But there are some problems for traditional gasification technology, such as high tar content in biomass fuel gas and waste water difficult to treat. In particular, high tar content in fuel gas is the main problem for biomass pyrolysis and gasification technology. At present, one of the most effective methods to thoroughly solve the problem is high-temperature thermal cracking which is simple and feasible and has the engineering application promise. This dissertation aiming at the high tar content in biomass utilization, proposed a technique route of biomass pyrolysis and tar thermal cracking, and experimentally and numerically investigated biomass pyrolysis characteristics and analyzed thermal cracking characteristics of bio-oil and tar. The main results are as follows:
     (1) Pyrolysis process of typical biomass, such as rice husk, corn straw and birch is investigated by thermogravimertric analytical method. The general rule of biomass pyrolysis is analyzed. Comparing slow heating rate with fast heating rate for biomass pyrolysis process, thermogravimetry may be used to quantitatively predict biomass pyrolysis process of small particles whose diameters are less than 0.2mm, and qualitatively describe biomass pyrolysis process of larger particles whose diameters are less than 1mm.
     (2) The experimental system of biomass pyrolysis and tar high-temperature thermal cracking was developed, and biomass pyrolysis and tar high temperature cracking were separated by changing heat output of combustor and cross-section area of regenerative ceramic cracker to adjust temperature environment and residence time for tar cracking. Results show that experiment system not only can supply the required high temperature field for tar cracking, but also accurately measure the residence time of tar in the temperature field.
     (3) The effect of cracking temperature on species of tar compounds, pyrolysis products, pyrolysis products composition and substance in tar, and the effect of residence time on ratio of tar cracking were studied. Results show that the liquid product yield experiences from an increasing process to a decreasing one. Liquid product yield reaches maximum when pyrolysis temperature is 500℃. Liquid product yield gradually decreases as temperature increasing; tar content of biomass fuel gas reaches 11.7mg/Nm~3 when temperature reaches 1200℃; tar composition is the main aromatic compounds with 3-rings and 4-rings, and tar species reduce from 129 to 18 when pyrolysis temperature reaches 1200℃. Tar content in biomass gas is obviously reduced, but when pyrolysis temperature is 1200℃, tar content of biomass gas sharply declines as residence time is 0.5s. Further increasing residence time, tar content will not change significantly.
     (4) A chemical reaction kinetics model of biomass pyrolysis with liquid product high-temperature thermal cracking was established. Based on characteristic of liquid products, the condensable volatile is divided into two parts: tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure and other parameters on biomass pyrolysis and tar high-temperature cracking were numerically investigated. Results show that the effect of endothermic of pyrolysis reaction on temperature field and reaction process is great; the pyrolysis reaction zone appears a constant temperature period in several layers near the center of large biomass particles; before or after the period, pure physical process of material heated is observed according to the index curve of temperature; the simulation results agree with the experimental well.
引文
1 M. J. Anatal, H. Friedman. Kinetic of Cellulose Pyrolysis in Nitrogen and Steam. Combust Sci Technol. 1980, 21: 141~152
    2 C. A. Zaror, I. S. Hutchings, D. L. Pyle, H. N. Stiles, R. Kandiyoti. Secondary Char Formation in the Catalytic Pyrolysis of Biomass. Fuel. 1985, 64(7): 990~994
    3 A. Demirbas. Mechanisms of Liquefaction and Pyrolysis Reactions of Biomass. Energy Conversion and Management. 2000, 41(6): 633~646
    4刘荣厚,牛卫生,张大雷.生物质热化学转换技术.化学工业出版社,2005:4~5
    5马隆龙,吴创之,孙立.生物质气化技术及其应用.化学工业出版社,2003:29
    6杨海平.油棕废弃物热解的实验及机理研究.华中科技大学博士论文. 2005:17
    7 A. V. Bridgwater, G. V. C. Peacocke. Fast Pyrolysis Processes for Biomass. Renewable & Sustainable Energy Reviews. 2000, 4(1): 1~73
    8日本能源学会.生物质和生物能源手册.史仲平,华兆哲.化学工业出版社,2007:97~103
    9 R. Maggi, B. Delmon. Comparison Between Slow and Flash Pyrolysis Oils From Biomass. Fuel. 1994, 73(5): 671~677
    10 A. V. Bridgwater, G. V. C. Peacocke. Fast Pyrolysis Processes for Biomass. Renewable & Sustainable Energy Reviews. 2000, 4(1): 1~73
    11 B. V. Babu. Biomass Pyrolysis: A State-of-the-Art Review. Biofuels Bioproducts & Biorefining-Biofpr. 2008, 2(5): 393~414
    12 A. Demirbas. Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. Energy Conversion and Management. 2001, 42(11): 1357~1378
    13 L. H. Zhang, C. B. Xu, P. Champagne. Overview of Recent Advances in Thermo-Chemical Conversion of Biomass. Energy Conversion and Management. 2010, 51(5): 969~982
    14 C. L. Hsi, T. Y. Wang, C. H. Tsai, C. Y. Chang, C. H. Liu, Y. C. Chang, J. T. Kuo. Characteristics of an Air-Blown Fixed-Bed Downdraft Biomass Gasifier. Energy & Fuels. 2008, 22(6): 4196~4205
    15 P. Garcia-Bacaicoa, J. F. Mastral, J. Ceamanos, C. Berrueco, S. Serrano. Gasification of Biomass/High Density Polyethylene Mixtures in a Downdraft Gasifier. Bioresource Technology. 2008, 99(13): 5485~5491
    16 A. K. Sharma. Equilibrium Modeling of Global Reduction Reactions for a Downdraft (Biomass) Gasifier. Energy Conversion and Management. 2008, 49(4): 832~842
    17 J. K. Ratnadhariya, S. A. Channiwala. Experimental Studies On Molar Distribution of CO/CO2 and CO/H-2 Along the Length of Downdraft Wood Gasifier. Energy Conversion and Management. 2010, 51(3): 452~458
    18 M. Igarashi, Y. Hayafune, R. Sugamiya, Y. Nakagawa, K. Makishima, D. Kunii. Pyrolysis of Municipal Solid Waste in Japan. J. Energy Resour. Technol. 1984, 106: 377~382
    19 J. Corella, J. M. Toledo, G. Molina. A Review On Dual Fluidized-Bed Biomass Gasifiers. Industrial & Engineering Chemistry Research. 2007, 46(21): 6831~6839
    20 C. Dupont, J. M. Commandre, P. Gauthier, G. Boissonnet, S. Salvador, D. Schweich. Biomass Pyrolysis Experiments in an Analytical Entrained Flow Reactor Between 1073 K and 1273 K. Fuel. 2008, 87(7): 1155~1164
    21 T. R. Mclendon, A. P. Lui, R. L. Pineault, S. K. Beer, S. W. Richardson. High-Pressure Co-Gasification of Coal and Biomass in a Fluidized Bed. Biomass & Bioenergy. 2004, 26(4): 377~388
    22 Y. Cao, Y. Wang, J. T. Riley, W. P. Pan. A Novel Biomass Air Gasification Process for Producing Tar-Free Higher Heating Value Fuel Gas. Fuel Processing Technology. 2006, 87(4): 343~353
    23阎维平,陈吟颖.生物质混合物与褐煤共热解特性的试验研究.动力工程. 2006, 26(6):865~870
    24米铁,陈汉平,唐汝江,吴创之,马隆龙,邵敬爱,王贤华,赫俏,刘德昌,郑楚光.生物质半焦气化的反应动力学.太阳能学报. 2005, 26(6):766~771
    25曹小玲,蒋绍坚,吴创之,艾元方.高温空气发生器热态实验研究.中国电机工程学报. 2005, 25(2):109~113
    26魏敦崧,李芳芹,李连民.生物质固定床气化试验研究.同济大学学报:自然科学版. 2006, 34(2):254~259
    27周劲松,赵辉,曹小伟,骆仲泱,岑可法.生物质气流床气化制取合成气的试验研究.太阳能学报. 2008, 29(11):1406~1413
    28赵增立,李海滨,吴创之,陈勇.生物质等离子体气化研究.太阳能学报. 2005, 26(4):468~472
    29胡景辉,汪印,刘新华,蒋登高,许光文.干燥/热解与半焦气化解耦的生物质气化特性.过程工程学报. 2009, (4):731~737
    30段佳,罗永浩,晏乃强,陈祎,陆方,王清成.生物质气化再燃特性实验研究.燃料化学学报. 2007, 35(2):245~248
    31宋新朝,李克忠,王锦凤,董众兵,毕继诚.流化床生物质与煤共气化特性的初步研究.燃料化学学报. 2006, (3):303~308
    32冯杰,吴志斌,秦育红,李文英.生物质空气-水蒸气气化制取合成气热力学分析.燃料化学学报. 2007, (4):397~400
    33马晓茜,何军飞,赵增立,李海滨,陈勇.生物质与煤共燃发电CDM项目案例分析.华南理工大学学报(自然科学版). 2006, (4):1~4
    34廖艳芬,王树荣,马晓茜.纤维素热裂解左旋葡聚糖生成过程模拟研究.林产化学与工业. 2006, (2):91~95
    35原晓华,马隆龙,吴创之,阴秀丽.生物质内循环流化床气化炉结焦特性.太阳能学报. 2006, (7):635~638
    36廖翠萍,吴创之,颜涌捷.生物质气化发电厂灰渣中微量元素的分布与富集规律.燃料化学学报. 2005, (4):456~459
    37许庆利,张素平,王复,李洪宇,亓伟,蓝平,颜涌捷.生物质催化气化实验研究.化工进展. 2009, (4):622~628
    38易维明,曾德超.一种带有产气热裂解装置的新型热解气化炉的实验研究.农业工程学报. 1995, (3):150~154
    39刘汉桥,蔡九菊,包向军,王博.废弃生物质热解的两种反应模型对比研究.材料与冶金学报. 2003, (2):153~156
    40蒲舸,张力,辛明道.王草的热解与燃烧特性实验研究.中国电机工程学报. 2006, (11):65~69
    41张川,廖强,朱恂,田鑫,王永忠.传质特性对光纤生物制氢反应器性能的影响.工程热物理学报. 2009, (11):1933~1935
    42陈晨,王述洋.生物质成型燃料半气化炉温度巡检系统的设计与应用.林业机械与木工设备. 2009, (5):34~36
    43 M. M. Gasification and Liquefaction of Forest Products in Supercritical Water. Elsevier, 1985: 95~119
    44 X. D. Xu, Y. Matsumura, J. Stenberg, M. J. Antal. Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water. Industrial & Engineering Chemistry Research. 1996, 35(8): 2522~2530
    45 D. C. Elliott, J. L. Sealock. Nickel/Ruthenium Catalyst and Method for Aqueous Phase Reactions. 1998, (5,814,112)
    46 E. D. C, B. E. G, B. R. S, S. J. Lj. Bench-Scale Reactor Tests of Low Temperature, Catalytic Gasification of Wet Industrial Wastes. J Solar Energy Eng. 1993, 115: 52~56
    47 Y. Matsumura, T. Minowa, B. Potic, S. R. A. Kersten, W. Prins, W. P. M. van Swaaij, B. van de Beld, D. C. Elliott, G. G. Neuenschwander, A. Kruse, M. J. Antal. Biomass Gasification in Near- And Super-Critical Water: Status and Prospects. Biomass & Bioenergy. 2005, 29(4): 269~292
    48 I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, A. Wokaun. Characterization of Surface Processes at the Ni-Based Catalyst During the Methanation of Biomass-Derived Synthesis Gas: X-Ray Photoelectron Spectroscopy (Xps). Applied Catalysis a-General. 2007, 329: 68~78
    49 R. P. W. J. Struis, T. J. Schildhauer, I. Czekaj, M. Janousch, S. M. A. Biollaz, C. Ludwig. Sulphur Poisoning of Ni Catalysts in the Sng Production From Biomass: A Tpo/Xps/Xas Study. Applied Catalysis a-General. 2009, 362(1-2): 121~128
    50 M. C. Seemann, T. J. Schildhauer, S. M. A. Biollaz, S. Stucki, A. Wokaun. The Regenerative Effect of Catalyst Fluidization Under Methanation Conditions. Applied Catalysis a-General. 2006, 313(1): 14~21
    51王荣静,李爱民,高宁博,全翠.松木屑水蒸气催化气化制氢及其大物料量气化动力学研究.太阳能学报. 2009, 30(9):1240~1245
    52谢玉荣,肖军,沈来宏,卢海勇,高杨.生物质催化气化制取富氢气体实验研究.太阳能学报. 2008, 29(7):888~893
    53黄浩,胡国新. Ca(OH)2对生物质水蒸气气化制氢的影响.上海交通大学学报. 2007, 41(12):1930~1933
    54陈冠益,李强, Spliethoff H.,王福全.生物质热解气化制取氢气.太阳能学报. 2004, 25(06):776~781
    55吕友军,金辉,郭烈锦,张西民,曹长青.原生生物质在超临界水流化床系统中气化制氢.西安交通大学学报. 2009, 43(2):111~115
    56吕友军,郭烈锦,张西民,金辉.生物质超临界水流化床气化制氢系统与方法研究.工程热物理学报. 2009, 30(9):1521~1524
    57赵先国,常杰,吕鹏梅,王铁军,付严.生物质富氧-水蒸气气化制氢特性研究.太阳能学报. 2006, 27(7):677~681
    58李洪强,洪慧,金红光,蔡睿贤.生物质气化-天然气重整-甲醇动力多联产系统特性分析.工程热物理学报. 2009, 30(4):541~545
    59阚涛.自制串联流化床系统中生物质制氢及双固定床中粗生物油制氢的基础研究.中国科学技术大学;博士论文. 2009
    60吴家桦,沈来宏,肖军,王雷,郝建刚.串行流化床生物质气化制取合成气试验研究.中国电机工程学报. 2009, 29(11):111~118
    61陈冠益,高文学,颜蓓蓓,贾佳妮.生物质气化技术研究现状与发展.煤气与热力. 2006, 26(7):20~26
    62 T. Hanaoka, S. Inoue, S. Uno, T. Ogi, T. Minowa. Effect of Woody Biomass Components On Air-Steam Gasification. Biomass & Bioenergy. 2005, 28(1): 69~76
    63 C. C. P. Pian, K. Yoshikawa. Development of a High-Temperature Air-Blown Gasification System. Bioresource Technology. 2001, 79(3): 231~241
    64 C. Lucas, D. Szewczyk, W. Blasiak, S. Mochida. High-Temperature Air and Steam Gasification of Densified Biofuels. Biomass & Bioenergy. 2004, 27(6): 563~575
    65 R. S, F. P. U. Catalytic Gasification of Biomass to Produce Hrydrogen Rich Gas. Hydrogen Energy. Hydrogen Energy, 1998, 23(7): 551~557
    66 P. D'Jesus, N. Boukis, B. Kraushaar-Czarnetzki, E. Dinjus. Gasification of Corn and Clover Grass in Supercritical Water. Fuel. 2006, 85(7-8): 1032~1038
    67 G. Chen, J. Andries, H. Spliethoff. Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel Gas Production. Energy Conversion and Management. 2003, 44(14): 2289~2296
    68 Y. Calzavara, C. Joussot-Dubien, G. Boissonnet, S. Sarrade. Evaluation of Biomass Gasification in Supercritical Water Process for Hydrogen Production. Energy Conversion and Management. 2005, 46(4): 615~631
    69陈平,阴秀丽,周肇秋,吴创之,陈勇. MW级生物质气化发电站运行特性分析.太阳能学报. 2007, 28(4):389~393
    70吴正舜,吴创之,郑舜鹏,马隆隆. 4MW级生物质气化发电示范工程的设计研究.能源工程. 2003, (3):14~17
    71刘宝亮,蒋剑春.中国生物质气化发电技术研究开发进展.生物质化学工程. 2006, (4):47~52
    72董玉平,王理鹏,邓波,陆萍,申树云.国内外生物质能源开发利用技术.山东大学学报(工学版). 2007, (3):64~69
    73董玉平,孙玉泉.湿式净化秸秆热解气化机组研制.农业机械学报. 2000,(05):48~49
    74米铁,唐汝江,陈汉平,刘德昌.生物质能利用技术及研究进展.煤气与热力. 2004, 24(12):701~705
    75赖艳华.生物质热解过程的传热传质及低焦油气化技术研究.东南大学. 2002:6
    76 A. A. C. M. Beenackers. Biomass Gasification in Moving Beds, a Review of European Technologies. Renewable Energy. 1999, 16(1-4): 1180~1186
    77 C. A. Koufopanos, N. Papayannakos, G. Maschio, A. Lucchesi. Modelling of the Pyrolysis of Biomass Particles. Studies On Kinetics, Thermal and Heat Transfer Effects. 1991, 69(4): 907~915
    78 C. A. Koufopanos, G. Maschio, A. Lucchesi. Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components. Can. J. Chem. Eng. 1989, 67: 75~84
    79 V. K. Srivastava, Sushil, R. K. Jalan. Prediction of Concentration in the Pyrolysis of Biomass Material .2. Energy Conversion and Management. 1996, 37(4): 473~483
    80 R. K. Jalan, V. K. Srivastava. Studies On Pyrolysis of a Single Biomass Cylindrical Pellet - Kinetic and Heat Transfer Effects. Energy Conversion and Management. 1999, 40(5): 467~494
    81 A. M. C. Janse, R. W. J. Westerhout, W. Prins. Modelling of Flash Pyrolysis of a Single Wood Particle. Chemical Engineering and Processing. 2000, 39(3): 239~252
    82 J. Larfeldt, B. Leckner, M. C. Melaaen. Modelling and Measurements of Heat Transferin Charcoal From Pyrolysis of Large Wood Particles. Biomass & Bioenergy. 2000, 18(6): 507~514
    83 J. Larfeldt, B. Leckner, M. C. Melaaen. Modelling and Measurements of the Pyrolysis of Large Wood Particles. Fuel. 2000, 79(13): 1637~1643
    84 B. V. Babu, A. S. Chaurasia. Modeling for Pyrolysis of Solid Particle: Kinetics and Heat Transfer Effects. Energy Conversion and Management. 2003, 44(14): 2251~2275
    85 B. V. Babu, A. S. Chaurasia. Heat Transfer and Kinetics in the Pyrolysis of Shrinking Biomass Particle. Chemical Engineering Science. 2004, 59(10): 1999~2012
    86 B. V. Babu, P. N. Sheth. Modeling and Simulation of Reduction Zone of Downdraft Biomass Gasifier: Effect of Char Reactivity Factor. Energy Conversion and Management. 2006, 47(15-16): 2602~2611
    87 A. Zabaniotou, T. Damartzis. Modelling the Intra-Particle Transport Phenomena and Chemical Reactions of Olive Kernel Fast Pyrolysis. Journal of Analytical and Applied Pyrolysis. 2007, 80(1): 187~194
    88 L. Gerun, M. Paraschiv, R. Vijeu, J. Bellettre, M. Tazerout, B. Gobel, U. Henriksen. Numerical Investigation of the Partial Oxidation in a Two-Stage Downdraft Gasifier. Fuel. 2008, 87(7): 1383~1393
    89 K. Papadikis, S. Gu, A. V. Bridgwater, H. Gerhauser. Application of Cfd to Model Fast Pyrolysis of Biomass. Fuel Processing Technology. 2009, 90(4): 504~512
    90 J. K. Ratnadhariya, S. A. Channiwala. Three Zone Equilibrium and Kinetic Free Modeling of Biomass Gasifier - A Novel Approach. Renewable Energy. 2009, 34(4): 1050~1058
    91 C. Di Blasi. Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels. Progress in Energy and Combustion Science. 1993, 19(1): 71~104
    92 C. Di Blasi. Modelling the Fast Pyrolysis of Cellulosic Particles in Fluid-Bed Reactors. Chemical Engineering Science. 2000, 55(24): 5999~6013
    93 C. Di Blasi. Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis. Progress in Energy and Combustion Science. 2008, 34(1): 47~90
    94余春江,张文楠,骆仲泱,方梦祥,周劲松,岑可法.流化床中单颗粒纤维素热解模型研究.太阳能学报. 2002, 23(1):87~95
    95王智微,唐松涛,等.流化床中生物质热解气化的模型研究.燃料化学学报. 2002, 30(4):342~346
    96肖小清,孙新,李政.高温空气气化的卵石床气化炉的数学模型研究.动力工程. 2003, 23(5):2652~2659
    97吕鹏梅,常杰,吴创之,陈勇.生物质快速催化裂解的反应动力学.太阳能学报. 2005, 26(5):647~653
    98沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究.中国电机工程学报.2006, 26(11):7~11
    99张巍巍,陈雪莉,王辅臣,代正华,于遵宏.基于ASPEN PLUS模拟生物质气流床气化工艺过程.太阳能学报. 2007, 28(12):1360~1364
    100陈汉平,赵向富,米铁,代正华.基于ASPEN PLUS平台的生物质气化模拟.华中科技大学学报(自然科学版). 2007,35(09):49~52
    101陈海翔,刘乃安,范维澄.基于差示扫描量热技术的生物质热解两步连续反应模型研究.物理化学学报. 2006, 26(7):786~790
    102赖艳华,马春元,施明恒.辐射加热条件下生物质燃料层热解过程的传热传质.太阳能学报. 2006, 27(7):661~665
    103周密,阎立峰,王益群,郭庆祥,朱清时.生物质定向气化制合成气—气化热力学模型与模拟.化学物理学报. 2005, 18(1):69~74
    104 G. Maschio, C. A. Koufopanos, A. Lucchesi. Pyrolysis, a Promising Route for Biomass Utilization. Bioresour Technol. 1992, 42: 219~231
    105董玉平,邓波,景元琢,强宁,申树云.中国生物质气化技术的研究和发展现状.山东大学学报(工学版). 2007, (2):1~7
    106董玉平,董磊,景元琢,强宁.大米草气、电、热三联供技术研究.农业工程学报. 2007, (8):222~226
    107董玉平,董进武.秸秆气化集中供燃技术.农机推广. 2000, (3):24
    108 J. Han, H. Kim. The Reduction and Control Technology of Tar During Biomass Gasification/Pyrolysis: An Overview. Renewable & Sustainable Energy Reviews. 2008, 12(2): 397~416
    109 J. D. Bentzen. Low Tar and High Efficient Gasification Concept. Proceedings of the conference ECOS, Netherlands, 2000. Enschede, University of Twente, 2000:97~108
    110 C. Di Blasi. Modeling Intra- And Extra-Particle Processes of Wood Fast Pyrolysis. Aiche Journal. 2002, 48(10): 2386~2397
    111 Z. Abu El-Rub, E. A. Bramer, G. Brem. Review of Catalysts for Tar Elimination in Biomass Gasification Processes. Industrial & Engineering Chemistry Research. 2004, 43(22): 6911~6919
    112 K. S. Seshadri, A. Shamsi. Effects of Temperature, Pressure, and Carrier Gas On the Cracking of Coal Tar Over a Char-Dolomite Mixture and Calcined Dolomite in a Fixed-Bed Reactor. Industrial & Engineering Chemistry Research. 1998, 37(10): 3830~3837
    113 Q. Z. Yu, C. Brage, T. Nordgreen, K. Sjostrom. Effects of Chinese Dolomites On Tar Cracking in Gasification of Birch. Fuel. 2009, 88(10): 1922~1926
    114 C. S. Li, D. Hirabayashi, K. Suzuki. A Crucial Role of O-2(-) And O-2(2-) On Mayenite Structure for Biomass Tar Steam Reforming Over Ni/Ca12Al14O33. Applied Catalysis B-Environmental. 2009, 88(3-4): 351~360
    115 P. Ammendola, B. Piriou, L. Lisi, G. Ruoppolo, R. Chirone, G. Russo. Dual Bed Reactor for the Study of Catalytic Biomass Tars Conversion. Experimental Thermal and Fluid Science. 2010, 34(3): 269~274
    116 Y. H. Qin, J. Feng, W. Y. Li. Formation of Tar and its Characterization During Air-Steam Gasification of Sawdust in a Fluidized Bed Reactor. Fuel. 2010, 89(7): 1344~1347
    117 L. P. L. M. Rabou, R. W. R. Zwart, B. J. Vreugdenhil, L. Bos. Tar in Biomass Producer Gas, the Energy Research Centre of the Netherlands (Ecn) Experience: An Enduring Challenge. Energy & Fuels. 2009, 23: 6189~6198
    118胡荣祖,史启祯.热分析动力学.科学出版社,2001:47~49
    119 A. Demirbas. Mechanisms of Liquefaction and Pyrolysis Reactions of Biomass. Energy Conversion and Management. 2000, 41(6): 633~646
    120朱锡锋.生物质热解原理与技术.中国科学技术大学,2006:51~53
    121 D. S. Scott, J. Piskorz, R. G. Graham. The Effect of Temperature On Liquid Product Composition From the Fast Pyrolysis of Cellulose. 1987,
    122 A. Cuevas, C. Reinoso, J. Lamas. Advance and Developments at the Union Fenosa Pyrolysis Plant. Proc. 8th European Conference on Biomass, Vienna, 1994: 1506~1512
    123 M. Lapuerta, J. J. Hernandez, J. Rodriguez. Kinetics of Devolatilisation of Forestry Wastes From Thermogravimetric Analysis. Biomass & Bioenergy. 2004, 27(4): 385~391
    124李余增.热分析.清华大学出版社,1987:38~52
    125盛骤,谢式千,潘承毅.概率论与数理统计.高等教育出版社,1989:25~40
    126魏运祥,李建.化学反应机理导论.科学出版社,2004:32~41
    127 L. T. Vlaev, I. G. Markovska, L. A. Lyubchev. Non-Isothermal Kinetics of Pyrolysis of Rice Husk. Thermochimica Acta. 2003, 406(1-2): 1~7
    128赵学庄,罗渝然,藏雅茹.化学反应动力学原理(下册).高等教育出版社,1984:80~100
    129许晋源,徐通模.燃烧学.机械工业出版社,1989:10~20
    130陈永生,曹光乔,张宗毅,朱德文.村级秸秆气化集中供气工程的技术、经济性评价.农业开发与装备. 2007, (11):11~15
    131同济大学,重庆建筑大学,哈尔滨建筑大学,北京建筑工程学院.燃气燃烧与应用(第三版).中国建筑工业出版社,2000:184~187
    132 D. Sutton, B. Kelleher, J. R. H. Ross. Review of Literature On Catalysts for Biomass Gasification. Fuel Processing Technology. 2001, 73(3): 155~173
    133 B. P, U. Henriksen. Decomposition of Tar in Gas From Updraft Gasifier by Thermal Cracking. Proceedings of the First World Conference on Biomass for Energy andIndustry, Seville, 2000:572~579
    134 C. Di Blasi. Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis. 2008, 34(1): 47~90
    135 J. Piskorz, P. Majerski, D. Radlein, D. S. Scott, A. V. Bridgwater. Fast Pyrolysis of Sweet Sorghum and Sweet Sorghum Bagasse. 1998, 46(1): 15~29
    136 C. Diblasi. Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids. 1996, 35(1): 37~46
    137 C. Di Blasi. Modeling and Simulation of Combustion Processes of Charring and Non-Charring Solid Fuels. 1993, 19(1): 71~104
    138 C. Di Blasi. Analysis of Convection and Secondary Reaction Effects within Porous Solid Fuels Undergoing Pyrolysis. Combustion science and technology. 1993, 90(5-6): 315~340
    139 A. Ponzio, S. Kalisz, W. Blasiak. Effect of Operating Conditions On Tar and Gas Composition in High Temperature Air/Steam Gasification (Htag) of Plastic Containing Waste. 2006, 87(3): 223~233
    140 E. G. Baker, M. D. Brown, D. C. Elliott, L. K. Mudge. Characterization and Treatment of Tars and Biomass Gasifiers. 1988, : 21~24
    141 A. Jess. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons From Pyrolysis of Solid Fuels. 1996, 75(12): 1441~1448
    142 K. Maniatis, A. A. C. M. Beenackers. Tar Protocols. Iea Bioenergy Gasification Task. 2000, 18(1): 1~4
    143 C. Li, K. Suzuki. Tar Property,Analysis,Reforming,Mechanism and Model for Biomass Gasification-an Overview. 2009, 13(3): 594~604
    144陶文铨.数值计算传热学(第二版).西安交通大学出版社,2006:263~298
    145 S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Pub, 1980: 27~40
    146 D. L. Pyle, C. A. Zaror. Heat Transfer and Kinetics in the Low Temperature Pyrolysis of Solids. Name: Chem. Eng. Sci. 1984,
    147 A. I. van Berkel. Dynamics of Thermal Particle Conversion with Application to Biomass Conversion in a Circulating Fluidised Bed. Technische Universiteit Eindhoven (The Netherlands), , 2004: 1~201
    148 C. Diblasi. Heat, Momentum and Mass Transport through a Shrinking Biomass Particle Exposed to Thermal Radiation. 1996, 51(7): 1121~1132
    149冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算(第三版).科学出版社,2003:691
    150 M. G. Gronli, M. C. Melaaen. Mathematical Model for Wood Pyrolysis - Comparison of Experimental Measurements with Model Predictions. Energy & Fuels. 2000, 14(4): 791~800
    151 M. C. Melaaen. Numerical Analysis of Heat and Mass Transfer in Drying and Pyrolysisof Porous Media. Numerical Heat Transfer, Part A: Applications. 1996, 29(4): 331~355
    152 M. J. Hagge, K. M. Bryden. Modeling the Impact of Shrinkage On the Pyrolysis of Dry Biomass. 2002, 57(14): 2811~2823
    153 E. J. Kansa, H. E. Perlee, R. F. Chaiken. Mathematical Model of Wood Pyrolysis Including Internal Forced Convection. Combustion and Flame. 1977, 29(3): 311~324
    154 C. Di Blasi. Modelling the Fast Pyrolysis of Cellulosic Particles in Fluid-Bed Reactors. Chemical Engineering Science. 2000, 55(24): 5999~6013
    155 A. Sharma, T. R. Rao. Analysis of an Annular Finned Pyrolyser. Energy Conversion and Management. 1998, 39(10): 985~997
    156 C. K. Lee, R. F. Chaiken, J. M. Singer. Charring Pyrolysis of Wood in Fires by Laser Simulation. Symposium (International) on Combustion. 1976, 16(1): 1459~1470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700