用户名: 密码: 验证码:
聚乙二醇化新型集成干扰素生物处置过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙二醇化(PEG)新型集成干扰素(PEG-IFN-SA)属生物技术创新药物,临床用于治疗慢性丙型肝炎病毒感染。本文首次研究PEG-IFN-SA的非临床和临床药代动力学(PK)/药效动力学(PD)的生物处置过程。
     本研究基于生物技术药物特点,建立并采用多种定量分析方法,即放射免疫、酶联免疫、生物活性和~(125)I标记同位素示踪等,研究动物和健康志愿者单次皮下注射(s.c.)PEG-IFN-SA的药代动力学、药效动力学、组织分布与排泄,体内抗病毒活性及PK/PD作用关系。研究包括:猕猴和大鼠PK特征;食蟹猴体内抗病毒活性;豚鼠组织分布和尿、粪及胆汁排泄模式;健康人体剂量-浓度-效应间的PK/PD相关性分析。
     非临床研究表明,与非PEG化IFN-SA相比,PEG-IFN-SA在猕猴和大鼠体内平均消除半衰期t1/2分别延长12倍和15倍;清除率CL降低100倍和10倍;达峰时间T_(max)增加100倍和10倍。大鼠s.c. PEG-IFN-SA(7,14和28μg/kg)后,峰浓度C_(max)和药时曲线下面积AUC随剂量增加呈更大比例增大,CL随剂量增大而降低;T_(max)和t_(1/2β)与剂量呈非相关;相同剂量下的PEG-IFN-SA较IFN-SA的AUC增加8倍,C_(max)降低近1倍。食蟹猴体内血清PEG-IFN-SA(10,30和90μg/kg)抗病毒活性呈剂量依赖性增加,且能维持一周。~(125)I-PEG-IFN-SA在豚鼠体内被分布到大多数受检脏器组织中,并呈靶向特异性分布,以脾和肾脏的含药量最高;尿排泄是PEG-IFN-SA的主要排泄途径。
     临床研究显示,健康志愿者皮下给予PEG-IFN-SA的PK参数t_(1/2β)为51h;与阳性对照药派罗欣比,PEG-IFN-SA的T_(max)提前和CL增大;PEG-IFN-SA诱导的3个生物标志物(2’,5’-OAS,新碟呤和β2微球蛋白)的PD参数T_(max)均滞后于PK参数的T_(max)。PK/PD特征分析提示,随血药浓度升高,体内药效学作用也随之增强,且体内有效药物浓度和其诱导的抗病毒作用至少持续一周。另外,PEG-IFN-SA(1,1.5和2μg/kg)诱导体内2’,5’-OAS的Cmax(2,5-A)和AUC(2,5-A)与剂量呈依赖性增加。
     根据本文研究结果,可以得到如下结论:PEG化后的IFN-SA确实能改善和提高PK/PD特性,延长半衰期,降低清除率,增加暴露量,减小血清峰-谷浓度比率,延缓药物体内作用时间,具有长效作用。
A novel pegylated consensus interferon (PEG-IFN-SA), investigated in thispaper, is a biotech drug for the treatment of chronic hepatitis C virus infections.Thisstudy first evaluated the biological disposition of non-clinical and clinical pharmaco-kinetics (PK)/pharmacodynamics (PD) of PEG-IFN-SA
     In this study, based on characteristic of biotech drugs, multiple quantitativebioanalytical methods, including radioimmunoassay (RIA), enzyme linkedimmunosorbent assay (ELISA), bioassay, and radioactive isotope trace assay, wereestablished and employed. The purpose of this series of studies was to characterize thepharmacokinetic, pharmacodynamic, tissue distribution, excretion, and antiviralefficacy properties, and PK-PD relationship of PEG-IFN-SA following a singlesubcutaneous administration to monkeys, rat, guinea pigs and healthy volunteers,thereby providing critical information for human health risk assessment. Studiesincluded:(1) pharmacokinetic properties of PEG-IFN-SA and comparison with thoseof non-pegylated consensus interferon (IFN-SA) in rhesus monkeys and rats;(2)antiviral activity assessment of PEG-IFN-SA in cynomolgus monkeys;(3) tissuedistribution and urinary, fecal, and biliary excretion patterns of~(125)I-PEG-IFN-SA inguinea pigs; and (4) pharmacokinetic and pharmacodynamic profiles of PEG-IFN-SAin healthy volunteers.
     The pegylated protein exhibited improved pharmacokinetic properties comparedto IFN-SA in both monkeys and rats, with a12-fold and15-fold increase inelimination half life, and a100-fold and10-fold decrease in serum clearance (CL), aswell as a2.5-fold and10-fold increase in the time to reach peak serum concentration(T_(max)), respectively. In rats treated with PEG-IFN-SA following single s.c.administration at doses of7,14, and28μg/kg, a greater than proportional increase inboth Cmaxand AUC for PEG-IFN-SA was observed with increasing dose, while therate of clearance decreased. Both T_(max)and t_(1/2β)did not display markedly dosedependence. Compared with IFN-SA at an identical dose, AUC of PEG-IFN-SA wasapproximately8-fold greater, while Cmaxwas approximately half that of IFN-SA.Serum sample analysis from PEG-IFN-SA-treated monkeys at doses of10,30, and90μg/kg showed dose dependent antiviral activity for at least one week. ~(125)I-PEG-IFN-SA was found to be distributed to most of the tissues examined and hascharacter of targeting special distribution. The highest radioactivity levels weredetected in the spleen and kidney. Urinary appeared to be a major route for theexcretion of PEG-IFN-SA in guinea pigs.
     In healthy volunteers, the mean serum PEG-IFN-SA elimination half-life was51h. T_(max)of PEG-IFN-SA occurred at a earlier time and clearance was greater relativeto Pegasys. The characteristic analysis of PK/PD suggested PEG-IFN-SA-inducedserum2’,5’-oligoadenylate synthetase (2’,5’-OAS) activity, Neopterin and β2microglobulin concentration, three classic biomarkers for PEG-IFN-SA pharmaco-dynamics, were enhanced with increasing drug concentration, and sustained-efficacyof in vivo antiviral action for at least one week. T_(max)(2,5-A),T_(max)(Neopterin)and T_(max)(β2M)ofthree classic biomarkers were achieved much later in comparison with T_(max)of serumdrugs concentration. In additon, PEG-IFN-SA induced dose-depended increases inhuman serum2’,5’-OAS activity.
     These findings demonstrate that pegylation of IFN-SA results in more desirablepharmacokinetic and pharmacodynamic properties, prolonged biological half-life,decreased system clearance, enhanced drug exposure, reduced serum peak-to-troughconcentration ratio and increased in vivo duration of antiviral efficacy compared tounmodified IFN-SA.
引文
[1] Hou F, Liu K, Shen T, et al. Antiviral activity of rChIFN-α against vesicularstomatitis virus and Newcastle disease virus: a novel recombinant chickeninterferon-α showed high antiviral activity. Res Vet Sci.2011,91(3):73-79.
    [2] Jahic M, Gustavsson M, Jansen AK, et al. Analysis and control of proteolysis ofa fusion protein in Pichia pastoris fed-batch processes. J Biotechnol.2003,102(1):45-53.
    [3] Hung CH, Kuo FY, Wang JH, et al. Impact of steatosis on long-term histologicaloutcome in chronic hepatitis C after antiviral therapy Antivir Ther.2006,11(4):483-489.
    [4] Mallick AI, Haq K, Brisbin JT, et al. Assessment of bioactivity of a recombinantchicken interferon-gamma expressed using a baculovirus expression system. JInterferon Cytokine Res.2011,31(6):493-500.
    [5] Cummins JM, Krakowka GS, Thompson CG. Systemic effects of interferonsafter oral administration in animals and humans. Am J Vet Res.2005,66(1):164-176.
    [6] Ceaglio N, Etcheverrigaray M, Conradt HS, et al. Highly glycosylated humanalpha interferon: An insight into a new therapeutic candidate. J Biotechnol2010,146(1-2):74-83.
    [7] Gutterman JU. Cytokine therapeutics: lessons from interferon alpha. Proc NatlAcad Sci U S A.1994,91(4):1198-1205.
    [8] Farrell GC, Bacon BR, Goldin RD. Lymphoblastoid interferon alfa-n1improvesthe long-term response to a6-month course of treatment in chronic hepatitis Ccompared with recombinant interferon alfa-2b: results of an internationalrandomized controlled trial. Clinical Advisory Group for the Hepatitis CComparative Study. Hepatology.1998,27(4):1121-1127.
    [9] Negrier S, Escudier B, Lasset C, et al. Recombinant human interleukin-2,recombinant human interferon alfa-2a, or both in metastatic renal-cellcarcinoma. Groupe Francais d'Immunotherapie. N Engl J Med.1998,338(18):1272-1278.
    [10] Zhang SY, Boisson-Dupuis S, Chapgier A, et al. Inborn errors of interferon(IFN)-mediated immunity in humans: insights into the respective roles ofIFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev.2008,226:29-40.
    [11] Leib DA, Harrison TE, Laslo KM, et al. Interferons regulate the phenotype ofwild-type and mutant herpes simplex viruses in vivo. J Exp Med.1999,189(4):663-672.
    [12] Wang YS, Youngster S, Grace M, et al. Structural and biologicalcharacterization of pegylated recombinant interferon alpha-2b and itstherapeutic implications. Adv Drug Deliv Rev.2002,54(4):547-570.
    [13] Shechter Y, Preciado-Patt L, Schreiber G, et al. Prolonging the half-life ofhuman interferon-alpha2in circulation: Design, preparation, and analysis of(2-sulfo-9-fluoreny-lmethoxycarbonyl)7-interferon-alpha2. Proc Natl Acad SciU S A.2001,98(3):1212-1217.
    [14] Liang TJ, Rehermann B, Seeff LB, et al. Pathogenesis, natural history, treatment,and prevention of hepatitis C. Ann Intern Med.2000,132(4):296-305.
    [15] Tong MJ, Reddy KR, Lee WM, et al. Treatment of chronic hepatitis C withconsensus interferon: amulticenter, randomized, controlled trial. Hepatology.1997,26(3):747-754.
    [16] Ryan SM, Mantovani G, Wang X, et al. Advances in PEGylation of importantbiotech molecules: delivery aspects. Expert Opin Drug Deliv.2008,5(4):371-383.
    [17] Bailon P, Won CY. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv.2009,6(1):1-16.
    [18] Mehvar R. Modulation of the pharmacokinetics and pharmacodynamics ofproteins by polyethylene glycol conjugation. J Pharm Pharm Sci.2000,3(1):125-136.
    [19] Bansal R, Post E, Proost JH, et al. PEGylation improves pharmacokineticprofile, liver uptake and efficacy of Interferon gamma in liver fibrosis. J ControlRelease.2011,154(3):233-240.
    [20] Veronese FM, Mero A. The impact of PEGylation on biological therapies.BioDrugs.2008,22(5):315-329.
    [21] Carter, PJ. Potent antibody therapeutics by design. Nat Rev Immunol.2006,6(5):343-357.
    [22] Hoogenboom HR. Selecting and screening recombinant antibody libraries. NatBiotechnol.2005,23(9):1105-1116.
    [23] Moreno-Otero R. Therapeutic modalities in hepatitis C: challenges anddevelopment. J Viral Hepat.2005,12(1):10-19.
    [24] Lindh M, Uhnoo I, Bl ckberg J, et al. Treatment of chronic hepatitis B infection:an update of Swedish recommendations. Scand J Infect Dis.2008,40(6-7):436-450.
    [25]刘昌孝,药物评价学:北京:化学工业出版社,2005.
    [26] Ferguson MC. Current therapies for chronic hepatitis C. Pharmacotherapy.2011,31(1):92-111.
    [27] Fabrizi F, Lunghi G, Ganeshan SV, et al. Hepatitis C virus infection and thedialysis patient. Semin Dial.2007,20(5):416-422.
    [28] Ferenci P. Peginterferon alfa-2a (40KD)(Pegasys) for the treatment of patientswith chronic hepatitis C. Int J Clin Pract.2003,57(7):610-615.
    [29] Robins GW, Scott LJ. Keating GM. Peginterferon-alpha-2a (40kD): a review ofits use in the management of patients with chronic hepatitis B. Drugs.2005,65(6):809-825.
    [30] Ramon J, Saez V, Baez R, et al. PEGylated interferon-alpha2b: a branched40Kpolyethylene glycol derivative. Pharm Res.2005,22(8):1374-1386.
    [31]刘昌孝.聚乙二醇干扰素α研究的新进展:聚乙二醇化技术.中国临床医学.2004,11(3):25-27.
    [32] Comai S, Cavalletto L, Chemello L, et al. Effects of PEG-interferon alpha plusribavirin on tryptophan metabolism in patients with chronic hepatitis C.Pharmacol Res.2011,63(1):85-92.
    [33] Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med.2001,345(1):41-52.
    [34] Armstrong GL, Wasley A, Simard EP, et al. The prevalence of hepatitis C virusinfection in the United States,1999through2002. Ann Intern Med.2006,144(10):705-714.
    [35] Irving WL, Salmon D, Boucher C, et al. Acute hepatitis C virus infection. EuroSurveill.2008,13(21): pii:18879.
    [36] Chevaliez S, Pawlotsky JM. Hepatitis C virus: virology, diagnosis andmanagement of antiviral therapy. World J Gastroenterol.2007,13(17):2461-2466.
    [37] Kamat A, Misra V, Cassol E, et al. A Plasma Biomarker Signature of ImmuneActivation in HIV Patients on Antiretroviral Therapy. PLoS One.2012,7(2):e30881.
    [38] Ceaglio N, Etcheverrigaray M, Kratje R, et al. Influence of carbohydrates on thestability and structure of a hyperglycosylated human interferon alpha mutein.Biochimie.2010,92(8):971-978.
    [39] Kumaki Y, Ennis J, Rahbar R, et al. Single-dose intranasal administration withmDEF201(adenovirus vectored mouse interferon-alpha) confers protectionfrom mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res.2011,89(1):75-82.
    [40] Brassard DL, Grace MJ, Bordens RW. Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol.2002,71(4):565-581.
    [41] Sulkowski MS, Cooper C, Hunyady B, et al. Management of adverse effects ofPeg-IFN and ribavirin therapy for hepatitis C. Nat Rev Gastroenterol Hepatol.2011,8(4):212-223.
    [42] Gutkowski K, Gutkowska D, Bilkiewicz T. Interferon therapy in chronic viralhepatitis; an autoimmunity dilemma. Przegl Lek.2007,64(3):148-152.
    [43] Thitinan S, McConville JT. Interferon alpha delivery systems for the treatmentof hepatitis C. Int J Pharm.2009,369(1-2):121-135.
    [44] Davis GL, Krawczynski K, Szabo G. Hepatitis C virus infection-pathobiologyand implications for new therapeutic options. Dig Dis Sci.2007,52(4):857-875.
    [45] Melian EB, Plosker GL. Interferon alfacon-1: a review of its pharmacology andtherapeutic efficacy in the treatment of chronic hepatitis C. Drugs.2001,61(11):1661-1691.
    [46] Munir S, Saleem S, Idrees M, et al. Hepatitis C treatment: current and futureperspectives. Virol J.2010,7:296.
    [47] Blatt LM, Davis JM, Klein SB, et al. The biologic activity and molecularcharacterization of a novel synthetic interferon-alpha species, consensusinterferon. J. Interferon Cytokine Res.1996,16(7):489-499.
    [48] Bell SJ, Fam CM, Chlipala EA, et al. Enhanced circulating half-life andantitumor activity of a sitespecific pegylated interferon-alpha protein therapeutic.Bioconjug Chem.2008,19(1):299-305.
    [49] Bethesda MD. AHFS Drug Information. American Society of Health-SystemPharmacists.2007.
    [50] Lindsay KL, Trepo C, Heintges T, et al. A randomized, double-blind trialcomparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatmentfor chronic hepatitis C. Hepatology.2001,34(2):395-403.
    [51] McHutchison JG, Gordon SC, Schiff ER, et al. Interferon alfa-2b alone or incombination with ribavirin as initial treatment for chronic hepatitis C. HepatitisInterventional Therapy Group. N Engl J Med.1998,339(21):1485-1492.
    [52] Poynard T, Marcellin P, Lee SS, et al. Randomised trial of interferon alpha2bplus ribavirin for48weeks or for24weeks versus interferon alpha2b plusplacebo for48weeks for treatment of chronic infection with hepatitis C virus.International Hepatitis Interventional Therapy Group (IHIT). Lancet.1998,352(9138):1426-1432.
    [53] Sjogren MH, Sjogren R, Holtzmuller K, et al. Interferon alfacon-1and ribavirinversus interferon alpha-2b and ribavirin in the treatment of chronic hepatitis C.Dig Dis Sci.2005,50(4):727-732.
    [54] Zeuzem S, Teuber G, Naumann U, et al. Randomized, double-blind, placebo-controlled trial of interferon alfa2a with and without amantadine as initialtreatment for chronic hepatitis C. Hepatology.2000,32(4Pt1):835-841.
    [55] Alberti A. Interferon alfacon-1: a novel interferon for the treatment of chronichepatitis C. BioDrugs.1999,12(5):343-357.
    [56] Moore CM, George M, Van Thiel DH. Consensus interferon used to treat priorpartial-responders to pegylated interferon plus ribavirin. Dig Dis Sci.2011,56(10):3032-3037.
    [57] Gonzalez, SA. Consensus interferon: tailored therapy and the impact ofadherence. Dig Dis Sci.2011,56(3):631-634.
    [58] Chary A, Holodniy M. Interferon combination therapy for HIV/hepatitis C viruscoinfection. Immunotherapy.2011,3(9):1087-1102.
    [59] Keeffe EB, Hollinger FB. Therapy of hepatitis C: consensus interferon trials.Consensus Interferon Study Group. Hepatology.1997,26(3Suppl1):101S-107S.
    [60] Lo GH. Re-treating chronic hepatitis C with daily interferon alfacon-1/ribavirinafter nonresponse to pegylated interferon/ribavirin: really safe and effective?Hepatology.2009,50(3):988-989.
    [61] Radwanski E, Perentesis G, Jacobs S, et al. Pharmacokinetics of interferonalpha-2b in healthy volunteers. J Clin Pharmacol.1987,27(5):432-435.
    [62] Wills RJ, Dennis S, Spiegel HE. Interferon kinetics and adverse reactions afterintravenous, intramuscular, and subcutaneous injection. Clin Pharmacol Ther.1984,35(5):722-727.
    [63] Yang BB, Lum PK, Hayashi MM, et al. Polyethylene glycol modification offilgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci.2004,93(5):1367-1373.
    [64] Perry CM, Wilde MI. Interferon-alpha-2a: a review of its use in chronichepatitis C. BioDrugs.1998,10(1):65-89.
    [65] Schenker S, Cutler D, Finch J, et al. Activity and tolerance of a continuoussubcutaneous infusion of interferon-alpha2b in patients with chronic hepatitis C.J Interferon Cytokine Res.1997,17(11):665-670.
    [66] Kleppinger EL, Ragan AP. Elevated hepatic transaminases associated with theuse of interferon alfacon-1and ribavirin. Am J Health Syst Pharm.2009,65(5):465-468.
    [67] Hass HG, Klein R, Nehls O, et al. Thyroid disorders and occurrence ofnonorgan-specific autoantibodies (NOSA) in patients with chronic hepatitis Cbefore and during antiviral induction therapy with consensus interferon(interferon alfacon-1). J Clin Gastroenterol.2009,43(5):470-476.
    [68] Abuchowsld A, van Es T, Palczuk NC, et al. Alteration of immunologicalproperties of bovine serum albumin by covalent attachment of polyethyleneglycol. J Biol Chern.1977,252(11):3578-3581.
    [69]梅兴国,生物技术药物制剂——基础与应用:北京:化学工业出版社,2004.
    [70] Greenwald RB, Choe YH, McGuire J, et al. Effective drug delivery byPEGylated drug conjugates. Adv Drug Deliv Rev.2003,55(2):217-250.
    [71] Molineux G. Pegylation: engineering improved biopharmaceuticals foroncology. Pharmacotherapy.2003,23(8Pt2):3S-8S.
    [72] Ryan SM, Frías JM, Wang X, et al. PK/PD modelling of comb-shapedPEGylated salmon calcitonin conjugates of differing molecular weights. JControl Release.2011,149(2):126-132.
    [73] Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. DrugDiscov Today.2005,10(21):1451-1458.
    [74] Su YC, Chen BM, Chuang KH, et al. Sensitive quantification of PEGylatedcompounds by second-generation anti-poly(ethylene glycol) monoclonalantibodies. Bioconjug Chem.2010,21(7):1264-1270.
    [75] Fee CJ, Van Alstine JM. Purification of pegylated proteins. Methods BiochemAnal.2011,54:339-362.
    [76] Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins.Biotechnol J.2010,5(1):113-128.
    [77] Zeuzem S, Welsch C, Herrmann E. Pharmacokinetics of peginterferons. SeminLiver Dis.2003,23(Suppl1):23-28.
    [78] Fee CJ, Van Alstine JM. PEG-proteins: Reaction engineering and separationissues. Chemical Engineering Science.2006,61:924-939.
    [79] Glue P, Fang JW, Rouzier-Panis R, et al. Pegylated interferon-alpha2b:pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data.Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther.2000,68(5):556-567.
    [80] Mezo AR, Low SC, Hoehn T, et al. PEGylation enhances the therapeuticpotential of peptide antagonists of the neonatal Fc receptor, FcRn. Bioorg MedChem Lett.2011,21(21):6332-6335.
    [81] Greenwald RB. PEG drugs: an overview. J Control Release.2001,74(1-3):159-171.
    [82] Heathcote EJ, Shiffman ML, Cooksley WG, et al. Peginterferon alfa-2a inpatients with chronic hepatitis C and cirrhosis. N Engl J Med.2000,343(23):1673-1680.
    [83] Reddy KR, Wright TL, Pockros PJ, et al. Efficacy and safety of pegylated(40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhoticpatients with chronic hepatitis C. Hepatology.2001,33(2):433-438.
    [84] Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plusribavirin compared with interferon alfa-2b plus ribavirin for initial treatment ofchronic hepatitis C: a randomised trial. Lancet.2001,358(9286):958-965.
    [85] Goffin V, Touraine P. Pegvisomant. Pharmacia. Curr Opin Investig Drugs.2002,3(5):752-757.
    [86] Schreiber S, Khaliq-Kareemi M, Lawrance IC, et al. Maintenance therapy withcertolizumab pegol for Crohn's disease. N Engl J Med.2007,357(3):239-250.
    [87] Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des.2004,10(11):1235-1244.
    [88] Lyman GH. Pegfilgrastim: a granulocyte colony-stimulating factor withsustained duration of action. Expert Opin Biol Ther.2005,5(12):1635-1646.
    [89] Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma:a randomized phase III study of pegylated liposomal doxorubicin versustopotecan. J Clin Oncol.2001,19(14):3312-3322.
    [90] Park JW. Liposome-based drug delivery in breast cancer treatment. BreastCancer Res.2002,4(3):95-99.
    [91] Webster R, Didier E, Harris P, et al. PEGylated proteins: evaluation of theirsafety in the absence of definitive metabolism studies Drug Metab Dispos.2007,35(1):9-16.
    [92] Hunt DF, Giordani AB, Rhodes G, et al. Mixture analysis by triple-quadrupolemass spectrometry: metabolic profiling of urinary carboxylic acids. Clin Chem.1982,28(12):2387-2392.
    [93] Friman S, Egestad B, Sj vall J, et al. Hepatic excretion and metabolism ofpolyethylene glycols and mannitol in the cat. J Hepatol.1993,17(1):48-55.
    [94] Friman S, Leandersson P, Tagesson C, et al. Biliary excretion of different sizedpolyethylene glycols in the cat. J Hepatol.1990,11(2):215-220.
    [95]刘昌孝,蔡永明.聚乙二醇化蛋白类药物的药代动力学.解放军药学学报.2012,28(1):1-5.
    [96] Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethyleneglycol) with different molecular weights after intravenous administration tomice. J Pharm Sci.1994,83(4):601-606.
    [97] Friman S, Svanvik J. Biliary excretion of400-to1,000-d polyethylene glycolwill influence the calculation of small intestinal absorption in portacaval-shunted rats. Hepatology.1997,25(2):500.
    [98] Caliceti P. Pharmacokinetics of pegylated interferons: what is misleading. DigLiver Dis.2004,36(Suppl3):S334-339.
    [99] Luxon BA, Grace M, Brassard D, et al. Pegylated interferons for the treatmentof chronic hepatitis C infection. Clin Ther.2002,24(9):1363-1383.
    [100]徐道振,谢尧,陆志檬,等.聚乙二醇干扰素α-2a与干扰素α-2a治疗慢性丙型肝炎疗效、安全性的评估.中华传染病杂志.2004,22(4):221-224.
    [101]罗端德,易建华,蔡淑清,等.聚乙二醇干扰素α-2b联合利巴韦林治疗慢性丙型肝炎的随机对照临床研究.中华传染病杂志.2006,24(3):175-178.
    [102] Zappe H, Snell ME, Bossard MJ. PEGylation of cyanovirin-N, an entryinhibitor of HIV. Adv Drug Deliv Rev.2008,60(1):79-87.
    [103] Forde KA, Reddy KR. Hepatitis C virus infection and immunomodulatorytherapies. Clin Liver Dis.2009,13(3):391-401.
    [104] Luo S, Cassidy W, Jeffers L, et al. Interferon-stimulated gene expression inblack and white hepatitis C patients during peginterferon alfa-2a combinationtherapy. Clin Gastroenterol Hepatol.2005,3(5):499-506.
    [105] Angelico M, Koehler-Horst B, Piccolo P, et al. Peginterferon alpha-2a andribavirin versus peginterferon alpha-2a monotherapy in early virologicalresponders and peginterferon alpha-2a and ribavirin versus peginterferonalpha-2a, ribavirin and amantadine triple therapy in early virologicalnonresponders: the SMIEC II trial in na ve patients with chronic hepatitis C. EurJ Gastroenterol Hepatol.2008,20(7):680-687.
    [106] Sweetman SE. The complete drug reference. London: Martindale, ElectronicVersion. Pharmaceutical Press.2008.
    [107] Gilbert CW, Park-Cho M. Interferon polymer conjugates.1997. U.S.5,951,974.
    [108] Bailon P, Palleroni A, Schaffer CA, et al. Rational design of a potent,long-lasting form of interferon: a40kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem.2001,12(2):195-202.
    [109] Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifyingpharmacokinetics. Clin Pharmacokinet.2001,40(7):539-551.
    [110] Zeuzem S, Feinman SV, Rasenack J, et al. Peginterferon alfa-2a in patients withchronic hepatitis C. N Engl J Med.2000,343(23):1666-1672.
    [111] Lok AS, Gardiner DF, Lawitz E, et al. Preliminary study of two antiviral agentsfor hepatitis C genotype1. N Engl J Med.2012,366(3):216-224.
    [112] Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirinfor chronic hepatitis C virusinfection. N. Engl. J. Med.2002,347:975-982.
    [113] Pess a MG, Cheinquer H, Almeida PR, et al. Re-treatment of previousnon-responders and relapsers to interferon plus ribavirin with peginterferonalfa-2a (40KD), ribavirin±amantadine in patients with chronic hepatitis C:randomized multicentre clinical trial. Ann Hepatol.2012,11(1):52-61.
    [114] Nelson DR, Zeuzem S, Andreone P, et al. Balapiravir plus peginterferon alfa-2a(40KD)/ribavirin in a randomized trial of hepatitis C genotype1patients. AnnHepatol.2012,11(1):15-31.
    [115] Mangia A, Ricci GL, Persico M, et al. A randomized controlled trial ofpegylated interferon alpha-2a (40KD) or interferon alpha-2a plus ribavirin andamantadine vs interferon alpha-2a and ribavirin in treatment-na ve patients withchronic hepatitis C. J Viral Hepat.2005,12(3):292-299.
    [116] Hadziyannis SJ, Sette H Jr, Morgan TR, et al. Peginterferon-alpha2a andribavirin combination therapy in chronic hepatitis C: a randomized study oftreatment duration and ribavirin dose. Ann Intern Med.2004,140(2):346-355.
    [117] Gaertner HF, Offord RE. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjug Chem.1996,7(1):38-44.
    [118] Jo YW, Youn YS, Lee SH, et al. Long-acting interferon-alpha2a modified witha trimer-structured polyethylene glycol: preparation, in vitro bioactivity, in vivostability and pharmacokinetics. Int J Pharm.2006,309(1-2):87-93.
    [119] Keating GM, Curran MP. Peginterferon-alpha-2a (40kD) plus ribavirin: areview of its use in the management of chronic hepatitis C. Drugs.2003,63(7):701-730.
    [120] Parise E, Cheinquer H, Crespo D, et al. Peginterferon alfa-2a (40KD)(PEGASYS) plus ribavirin (COPEGUS) in retreatment of chronic hepatitis Cpatients, nonresponders and relapsers to previous conventional interferon plusribavirin therapy. Braz J Infect Dis.2006,10(1):11-16.
    [121] Al-Ali J, Siddique I, Varghese R. Pegylated interferon-alpha2b plus ribavirin forthe treatment of chronic hepatitis C virus genotype4infection in patients withnormal serum ALT. Ann Hepatol.2012,11(2):186-193.
    [122] Wright M, Grieve R, Roberts J, et al. Health benefits of antiviral therapy formild chronic hepatitis C: randomised controlled trial and economic evaluation.Health Technol Assess.2006,10(21):1-113, iii.
    [123] Al Ali J, Owayed S, Al-Qabandi W, et al. Pegylated interferon alfa-2b plusribavirin for the treatment of chronic hepatitis C genotype4in adolescents. AnnHepatol.2010,9(2):156-160.
    [124] Kanda T, Yokosuka O. Pegylated interferon-alfa plus ribavirin therapies forchronic hepatitis C. JNMA J Nepal Med Assoc.201151(181):41-48.
    [125] Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. AnnuRev Biochem.1998,67:227-264.
    [126] Xu D, Erickson S, Szeps M, et al. Interferon alpha down-regulates telomerasereverse transcriptase and telomerase activity in human malignant andnonmalignant hematopoietic cells. Blood.2000,96(13):4313-4318.
    [127] Putnam WS, Prabhu S, Zheng Y, et al. Pharmacokinetic, pharmacodynamic andimmunogenicity comparability assessment strategies for monoclonal antibodies.Trends Biotechnol.2010,28(10):509-516.
    [128] Danhof M, de Lange EC, Della Pasqua OE, et al. Mechanism-basedpharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drugresearch. Trends Pharmacol Sci.2008,29(4):186-191.
    [129] Ploeger BA, van der Graaf PH, Danhof M. Incorporating receptor theory inmechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. DrugMetab Pharmacokinet.2009,24(1):3-15.
    [130] Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drugproduct development. J Pharm Sci.2002,91(1):18-31.
    [131] Gieschke R, Steimer JL. Pharmacometrics: modelling and simulation tools toimprove decision making in clinical drug development. Eur J Drug MetabPharmacokinet.2000,25(1):49-58.
    [132] Rajman I. PK/PD modelling and simulations: utility in drug development. DrugDiscov Today.2008,13(7-8):341-346.
    [133] Breimer DD. PK/PD modelling and beyond: impact on drug development.Pharm Res.2008,25(12):2720-2722.
    [134] Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biote-chnology products. J Pharm Sci.2004,93(9):2184-2204.
    [135] Lin, JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonalantibodies. Curr Drug Metab.2009,10(7):661-691.
    [136] Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmaco-dynamic (PK/PD) modelling. Int J Clin Pharmacol Ther.1997,35(10):401-413.
    [137] Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic(PK/PD) relationships: concepts and perspectives. Pharm Res.1999,16(2):176-185.
    [138] Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther.1982,16:143-166.
    [139] Steimer JL, Ebelin ME, Van Bree J. Pharmacokinetic and pharmacodynamicdata and models in clinical trials. Eur J Drug Metab Pharmacokinet.1993,18(1):61-76.
    [140] Curtis G, Colburn W, Heath G, et al. Faster Drug Development. Appl.Clin.Trials.2000,9:52-55.
    [141] Sheiner L, Wakefield J. Population modelling in drug development. StatMethods Med Res.1999,8(3):183-193.
    [142] Ing Lorenzini K, Daali Y, Dayer P, et al.. Pharmacokinetic-PharmacodynamicModelling of Opioids in Healthy Human Volunteers. A MiniReview. Basic ClinPharmacol Toxicol.2012,110(3):219-226.
    [143] Sheiner LB. Learning versus confirming in clinical drug development. Clin.Pharmacol. Ther.1997,61:275-291.
    [144] Bruno R, Sacchi P, Cima S, et al. Comparison of peginterferon pharmacokineticand pharmacodynamic profiles. J Viral Hepat.2012,19(Suppl1):33-36.
    [145]仝文斌,张春英,孙焱,等.慢性丙型肝炎患者(2',5')寡腺昔酸合成酶的活性测定.北京医科大学学报.1996,28(6):410-412.
    [146]张学文,章怀云.干扰素诱导细胞抗病毒的分子机制.湖南农业大学学报(自然科学版).2001,27(1):79-83.
    [147]潘宜人,昊南屏.慢性乙型肝炎2',5'-寡腺苷酸合成酶活性与干扰素疗效的关系.临床肝胆病杂志.2001,17(2):95-96.
    [148] Noureddin M, Ghany MG. Pharmacokinetics and pharmacodynamics ofpeginterferon and ribavirin: implications for clinical efficacy in the treatment ofchronic hepatitis C. Gastroenterol Clin North Am.2010,39(3):649-658.
    [149] Kurz K, Gluhcheva Y, Zvetkova E, et al. Interferon-gamma-mediated pathwaysare induced in human CD34(+)haematopoietic stem cells. Immunobiology.2010,215(6):452-457.
    [150] Van Gool AR, Fekkes D, Kruit WH, et al. Serum amino acids, biopterin andneopterin during long-term immunotherapy with interferon-alpha in high-riskmelanoma patients. Psychiatry Res.2003,119(1-2):125-132.
    [151] Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat RevImmunol.2008,8:559-568.
    [152]Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance,and tumor immune escape. J Cell Physiol.2003,195:346-355.
    [153] Murr C, Widner B, Wirleitner B, et al. Neopterin as a marker for immunesystem activation. Curr Drug Metab.2002,3:175-187.
    [154] García-García I, González-Delgado CA, Valenzuela-Silva CM, et al. Pharmaco-kinetic and pharmacodynamic comparison of two "pegylated" interferon alpha-2formulations in healthy male volunteers: a randomized, crossover, double-blindstudy. BMC Pharmacol.2010,10:15.
    [155] Cano OD, Neurauter G, Fuchs D, et al. Differential effect of type I and type IIinterferons on neopterin production and amino acid metabolism in humanastrocyte-derived cells. Neurosci Lett.2008,438(1):22-25.
    [156] Jensen DM, Krawitt EL, Keeffe EB, et al. Biochemical and viral response toconsensus interferon (CIFN) therapy in chronic hepatitis C patients: effect ofbaseline viral concentration. Consensus Interferon Study Group. Am JGastroenterol.1999,94(12):3583-3588.
    [157] Du Y, Tian H, Gao XD, et al. Pharmacokinetic properties of a40kDa branchedpolyethylene glycol-modified form of consensus interferon-alpha (PEG-CIFN)in rhesus monkeys. Biopharm Drug Dispos.2008,29(8):481-484.
    [158] Cao J, Du Y, Tian H, et al. Quantitative determination of pegylated consensusinterferon in rhesus monkey serum using a competitive enzyme-linkedimmuno-sorbent assay. Immunopharmacol Immunotoxicol.2009,31(4):543-549.
    [159] Bruno R, Sacchi P, Ciappina V, et al. Viral dynamics and pharmacokinetics ofpeginterferon alpha-2a and peginterferon alpha-2b in naive patients with chronichepatitis c: a randomized, controlled study. Antivir Ther.2004,9(4):491-497.
    [160] Gupta SK, Glue P, Jacobs S, et al. Single-dose pharmacokinetics and tolerabilityof pegylated interferon-alpha2b in young and elderly healthy subjects. Br J ClinPharmacol.2003,56(1):131-134.
    [161] McHutchison JG, Lawitz EJ, Shiffman ML, et al. Peginterferon alfa-2b oralfa-2a with ribavirin for treatment of hepatitis C infection. N Engl J Med.2009,361(6):580-593.
    [162] Adiwijaya BS, Kieffer TL, Henshaw J, et al. A viral dynamic model fortreatment regimens with direct-acting antivirals for chronic hepatitis C infection.PLoS Comput Biol.2012,8(1):e1002339.
    [163] Bukowski R, Ernstoff MS, Gore ME, et al. Pegylated interferon alfa-2btreatment for patients with solid tumors: a phase I/II study. J Clin Oncol.2002,20(18):3841-3849.
    [164] Motzer RJ, Rakhit A, Ginsberg M, et al. Phase I trial of40-kd branchedpegylated interferon alfa-2a for patients with advanced renal cell carcinoma. JClin Oncol.2001,19(5):1312-1319.
    [165] Motzer RJ, Rakhit A, Thompson J, et al. Phase II trial of branchedpeginterferon-alpha2a (40kDa) for patients with advanced renal cell carcinoma.Ann Oncol.2002,13(11):1799-1805.
    [166] Matthews SJ, McCoy C. Peginterferon alfa-2a: a review of approved andinvestigational uses. Clin Ther.2004,26(7):991-1025.
    [167] Perry CM, Jarvis B. Peginterferon-alpha-2a (40kD): a review of its use in themanagement of chronic hepatitis C. Drugs.2001,61(15):2263-2288.
    [168] Fishburn CS. The pharmacology of PEGylation: balancing PD with PK togenerate novel therapeutics. J Pharm Sci.2008,97(10):4167-4183.
    [169] Fee CJ. Size comparison between proteins PEGylated with branched and linearpoly (ethylene glycol) molecules. Biotechnol Bioeng.2007,98(4):725-731.
    [170] Vyas SP, Rawat M, Rawat A, et al. Pegylated protein encapsulatedmultivesicular liposomes: a novel approach for sustained release of interferonalpha. Drug Dev Ind Pharm.2002,32(6):699-707.
    [171] Pepinsky RB, LePage DJ, Gill A, et al. Improved pharmacokinetic properties ofa polyethylene glycol-modified form of interferon-beta-1a with preserved invitro bioactivity. J Pharmacol Exp Ther.2001,297(3):1059-1066.
    [172] Baker DP, Lin EY, Lin K, et al. N-terminally PEGylated human interferon-beta-1a with improved pharmacokinetic properties and in vivo efficacy in amelanoma angiogenesis model. Bioconjug Chem.2006,17(1):179-188.
    [173] Mager DE, Neuteboom B, Jusko WJ. Pharmacokinetics and pharmacodynamicsof PEGylated IFN-beta1a following subcutaneous administration in monkeys.Pharm Res.2005,22(1):58-61.
    [174] Yoshioka Y, Tsunoda S, Tsutsumi Y. Development of a novel DDS forsite-specific PEGylated proteins. Chem Cent J.2011,5:25.
    [175] Rosendahl MS, Doherty DH, Smith DJ, et al. A long-acting, highly potentinterferon alpha-2conjugate created using site-specific PEGylation. BioconjugChem.2005,16(1):200-207.
    [176] Boni-Mitake M, Costa H, Vassilieff VS, et al. Distribution of125I-labeledcrotamine in mice tissues. Toxicon.2006,48(5):550-555.
    [177] Hu Z, Niu H, Yang X, et al. Recombinant human parathyroid hormone1-34:pharmacokinetics, tissue distribution and excretion in rats. Int J Pharm.2006,317(2):144-154.
    [178]刘昌孝,钟大放,娄建石,等.实用药物动力学:北京:中国医药科技出版社,2003.
    [179] Shin BS, Kim CH, Lee MN, et al. Pharmacokinetics of125I-GST-TatdMt, arecombinant fusion protein possessing potent anti-obesity activity, afterintravenous, nasal, oral, and subcutaneous administration. Regul Pept.2007,140(1-2):74-80.
    [180] Shin BS, Kim CH, Jun YS, et al. Dose-linear pharmacokinetics, tissuedistribution, and excretion of a recombinant fusion protein125I-GST-TatdMtpossessing potent anti-obesity activity. Regul Pept.2005,129(1-3):25-30.
    [181] Uchida T, Aoyama K, Mori K, et al. Pharmacokinetics of [125I]-recombinanthuman interleukin-11:1. Absorption, distribution and excretion aftersubcutaneous administration to male rats. Eur J Drug Metab Pharmacokinet.1998,23(3):403-410.
    [182] Fox JA, Hotaling TE, Struble C, et al. Tissue distribution and complexformation with IgE of an anti-IgE antibody after intravenous administration incynomolgus monkeys.. J Pharmacol Exp Ther.1996,279(2):1000-1008.
    [183] Takagi A, Masuda H, Takakura Y, et al. Disposition characteristics ofrecombinant human interleukin-11after a bolus intravenous administration inmice. J Pharmacol Exp Ther.1995,275(2):537-543.
    [184] Liu YP, Li QS, Huang YR, et al. Tissue distribution and excretion of125I-lidamycin in mice and rats. World J Gastroenterol.2005,11(21):3281-3284.
    [185] Foster GR. Pegylated interferons for the treatment of chronic hepatitis C:pharmacological and clinical differences between peginterferon-alpha-2a andpeginterferon-alpha-2b. Drugs.2010,70(2):147-165.
    [186] Sixtos-Alonso MS, Sánchez-Mu oz F, Sánchez-ávila JF, et al. IFN-stimulatedgene expression is a useful potential molecular marker of response to antiviraltreatment with Peg-IFNα2b and ribavirin in patients with hepatitis C virusgenotype1. Arch Med Res.2011,42(1):28-33.
    [187] Ascione A, De Luca M, Tartaglione MT, et al. Peginterferon alfa-2a plusribavirin is more effective than peginterferon alfa-2b plus ribavirin for treatingchronic hepatitis C virus infection. Gastroenterology.2010,138(1):116-122.
    [188] Shepherd J, Brodin H, Cave C, et al. Pegylated interferon alpha-2a and-2b incombination with ribavirin in the treatment of chronic hepatitis C: a systematicreview and economic evaluation. Health Technol Assess.2004,8(39):iii-iv,1-125.
    [189] Asselah T, Marcellin P. New direct-acting antivirals' combination for thetreatment of chronic hepatitis C. Liver Int.2011,31:68-77.
    [190] Yamada G, Iino S, Okuno T, et al. Virological response in patients with hepatitisC virus genotype1b and a high viral load: impact of peginterferon-alpha-2a plusribavirin dose reductions and host-related factors. Clin Drug Investig.2008,28(1):9-16.
    [191] Zi Y, Wang Y, Wiegmann PS, et al. In vivo treatment of HCV core-positiveHepG2cells with the transfer of recombinant caspase-3using a2'-5' OASpromoter. Mol Med Report.2012,5(3):631-636.
    [192] Naganuma A, Nozaki A, Tanaka T, et al. Activation of the interferon-inducible2'-5'-oligoadenylate synthetase gene by hepatitis C virus core protein. J Virol.2000,74(18):8744-8750.
    [193] Bruno R, Sacchi P, Scagnolari C, et al. Pharmacodynamics of peginterferonalpha-2a and peginterferon alpha-2b in interferon-naive patients with chronichepatitis C: a randomized, controlled study. Aliment Pharmacol Ther.2007,26(3):369-376.
    [194] Wang Y, Mao SS, He QQ, et al. Specific activation of2'-5'oligoadenylatesynthetase gene promoter by hepatitis C virus-core protein: a potential fordeveloping hepatitis C virus targeting gene therapy. World J Gastroenterol.2009,15(25):3178-3182.
    [195] Wang Y, Mao S, Li B, et al. Treatment of hepatitis C virus core-positivehepatocytes with the transfer of recombinant caspase-3using the2',5'-oligoadenylate synthetase gene promoter. Acta Biochim Biophys Sin(Shanghai).2009,41(7):554-560.
    [196] Hovanessian AG, Justesen J. The human2'-5'oligoadenylate synthetase family:unique interferon-inducible enzymes catalyzing2'-5' instead of3'-5'phosphodiester bond formation. Biochimie.2007,89(6-7):779-788.
    [197] Rebouillat D, Hovanessian AG. The human2',5'-oligoadenylate synthetasefamily: interferon-induced proteins with unique enzymatic properties. JInterferon Cytokine Res.1999,19(4):295-308.
    [198] de Weerd NA, Nguyen T. The interferons and their receptors-distribution andregulation. Immunol Cell Biol.2012, doi:10.1038/icb.2012.9.
    [199] Oxenkrug G, Tucker KL, Requintina P, et al. Neopterin, a Marker of Interferon-Gamma-Inducible Inflammation, Correlates with Pyridoxal-5'-Phosphate, WaistCircumference, HDL-Cholesterol, Insulin Resistance and Mortality Risk inAdult Boston Community Dwellers of Puerto Rican Origin. Am J NeuroprotNeuroregen.2011,3(1):48-52.
    [200] Santambrogio C, Ricagno S, Sobott F, et al. Characterization of β2-microglobulin conformational intermediates associated to different fibrillationconditions. J Mass Spectrom.2011,46(8):734-741.
    [201] Naiki H, Yamamoto S, Hasegawa K, et al. Molecular interactions in theformation and deposition of beta2-microglobulin-related amyloid fibrils.Amyloid.2005,12(1):15-25.
    [202] Bossard C, Bézieau S, Matysiak-Budnik T, et al. HLA-E/β2microglobulinover-expression in colorectal cancer is associated with recruitment of inhibitoryimmune cells and tumor progression. Int J Cancer.2011, doi:10.1002/ijc.26453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700