用户名: 密码: 验证码:
三维可视化环境下采矿设计与生产规划关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的迅速发展,信息技术愈来愈广泛地应用于社会各个领域,传统产业的信息化改造与提升成为大势所趋。对于古老的采矿业而言更是如此,采矿业的创新发展—数字采矿成为必然趋势。
     矿山采矿工程设计作为矿山建设非常重要的一个环节,是一切工作的基础。设计方案的优劣将直接影响到建设项目的工期、成本、生产能力和整体经济效益。矿山是一个真三维地理/地质环境,要真正实现数字采矿设计,那也应是真三维的,即必须以三维地质体和人造工程模拟为基础。
     三维可视化技术的发展以及各种建模技术的出现,为真三维环境下的采矿设计提供了一个很好的平台。一方面,在三维环境下,露天、地下各种采掘工程的空间形态及其空间分布变得十分清晰明了;另一方面,三维块段模型为地质体属性,如品位,岩性等,提供了多尺度描述方法,这样在采矿设计中可以方便地查询和利用这些信息。采矿设计的对象是地质体,需要完成的设计任务是各种井巷施工、采场爆破、生产计划等工程图表,在这过程中需要进行诸如井巷设计、采场设计、爆破设计、露天境界优化、工程验收等各种复杂的计算,而这种计算与采矿设计是紧密结合的。因此,以地质体模型为基础,将各种复杂的计算与开采设计集成起来,无论对于提高设计效率还是设计质量都具有非常重要的作用。
     本文从采矿设计的具体需求出发,着重对上述关键技术展开研究,主要内容包含以下几个方面:
     (1)三维采矿设计实体模型的选择。采矿设计的核心对象是复杂地质体,而混合模型难以满足采矿设计的需要,从数据存储、实用性等角度出发,确定采用基于TIN的表面模型表示复杂矿体的边界、地表、人工工程等,采用基于八叉树的块段模型表示复杂地质体内部品位属性。同时,提出了一种基于平面隐函数的实体切割思想和区域自动识别技术的地质体剖面图生成方法。
     (2)地下井巷设计关键技术。包括井巷断面设计、支护设计、岔道口设计;给出了两种井巷实体三维建模方案:局部建模和整体建模;提出了基于中心线的双线巷道自动生成算法。上述算法为虚拟漫游、采掘量估算和施工图设计提供了新的快捷方法。
     (3)地下开采设计关键技术。包括采场设计、底部结构设计以及爆破设计;给出了基于TriCut算法的三维实体任意切割算法;提出了开口、封闭三维实体的特征轮廓线提取算法,根据提取的轮廓线,实现了地质体投影图的自动生成。
     (4)对露天开采优化设计所涉及到的模型与关键算法进行了深入研究。提出了一种改进的几何约束新模型,基于该模型,提出了一种新的露天境界优化算法,为解决复杂地质条件下的多边坡角露天境界优化问题提供了一种新的有效方法;提出了一种基于成本流的开采锥模型,采用图论的方法将正价值块与其开采锥内相关负价值块聚合,大大减少了混合整数规划模型中的变量个数,极大地降低了计算复杂度,从而使解决实际的大规模露天矿生产计划编制问题变成可能;提出了基于KD树的露天矿采场示坡线自动生成方法,提高了露天矿采场示坡线的绘制效率和精度。
     (5)提出实测地表、实测露天矿坑及实测巷道的建模方法。针对露天矿坑散乱点多、手工操作繁杂等问题,提出基于Voronoi图和三角剖分的曲线重建算法,实现露天矿边坡线的自动生成;提出了一种基于巷道底板边界线的巷道实体分层建模方法,解决了同一中段边界线任意复杂情况下的实测巷道三维建模。提出了步距法、断面法和腰线法下的巷道实体建模算法,解决了手工建模效率低、精度不高的问题。
     (6)分析了地下采掘生产计划编制的基本依据、计划编制的目标以及各种约束条件,在此基础上给出了生产计划编制的技术路线和设计流程,对生产计划编制所涉及三维实体检测、任务排序优化技术、生产路径搜索优化技术进行了研究。
     本文的研究成果解决了三维采矿设计和生产规划过程中存在的关键技术和难点问题,为系统性地实现三维环境下数字采矿提供了技术支持。
With the rapid development of information technology, it has been widely applied in all fields of society. Therefore, the informatization and improvement of traditional industries as well as the mining industry become the general trend. It is inevitable that digital mining is the innovation and development of mining industry.
     As a very important part of mine construction, the design of Mining Engineering is the basis for all work. The quality of the design will directly affect the schedule, cost, productivity and overall economic efficiency of the construction project. Mine is a true three-dimensional geographical/geological environment, so digital mining should be designed based on three-dimensional geological body and manual project modeling.
     The development of three-dimensional visualization technology and modeling technologies offer a favorable environment for mining design. In three-dimensional environment, the spatial distribution and spatial relation of open-pit mine and underground excavation projects will be perspicuous. In addition, three-dimensional geological block model can provide a rapid calculation model for volume and reserves calculation, engineering diagrams, which include laneway construction、stope blasting and production planning, are the task of mining design. In the process, mining design is closely associated with various complicated calculations, such as laneway design, stope design, blasting design, open-pit mine optimization and project acceptance. Therefore, the integration of complicated calculations and mining design improve thed design efficiency and quality based on the geologic body model.
     According to the specific requirement of mining design, this paper focused on the key technologies above-mentioned; the principle contents are described as follows:
     (1)The selection of 3D entity model for mining design. The core object of mining design is the complicated geologic body, but a mixed model can not meet the needs of mining design. Therefore, from the perspectives of data storage and practicability, this paper adopted the surface model based on TIN to represent the boundary, surface, artificial engineering; and used block model based on octree to represent the property of geologic body. Meanwhile, this paper put forward an algorithm for generation of profile based on the idea of entity cutting based on plane implicit function and regional reorganization technology.
     (2)The key technologies of laneway design contain section design、support design and fork design; This paper put forward partial modeling method and entire modeling method for laneway, and proposed an algorithm for generation of double-line laneway automatically based on media line. The realization of methods mentioned above provided new methods for virtual walkthrough the volumn estimation of excavation projects and construction diagrams.
     (3)The key technologies of underground mining design contain stope design、bottom structure design and blasting design; This paper proposed arbitrary cutting algorithm for 3D entity based on the TriCut algorithm and presented an algorithm for the contour extraction of open and closed 3D entity. According to the extraction of contour, the projection of geologic body was automatically generated.
     (4)The model and key algorithm of optimization for open-pit mine has been studied. Based on a newly improved geometric constraint model, this paper proposed a new optimization algorithm of open-pit limit, which provides an effective way for solving the problems of open-pit limit optimization of polygonal slope angle under complex geological condition. This paper presented a cost flow based mining cone model, which assembles the positive value blocks and the negative value blocks in the mining cone by adopting the method of graph theory, making it is possible to solve the problems of production planning of large scale open-pit mining by greatly decreasing the number of variables in the mixed-integer programming model and lower the computational complexity. In order to improve the precision and the efficiency for plotting slope line for open-pit mine, a method for automatic generation of slope line was presented according to the characteristics of open-pit mine data.
     (5)Algotirhm for reconstruction of surface、open-pit mine and laneway were propsed. In order to resolve the proplem of complicated operation on curve reconstruction of open-pit mine, a method for generation of curves of open-pit mine was put forward based on the Vorni diagram and Triangulation. A hierarchical modeling method for laneway entities based on boundary lines was proposed. In order to improve the efficiency and accuracy, algorithms for generation of laneway were put forward by adopting the methods of drawing pace, section and waist line.
     (6) According to the basic principles of mine production and the trait of the system of production plan scheduling, technology route and esign flow of production planning was pointed out. Technologies for 3D entity detection the optimization technique for task sequencing and production path search were put forward.
     The achievements stated in this paper have solved key technologies and difficult issues of 3D mining designing and production planning, and provided technocial support for digital mining on 3D environment.
引文
[1]古德生,李夕兵等.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006
    [2]Simon M H.3D Geo science Modeling. Computer Techniques for Geological Characterization[M]. Springer-Verlag,1994
    [3]Gong J Y,Cheng P G. Study on 3D modeling and visualization in geological exploration engineer[A]. The Intl. Archives of the Photogrammetry, Remote Sensing and Spatial Information Science[C].Xi'an,2002.133-137
    [4]齐安文,吴立新,李冰等.一种新的三维地学空间构模方法:类三棱柱法[J].煤炭学报,2002,27(2):158-163
    [5]吴立新,张瑞新,戚宜欣等.3维地学模拟与虚拟矿山系统[J].测绘学报,2002,1(31):28-31
    [6]吴立新,陈学习,史文中.基于GTP的地下工程与围岩一体化真三维空间构模[J].地理信息系统.2003,19(6):1-5
    [7]僧德文,李仲学,李春民等.可视化技术及其在矿业中的应用研究[J].矿业研究与开发,2004,24(6):59-60
    [8]王志刚,陈道贵,李岭.矿床三维数字模型在采矿设计中的应用[J].采矿技术,2005,5(3):22-23
    [9]刘晨,杨鹏,吕文生.基于体视化技术的地下采矿方法设计系统研究[J].矿业工程,2006,4(2):23-24
    [10]李春民,李仲学,僧德文OpenGL在矿山井巷工程三维可视化仿真系统中的应用[J].北京科技大学学报,2004,26(5):457-460
    [11]刘宪权.计算机技术在采矿设计中的应用[J].露天采煤技术,2000(3):35-37
    [12]高志武.数字矿床及其实现[D].昆明理工大学.2006
    [13]毛先成.三维数字矿床与隐伏矿体立体定量预测研究[D].中南大学.2006
    [14]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D].解放军信息工程大学.2006
    [15]吴慧欣.三维建模技术的研究与应用[D].西安:西安建筑科技大学:2004
    [16]李仲学,李翠平.矿床仿真及体视化技术.计算机仿真,2000(5):6-8
    [17]计算机图形学的发展状况与应用前景.黑龙江八一农垦大学学报,2000,12(1):65-68
    [18]罗周全,刘晓明,苏家红等.基于Surpac的矿床三维模型构建[J].金属矿山,2006(4):33-36
    [19]周紫辉.浅谈采矿系统软件MineSight在露天境界设计中的应用[J].有色冶金设计与研究,2006,27(4):1-5
    [20]吴立新.数字地球、数字中国与数字矿区[J].矿山测量,2000(1):6-9
    [21]吴立新,朱旺喜,张瑞新.数字矿山与我国矿山未来的发展[J].科技导报,2004(7):1-2
    [22]王李管,曾庆田,贾明涛.数字矿山与我国矿山未来发展[J].科技导报,2004(7):1-2
    [23]陈建宏,周智勇,古德生.采矿CAD系统研究现状与关键技术[J].金属矿山,2004(10):5-8
    [24]徐帅,柳小波,孙豁然等.基于AutoCAD的矿山三维实体井巷实现研究[J].金属矿山,2006(4):39-41
    [25]鲍岩.基于AutoCAD环境性爱的三维露天采矿设计[J].2008,(1):30-32
    [26]陈建宏,古德生.采矿CAD图元集的构造及多边形图元和标注图元的表述[J].中国矿业,2002,11(4):52-54
    [27]李春民,李仲学,僧德文OpenGL在矿山井巷工程三维可视化仿真系统中的应用[J].北京科技大学学报,2004,26(5):457-460
    [28]陈爱兵,秦德先,张学书等.基于MICROMINE矿床三维立体模型的应用[J].地质与勘探,2004,40(5):77-80
    [29]贾建红,周传波,张亚海等.基于DATAMINE的三维采矿工程可视化建模技术研究[J].金属矿山,2009,3:111-114
    [30]房智恒,王李管,何远富等.基于DIMINE软件的采矿方法真设计研究与实现[J].金属矿山,2009(5),129-131
    [31]李英,暴合琴,陈仲杰等.计算机辅助设计系统在采矿工程设计中的应用[J].有色金属,2006,58(1):12-14
    [32]余仙金.地质勘探中三维GIS技术的分析和探讨[J].建材和装饰,2008(6):327-328
    [33]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003
    [34]Shi W Z. Ahybrid mmodel for 3D GIS[J]. Geoinformaitoncs,1996(1):400~409
    [35]李德仁,李清泉.一种三维GIS混合模型数据结构研究[J].测绘学报,1997,25(2):128-133
    [36]韩国建,白世伟.一种基于三棱柱体体元的三维底层建模方法与应用[J].中国图像图形学报,2001,6(3):285-290
    [37]郝海森,吴立新.基于强约束Delaunay-Tin的三维地学模拟与可视化.地理与 地理信息科学,2003(2):15-18
    [38]丁永祥,夏巨谌,王英,肖景容.任意多边形的delaunay三角剖分. 计算机学报,1994,17(4):271-275
    [39]贾明涛.矿床建模与储量计算技术研究:[硕士学位论文].长沙:中南工业大学,1999
    [40]J. Voros. A strategy for repetitive neighbor finding in octree representations. Image and Vision Computing,2000,18:1085~1091
    [41]吴晓军,刘伟军,王天然.基于八叉树的三维网格模型体素化方法[J].工程图学学报,2005,4:1-7
    [42]曹燮明.采矿手册[M].北京:冶金工业出版社,1999
    [43]Shostko A A,Lohner R,Sandberg W C.Surface Triangulation over Intersecting Geometries[J]. International Journal for NumericalMethods in Engineering,1999,44(9):1359~1376
    [44]Coelho L C G,Gattass M,Fiqueiredo L H.Intersecting and Trimming Parametric Meshes on Finite-elements Shells[J].International Journal for Numerical Methods in Engineering,1999,47(4):777~800
    [45]邢存恩,宋毅.采矿工程剖面图计算机生成方法探讨[J].煤炭学报.第25卷增刊2000:34-38
    [46]陈国量,刘修国,商建嘎等.三维地质结构模型的切割分析技术及方法[J].计算机工程.2007,33(20):184-186
    [47]陈建宏,周智勇,陈纲等.钻孔数据的勘探线剖面图自动生成方法[J].中南大学学报(自然科学版).2005,36(3):487-490
    [48]朱莹,刘学军,陈锁忠等.基于GIS的地质剖面图自动绘制软件的研究[J].南京师大学报(自然科学版).2007,30(4):104-108
    [49]陈学工,曾俊纲,李小勇.基于三维表面模型的任意切割算[J].计算机应用研究.2008,25(9):2850-2852
    [50]BENTLEY, J. L. Multidimensional binary search treesused for associative searching[J]. Commun. ACM,1975,18(9):509~517
    [51]BENTLEY, J. L. Kd Trees for Semi-dynamic PointSets. SCG'90:Proc.6th Annual Symposium on Compu-tational Geometry,1990:187~197
    [52]谭正华,王李管,毕林等.参数曲线集复杂区域的全自动识别算法[J].计算机工程.2010,36(8):23-26
    [53]宋怀波,路长厚,王富春.一种新的复杂区域孔洞填充算法[J].桂林电子科技大学 学报,2006,26(6):451-454
    [54]何亚彬,杨恢先,代秋芳.参数曲线集最小闭环提取算法[J].计算机工程与应用,2005,41(32):109-111
    [55]张富民.采矿设计手册(3)井巷工程卷[M].北京:中国建筑工业出版社,1989
    [56]F.S.Hill计算机图形学[M].北京:2006
    [57]东兆星,吴士量.井巷工程[M].江苏:中国矿业大学出版社,2006
    [58]毕林、王李管等.快速多边形区域三角化算法与实现[J].计算机应用研究.2008,25(10):3030-3033
    [59]Keppel E. Approximating Complex Surface Interpolation Technique for Reconstruction 3D Objects from Serial Cross-sections[J]. CVGIP,1989, (1):124~143
    [60]陈凌均,金建荣,汪国昭.三维重建的统一方法模拟—退火法[J].计算机学报,1997,20(12):1133-1136
    [61]周焰,李德华,陈振羽等.三维物体表面三角划分的快速算法[J].中国图像图形学报,2000,5A(9):764-768
    [62]周焰,李德荣等.一种基于区域分割的三角划分方法[J].武汉大学学报(信息科学版).2003,28(2):227-231
    [63]王强,马利庄,鲍虎军.基于骨架的断层间复杂轮廓线的三角片曲面重构[J].计算机学报,2000,28(8):842-846
    [64]Congy G, Parvin B. An Algebraic Solution to Sur2face Recovery from Cross-sectional Contours[J].Graphical Models and Image Processing,1999,61(3):222~243
    [65]徐春蕾,李思昆.一种使用任意平面多边形的三角剖分算法[J].国防科技大学学报,2000,22(2):82-85
    [66]李学军,黄文清.平面区域三角化的快速算法[J].计算机辅助设计与图形学学报,2003,15(2):233-238
    [67]Lindenbecka C H,Ebertb H D,Ulmera H.A Program to Clip Triangle Meshes Using the Rapid and Triangle Libraries and the VisualizationToolkit[J]. Computers&Geosciences,2002,28(6):841~850
    [68]Coelho L C QGattass M,Fiqueiredo L H.Intersecting and TrimmingParametric Meshes on Finite-elements Shells[J].International Journalfor Numerical Methods in Engineering,1999,47(4):777~800
    [69]Shostko A A,Lohner R,Sandberg W C.Surface Triangulation overlntersecting Geometries[J].International Journal for Numerical Methods in Engineering,1999,44(9):1359~1376
    [70]Gottschalk S,Lin M C,Manocha D.OBBTree:A Hierarchical Structure for Rapid Interference Detection[C]//Proceedings of ACMSIGGRAPH'99,New York.1999
    [71]Keppel E. Approximating Complex Surface Interpolation Technique for Reconstruction 3D Objects from Serial Cross2Sections [J].CVGIP,1989, 48(1):124~143
    [72]Fuchs H, Keddem Z M, Uselton S P. Optimal Surface Reconstruction from Planar Contours[J].Communication of the ACM,1977,20(10):693~702
    [73]周焰,李德华,王祖喜,等.三维物体表面三角划分的遗传算法[J].中国图像图形学报,1999,4(A)(5)
    [74]Christian H N, Scderberg T W. Conversion of Complex Contour Line Definition into Polygonal Element Mosaics [J]. Computer Graphics,1978,12 (3):187~192.
    [75]Montani C,Scateni R, Scopigno R. Decreasing Iso2Surface Complexity via Discrete Fitting[J]. Computer Aided Geometric Design,2000:17
    [76]周焰,李德仁.平行轮廓线三维矿体重建算法[J].系统工程与电子技术,2003,25(8):1003—1006
    [77]贾超,王蓓蓓,孔凡树等.基于区域Voronoi图的复杂形体的三维重建算法[J].机械工程学报,2009,45(6):274-277
    [78]Shinagawa Y, Kunii T L. Constructing a reeb graph automatically from cross section[J].IEEE Computer Graphics graph and Appplication,1991,11(6):44~51
    [79]Meyers D. Reconstruction of surface from plannar contours[D]. University of Washington,1991
    [80]D.Meyers,S.Skinner,K Sloan. Surfaces from Contous,ACM Transactions on Graphics[J],1992,11(3):228~258
    [81]M.W.Jones,M,Chen. A new approach to the construction of surfaces from contour data[C]. in Euroigraphics'94.1994
    [82]李梅,毛善君,马蔼乃.平行轮廓线三维矿体重建方法研究[J].计算机辅助设计与图形学学报,2006(7):1017-1021
    [83]吴涛,刘金义.基于轮廓线的三维重建方法研究[J].抚顺石油学院学报,1999(3):44-48
    [84]张勇,纪凤欣,欧宗瑛等.一种由二维轮廓线重建物体表面的方法[J].小型微型计算机系统,2002(12):1514-1516
    [85]王青,史维祥.采矿学[M].北京:冶金工业出版社,2007
    [86]Lerchs H., Grossmann I. F.. Optimum design of open pit mines[J]. CIM Bull, 1965,58,47~54
    [87]Lemieux M. Moving cone optimizing algorithm[C]//Computer methods for the 80s in the mineral industry. New York,1979,329~345
    [88]Yegulalp T.M., Arias J.A.. A fast algorithm to solve the ultimate pit limit problem[C]//Proc of 23rd symposium on the application of computers and operations research in the mineral industries (APCOM). Colorado,1992,391~397
    [89]Korobov S. Method for determining optimal open pit limits[R]. Montreal:Ecole Polytechnique de l'Universite de ontreal,1974
    [90]Dowd P. A., Onur A.H.. Open-pit optimization-part 1:optimal open-pit design[J]. Trans. Instn Min. Metall.,1993,102,95~104
    [91]Wilke F L, Wright E A. Determining the optimal ultimate pit design for hard rock open pit mines using dynamic programming[J]. Erzmetall,1984,37,139~144
    [92]Yamatomi J. Selective extraction dynamic cone algorithm for three-dimensional open pit designs[C]//Proc of 25th symposium on the application of computers and operations research in the mineral industries. Brisbane:Australasian Institute of Mining and Metallurgy,1995,267~274
    [93]Hochbaum D S. A new-old algorithm for minimum cut and maximum-flow in closure graph[J], Networks, special 30th anniversary paper,37(4),2001,171~193.
    [94]Hochbaum D S, Chen A. Performance analysis and best implementations of old and new algorithms for the open-pit mining problem[J]. Operations Research,2000, 48(6):894~914
    [95]Dowd P A. The optimal design of quarries. Mineral resource evaluation[J].1994, 79,141~55
    [96]周智勇,陈建宏,杨立兵.大型矿山地矿工程三维可视化模型的构建[J].中南大学学报,2008,39(3):423-428
    [97]李德,曾庆田.基于三维可视化技术的露天境界优化研究[J].金属矿山,2008,382(4):103-108
    [98]王李管,何昌盛,贾明涛.三维地质体实体建模技术及其在工程中的应用[J].金属矿山,2006,(6):58-62
    [99]Khalokakaie R, Dowd PA Fowell R J, Lerchs-Grossmann. algorithm with variable slope angles[J]. Mining Technology,2000,109(2):77~85
    [100]任海军,文俊浩,徐玲.一种三维数字城市的构建和实现方法[J].重庆大学学报,2006,29(4):101-104
    [101]Gershon M. Heuristic approaches for mine planning and production scheduling[J]. International Journal of Mining and Geological Engineering,1987, (5): 1~13
    [102]Gershon M E. Optimal mine production scheduling evaluation of large scale mathematical programming approaches[J]. International Journal of Mining Engineering,1983,1,315~329
    [103]Smith M L. Optimizing inventory stockpiles and mine production:an application of separable and goal programming to phosphate mining using ampl/cplex[J]. CIM Bulletin,1999,92,61~64
    [104]Caccetta L, Hill S P. An application of branch and cut to open pit mine scheduling[J]. Journal of Global Optimization,2003,27,349~365
    [105]Natashia B, Irina D, Gary F, et al. LP-based disaggregation approaches to solving the open pit mining production scheduling problem with block processing selectivity[J]. Computers & Operations Research,2007,36,1064~1089
    [106]徐淑琴. AutoCAD环境下地形图中线状符号的实现[J].矿山测量.1999,4(11):36-38
    [107]Philip J.Schneider,David H.Eberly.Geometric Tools for Computer Graphics[M].BEIJING:Publishing House of Electronics Industry,2005
    [108]郭兆胜,张登荣.一种改进的高效Delaunay三角网的生成算法.理论研究,2005.1(2):15-18
    [109]李志林,朱庆.数字高程模型.武汉:武汉大学出版社,2001:34-56
    [110]武晓波,王世新,肖春生.一种生成Delaunay三角网的合成算法.遥感学报,2000.4(1):28-29.
    [111]武晓波,王世新,肖春生Delaunay三角网的生成算法研究.测绘学报,1999.28(1):33-34
    [112]刘建新,卢新明.简单多边形快速Delaunay三角剖分算法.计算机技术与发展,2006.16(7):127-128
    [113]Chazelle B.Triangulation a simple polygon in linear time. Technical Report CS-TR-264-90,Department of Computer Science, Princeton University,1990:66~69
    [114]李立新,谭建荣.约束Delaunay三角网剖分中强行嵌入约束边的对角线交换算法[J].计算机学报,1999,22(10):1114-1118
    [115]刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J].测绘学报,2001,30(1):82-88
    [116]SLOAN S W. A fast algorithm for constructing Delaunay triangulation in the plane[J].Advanced Engineering Software,1987,9(1):34~55
    [117]周培德.计算几何算法分析与设计[M].北京:北京理工大学出版社,2000
    [118]J.O'Rourke, Computational Geometry in C[M].Cambridge Univ. Press, Cambridge,UK,1994
    [119]T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction[J]. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 893-894, Jan.1999
    [120]陈学工,黄品晶.基于最优凸壳技术的Delaunay三角剖分算法[J].计算机工程.2007,33(17):93-95.
    [121]袁翰,李伟波,陈婷婷.对构建Delaunay三角网中凸壳算法的研究与改进[J].计算机工程.2007,33(07):70-72
    [122]孙卡,翁正平,张志等.基于带约束三角剖分的三维巷道建模方法[J].矿业研究与开发.2007,27(5):64-66
    [123]谭正华,王李管,毕林等.平面连通巷道三维实体分层建模方法[J].武汉大学学报(信息科学版).2010,35(3):360-363
    [124]马小虎,潘志庚,石教英.基于凹凸顶点判定的简单多边形Delaunay三角剖分[J].计算机辅助设计与图形学学报,1999,11(1):1-3
    [125]SEIDEL R. A simple and fast incremental randomized algorithm forcomputing trapezoidal decompositions and for triangulating polygons[J].ComputGeom Theory Appl,1991,1(1):51~64
    [126]CHAZELLE B. Triangulating a simple polygon in linear time[J].D iscrete Comp Geom,1991,6(5):485~524.
    [127]Keppel E. Approximating Complex Surface Interpolation Technique for Reconstruction 3D Objects from Serial Cross-sections[J].CVGIP,198948(1):124~143
    [128]陈凌均,金建荣,汪国昭.三维重建的统一方法模拟—退火法[J].计算机学报,1997,20(12):1133-1136
    [129]周焰,李德华,陈振羽等.三维物体表面三角划分的快速算法[J].中国图像图形学报,2000,5A(9):764-768
    [130]周焰,李德荣等.一种基于区域分割的三角划分方法[J].武汉大学学报(信息科学版).2003,28(2):227-231
    [131]王强,马利庄,鲍虎军.基于骨架的断层间复杂轮廓线的三角片曲面重构[J].计算机学报,2000,28(8):842-846
    [132]Congy G, Parvin B. An Algebraic Solution to Sur2face Recovery from Cross-sectional Contours[J].Graphical Models and Image Processing,1999, 61(3):222~243
    [133]徐春蕾,李思昆.一种使用任意平面多边形的三角剖分算法[J].国防科技大学学报,2000,22(2):82-85
    [134]李学军,黄文清.平面区域三角化的快速算法[J].计算机辅助设计与图形学学报,2003,15(2):233-238
    [135]陈孝华,魏一鸣,叶家冕等.地下矿山采掘计划神经网络专家系统研究.云南冶金,2002,31(5):1-4,9
    [136]王骐,宋正利.计算机技术对矿山自动化的推进作用.工矿自动化,2004(4):37-38
    [137]毕林,王李管、陈建宏等.三维网格模型的空间布尔运算[J].华中科技大学学报,2008,36(5):82-85
    [138]David Meyers,multiresolution tiling, Computer Graphics Forum,1994,13(5): 325~340
    [139]Evic J.Stollnitz,et al, Wavelets for Computer Graphics:Theory and Applications, Morgan Kanfmann publishers,iNC,1996
    [140]H.Fuches,et al, Optimal surface reconstructions from planar contours, Communication of the ACM,1977,20(10):693~202
    [141]Gott schalk S, Lin M, Manocha D. OBB2t ree:A hierarchical st ructure for rapid interference detection [C]//Proceedings of ACM SIGGRAPH'96. Louisiana:Springer Link,1996:171~180
    [142]Baciu G, Wong S K W, Sun H. RECODE:An image2based collision detection algorithm[J]. Journal of Visualization and Computer Animation,1999,10(4): 181~192
    [143]Cohen J, Lin M C, Manocha D,etal. I2COLL IDE:An interactive and exact collision detection system for Iarge2scale environment [C]//Proceedings of ACM Interactive 3D Graphics Conference. California USA:Springer Link,1995:189~196
    [144]Klosowski J, Held M, Mitchell J S B,et al. Efficient collision detection using bounding volume hierarchies of k2DOPs [J].IEEE Transactions on Visualization and Computer Graphics,1998,4 (1):21~36
    [145]Chung K, Wang W. Quick collision detection of polytopes in virtual environment s[C]//Proceedings of the ACM Symposium on Virtual Reality Software and Technology. Hong Kong:Springer Link,1996:125~132
    [146]薛广涛,李超,尤晋元等.基于凸多面体剖分的并行碰撞检测算法[J].上海交通大学学报,2004,38
    [147]Grigore, C. Burdea, Philippe Coiffet虚拟现实技术[M].北京:电子工业出版社,2005
    [148]S. Suri, P. M. Hubbard, J. F. Hughes. An alyzing bounding box for object intersection [J]. ACM Transaction on Graphics,18 (3):257~277
    [149]Gott schalk S, Lin M, Manocha D. OBB2tree:A hierarchical structure for rapid interference detection [C]//Proceedings of ACM SIGGRAPH'96. Louisiana:Springer Link,1996:171~180
    [150]G. Barequet, B. Chazelle, L. J. Guibas. BOXTREE:A hierarchical representation for surfaces in3D [J]. Computer Graphics Forum,1996,15 (3):387~484
    [151]毕林,王李管,陈建宏等.基于VTK的矿体三维可视化研究与实现[J].计算机工程与应用.2008,44(10):78-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700