用户名: 密码: 验证码:
偃麦草染色质向小麦中转移及小麦—偃麦草抗性新种质的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偃麦草属(Thinopyrum)是小麦属的近缘属,属于小麦第三级基因源,它具有耐寒、耐旱、抗倒伏、抗小麦黄矮病和免疫小麦三锈(条锈、叶锈和秆锈)等特性,是小麦遗传改良中的宝贵资源。该属中的中间偃麦草(Thinopyrum intermedium,2n=42,基因组为EeEeEbEbStSt或JJJsJsStSt)和长穗偃麦草(Th. elongatum,2n=14,基因组为EeEe)均免疫或高抗小麦多种病害,是人们在小麦改良中利用最广泛的两个物种。人们已经通过染色体工程的方法,将这两个物种基因组中的Bdv2、Lr19、Sr26、Cmc2和Wsm1等优良基因转入到小麦背景中,创制了一批附加系、代换系和易位系等优质资源。然而,目前能够检测小麦背景中偃麦草染色质的分子标记还很少,尚需更多的创新小偃麦新种质以满足现代小麦抗病、高产和优质育种的需求。
     本研究以分子染色体工程方法以偃麦草属优异基因向小麦中转移为目的,开展了偃麦草E染色体(臂)与St染色体(臂)的分子标记筛选和新型小麦-偃麦草渐渗系的鉴定工作。建立的分子标记可快速有效地鉴定小麦-偃麦草渐渗系中的E染色体(臂)与St染色体(臂)。鉴定出的抗小麦条锈病和白粉病的新型小麦-偃麦草双二倍体和代换系等材料为小麦改良提供了丰富的基因资源。具体研究结果如下:
     1.偃麦草E染色体(臂)与St染色体(臂)分子标记的建立及应用:(1)利用第1到第7同源群的258对EST-SSR引物、46对PLUG引物和30对STS引物对中国春和长穗偃麦草以及一套中国春-长穗偃麦草附加系进行筛选,结果发现,37对EST-SSR引物、5对PLUG引物以及1对STS引物可以在中国春和长穗偃麦草中扩增出多态性,并且这些多态性带都可被定位在长穗偃麦草单染色体(臂),这些多态性带可作为分子标记用来检测小麦背景中的长穗偃麦草染色体(臂)。(2)利用第1到第7同源群EST-SSR和PLUG引物对中国春、拟鹅观草和中间偃麦草进行PCR扩增,结果显示,46对EST-SSR引物和39对PLUG引物可以同时在拟鹅观草和中间偃麦草中扩增出多态性条带,说明这些多态性带来自St染色体。利用筛选出的这些引物对含有St染色体组的物种、St染色体代换系及其杂交后代进行PCR扩增,结果显示,含St染色体的材料均能扩增出相应的多态性条带,表明这些多态性带可以用作标记检测并追踪小麦背景中的St染色体(臂)。(3)通过对获得的分子标记进行分析,发现小麦D染色体组与中间偃麦草染色体组之间遗传距离小于A、B染色体组,并且中间偃麦草E染色体在进化过程中染色体重排现象频繁发生。
     2.小麦-茸毛偃麦草新型部分双二倍体分子细胞学及抗病性鉴定:(1)对小麦-茸毛偃麦草部分双二倍体进行C带和原位杂交分析,结果显示,茸毛偃麦草C带带纹较少,较难用于染色体的鉴别。而原位杂交显示材料1520-1的染色体组为42W+8J+6St(W为小麦染色体),1508-2-1的染色体组为42W+6St+4Js+2J,Y69的染色体组为40W+4St+4J+2Js+2St/D,Y70的染色体组为42W+4St+4Js+2St/Js,L451-3-1的染色体组为40W+8St/Js+4St+2T(T为端体)。(2)应用建立的E和St染色体1-7同源群分子标记对上述材料进行PCR扩增,初步判定1520-1中的J染色体分别来自第4、5、6和7同源群,而其中的St染色体来自第5、6和7同源群。1508-2-1中的J染色体来自第4同源群,St染色体来自第3、6和7同源群,而其中的Js染色体则来自第5和6同源群。Y69中的St染色体来自于第2、4同源群,J染色体来自于第3、7同源群,Js染色体来自于第5同源群,St与D易位染色体来自于第5同源群。Y70中的St染色体来自于第5、7同源群,Js来自于第4、6同源群,St与Js的易位染色体来自于第三同源群。L451-3-1分子标记结果显示具有多条Js与St之间的重组染色体。(3)条锈病、白粉病和赤霉病鉴定分析发现,条锈病抗性鉴定结果为1520-1、1508-2-1、Y70、L451-3-1为高抗条锈病,L451-3-1为高抗白粉病;1520-1、1508-2-1、Y70、Y69、L451-3-1均为高抗赤霉病,这些部分双二倍体材料相关抗性转移工作正在进行中。
     3.小麦-偃麦草抗性代换系鉴定:(1)1St(1D)代换系AS1677的鉴定:利用分子标记、种子蛋白凝胶电泳、顺序吉姆萨C分带-原位杂交和条锈病、白粉病调查相结合的手段对小麦-茸毛偃麦草杂交后代AS1677进行筛选与鉴定。苗期和成株期鉴定分析发现,AS1677的高抗条锈病、白粉病。顺序吉姆萨C带-原位杂交分析表明AS1677携带一对St染色体。用建立的分子标记对AS1677、中国春、茸毛偃麦草、拟鹅观草和中间偃麦草进行PCR扩增,结果表明,AS1677中的St染色体属于第一同源群即为1St。醇溶蛋白和谷蛋白分析结果显示AS1677缺失了染色体1D编码的特征蛋白带,同时,用小麦D组特异探针pAs1对AS1677进行原位杂交的结果也显示1D染色体丢失。因此,AS1677为新型的1St(1D)兼抗型小偃麦代换系。(2)6Js(6B)代换系X005的鉴定:利用分子标记、顺序吉姆萨C分带-原位杂交和条锈病调查相结合的手段对小麦-彭提卡偃麦草杂交后代进行筛选与鉴定。条锈病鉴定分析发现编号为X005的材料高抗条锈病。用顺序吉姆萨C分带-原位杂交对7430,X005进行了分析,结果显示7430,X005缺失了小麦的6B染色体组,同时携带了Js染色体。用建立的分子标记对X005、中国春、7430和中间偃麦草进行PCR扩增,结果表明,X005中的Js染色体来自于亲本7430,属于第6同源群即为6Js,同时PCR结果也显示了X005中6B染色体的丢失。因此,X005为6Js(6B)兼抗性小偃麦代换系。
     4.小麦-中间偃麦草染色体渐渗系鉴定遗传分析:利用抗白粉病的1St(1D)代换系与感白粉病的绵阳11进行杂交,获得了抗小麦白粉病的F1杂交种,自交获得F2和F3分离群体。对500个F3单株进行了白粉病抗性调查,结果显示,400个植株白粉病抗性出现分离,抗感植株数分别为296 : 104,分离比例约为3 : 1,推测白粉病抗性来自于茸毛偃麦草1St染色体,由1个显性基因控制。对F2及F3进行了分子细胞学鉴定,结果表明,F2群体细胞学不稳定,染色体数目变异大,端体较多;F3群体中染色体数目变异仍然较大,有单端体、双端体、短染色体(片段)以及等臂染色体等现象存在,说明发生了染色体断裂、删除和易位等现象。应用SSR、EST-SSR、STS及PLUG引物对F3群体进行调查,结果发现,F3群体中存在3种外源染色体类型:1StS/W(W为小麦染色体)和1StL/W易位系、1StS和1StL端体系、1StS片段和1StL片段渗入系。原位杂交分析证实了1St/1D易位系的存在。同时,大量的分子标记结果与醇溶蛋白,谷蛋白结果显示,F3部分后代材料中存在D组染色体端部删除现象,为筛选小片段易位系和小麦删除系提供了理论基础。目前,对上述抗白粉病的小麦-中间偃麦草易位系的精确鉴定以及对抗白粉病新基因分子标记的建立工作正在进行中。
     综上,本文对偃麦草E染色体(臂)与St染色体(臂)特异分子标记进行了开发和挖掘,获得了一大批可用于检测偃麦草物种染色体组的新标记,分子标记分析进一步揭示了偃麦草染色体组的大量重组现象,易于产生优异基因作为小麦染色体工程育种可持续应用的基因源。从大批小偃材料中鉴定出了5个新型小麦-茸毛偃麦草部分双二倍体,对小麦条锈病、白粉病和赤霉病有优异抗性。从52个小麦-茸毛偃麦草后代和45个小麦-彭提卡偃麦草后代中分别鉴定出新型代换系AS1677和X005,其中AS1677抗条锈病和白粉病;X005抗条锈病。从小麦-茸毛偃麦草代换系1St(1D)/绵阳11杂交组合里初步鉴定出抗小麦白粉病的1StS/W(W为小麦染色体)和1StL/W易位系。上述分子标记可以用于小麦辅助育种,鉴定出的抗病新材料可作为中间基因源用于小麦育种工作,具有重要的应用价值。
Genus Thinopyrum, a relative species to Triticum, as third gene pool for wheat conferring characteristics of cold resistance, drought resistance, lodging resistance, barley yellow dwarf virus resistance and rust immunity, has been considered as valuable resource in wheat genetic improvement. Thinopyrum intermedium (2n=42, genome symbol EeEeEbEbStSt or JJJsJsStSt) and Thinopyrum elongatum (2n=14, genome symbol EeEe) have been widely used in wheat improvement due to their traits of immunity or resistance to many wheat diseases. To date, many of valuable genes in these two species, including Bdv2, Lr19, Sr26, Cmc2 and Wsm1 have been successfully transferred into common wheat by chromosome engineering approach. Therefore, a series of addition lines, substitution lines and translocation lines are available for both genetic improvement and wheat breeding. However, so far molecular markers for Thinopyrum chromatin detection are lack, its necessary to develop more molecular markers and create new germplasm of wheat-Thinopyrum, in order to meet the demand of disease resistance, high production and quality.
     In this study, our goal is to transfer excellent genes from Thinopyrum to common wheat. Therefore, we developed molecular markers on E chromosomes (arms) and St chromosomes (arms) and identified newly synthesized Thinopyrum-wheat introgression lines. Molecular markers that we developed in this study can be used to rapidly identify E chromosomes (arms) and St chromosomes (arms) in Thinopyrum-wheat introgression lines. New Thinopyrum-wheat amphidipliods and substitution lines with strip rust and powdery mildew resistance that we characterized could provide valuable genes for wheat improvement. Detailed results in this research are listed below.
     1. Development and application of Thinopyrum E chromosomes (arms) and St chromosomes (arms) markers: (1) A total of 258 pairs of EST-SSR primers located on homologous group 1 to 7, 46 pairs of PLUG primers and 30 pairs of STS primers tested in Chinese Spring (CS), Th. elongatum and a set of CS-Th. elongatum addition lines, results showed 37 pairs of EST-SSR primers, 5 pairs of PLUG primers and 1 pair of STS primer can be amplified polymorphism bands in both CS and Th. elongatum. Polymorphic bands amplified by those primers located on single chromosome (arm) of Th. elongatum, which could be employed as molecular markers to trace single chromosome (arm) of Th. elongatum in common wheat genetic background. (2) By using EST-SSR primers and PLUG primers from homologous group 1 to 7 amplified in CS, Pseudoroegneria spicata and Th. intermedium. Polymorphic bands were obtained in both Ps. spicata and Th. intermedium, CS as control by 46 pairs of EST-SSR primers and 39 pairs of PLUG primers, which indicated those polymorphic bands were from St chromosomes. The primers that could amplify specific bands in St chromosomes were further validated in more species containing St chromosomes, St chromosome substitution lines and their progeny. Results showed polymorphic bands appeared in St chromosome containing species, which indicated the corresponding primers could be used as molecular markers to trace St chromosomes (arms) in common wheat background. (3) Molecular marker results also suggested that the genetic distance between genomes in Th. intermedium and D genome is shorter than genome A and B genomes. Meanwhile, frequent rearrangement was observed in E chromosomes of Th. intermedium in its evolutionary process.
     2. Molecular and cytological characterization and disease resistance identification of newly partial amphiploid of Wheat-Th. intermedium ssp. trichophorum. (1) C-banding result of Wheat-Th. intermedium ssp. trichophorum partial amphiploids showed that there were few bands on Th. intermedium ssp. trichophorum chromosomes, which is difficult to be used for chromosome identification. GISH analysis of Wheat-Th. intermedium ssp. trichophorum partial amphiploids revealed that genome of 1520-1, 1508-2-1, Y69, Y70 and L451-3-1 consisted of 42W+8J+6St (W indicates wheat chromosomes), 42W+6St+4Js+2J, 40W+4St+4J+2Js+2St/D, 42W+4St+4Js+2St/Js, and 40W+8St/Js+4St+2T (T indicates telomere), respectively. (2) E and St chromosome specific molecular markers from homologous group 1 to 7 that developed in this study, were employed to identify which homologous group the alien chromosomes belong to in Wheat-Th. intermedium ssp. trichophorum partial amphiploids. Our preliminary results suggested that in 1520-1, J chromosomes belonged to homologous group 4, 5, 6, 7 and St chromosomes belonged to homologous group 5, 6 and 7; in 1508-2-1, J chromosomes belonged to homologous 4 and St chromosomes belonged to homologous group 3, 6 and 7, and Js chromosomes belonged to homologous group 5 and 6; in Y69, St chromosomes belonged to homologous group 2 and 4, and J chromosomes belonged to homologous 3 and 7, and Js chromosomes belonged to homologous group 5, as well as St/D translocation chromosome belonged to homologous group 5; in Y70, St chromosomes belonged to homologous group 5 and 7, and Js chromosomes belonged to homologous group 4 and 6, and St/Js translocation chromosome belonged to homologous group 3; while in L451-3-1, there were many Js/St translocation chromosomes appeared by molecular markers. (3) Disease resistance tests including strip rust, powdery mildew and fusarium head blight showed that 1520-1, 1508-2-1, Y70 and L451-3-1 were highly resistant to stem rust; L451-3-1 was also highly resistant to powdery mildew; 1520-1, 1508-2-1, Y70, Y69 and L451-3-1 were highly resistant to fusarium head blight. Meanwhile, the transferring disease resistances from those partial amphiploids into wheat are in process.
     3. Characterization of wheat-Thinopyrum substitution lines: (1) 1St (1D) substitution line AS1677 was identified from wheat-Th. intermedium ssp. trichophorum offsprings by the combination of methods including molecular markers, seed protein SDS-PAGE analysis, sequential Giemsa C-banding and FISH, strip rust and powdery mildew resistance tests. AS1677 was highly resistant to strip rust and powdery mildew in both seedling and adult stage. AS1677 has a pair of St chromosomes demonstrated by sequential C-banding and GISH. PCR-based molecular marker analysis among AS1677, Th. intermedium ssp. trichophorum, Ps. spicata, Th. intermedium and CS as control, showed a pair of St chromosomes in AS1677 belonged to homologous group 1, designated as 1St. Both gliadin and glutelin analysis showed the lack of a protein band which is encoded by gene located on 1D, while FISH with pAS1, a D genome specific probe, revealed the lack of 1D chromosomes. Therefore, AS1677 is a new 1St (1D) wheat-Thinopyrum substitution line with high disease resistance. (2) 6Js (6B) substitution line X005 was identified from wheat-Th. ponticum by the combination of molecular marker, sequential Giemsa C-banding and GISH, strip rust resistance test. X005 was highly resistant to strip rust. Sequential Giemsa C-banding and GISH analysis on both 7430 and X005 revealed that they contained a pair of Js chromosomes instead of 6B chromosomes, which was also demonstrated by PCR-based molecular marker confirmation. PCR amplification were performed on X005, 7430, Th. intermedium and CS as control with newly developed molecular markers in this study. Result indicated that Js chromosomes in X005 were originated from 7430, which belonged to homologous group 6, designated as 6Js. Therefore X005 is 6Js (6B) wheat-Thinopyrum substitution line with high disease resistance.
     4. Characterization and genetic analysis of wheat-Th. intermedium introgression lines: F1 hybrids were obtained from crosses between 1St (1D) substitution line with powdery mildew resistance and MianYang11 with powdery mildew susceptive, and then F1 selfed to get F2 and F3 population. The powdery mildew resistance among 500 individual F3 plants was segregated, which showed that resistant strains and susceptible strains were 296 and 104 respectively, the segregation ratio is about 3:1. Therefore, we assume that the resistance of powdery mildew is from 1St chromosome controlled by a dominant gene in Th. intermedium ssp. trichophorum. Cytological observations on both F2 and F3 plants suggested that the number of chromosomes in F2 was unstable, much variable and they were abundant of telosomic, while the number of chromosomes in F3 was also variable and they had monotelosomic, ditelosomic, short chromosome (fragment) and isochromosome. These results indicated that chromosomes in F2 and F3 experienced breakage, deletion and translocation. Alien chromosomes detection of F3 population was performed by SSR, EST-SSR, STS and PLUG molecular markers. Results revealed that there were 3 types of alien chromosomes existing in F3 population, including 1StS/W (W indicates wheat chromosomes), 1StL/W translocation, 1StS and 1StL telosomic, 1StS fragment and 1StL fragment introgression. Then, the GISH analysis confirmed that the translocation line 1St/1D existing. Moreover, analysis of molecular markers, gliadin and glutelin indicated that deletion happened on the terminal of D chromosomes, which provided theoretical bases for screening small fragment translocation and deletion in wheat. To date, accurate identification of these wheat-Th. intermedium translocation lines and development of powdery mildew newly resistant gene markers are in process.
     In summary, series of new E and St chromosome- (arm-) specific molecular markers have been developed, which could be used for tracing Thinopyrum chromosomes. Furthermore, frequent chromosome rearrangement in Thinopyrum was revealed by molecular markers analysis. Therefore Thinopyrum as a valuable gene pool could provide excellent genes for continuous wheat chromosome engineering breeding due to its frequent rearrangement characteristic. 5 new wheat-Th. intermedium ssp. trichophorum partial amphiploids were identified and they displayed highly resistant to strip rust, powdery mildew and fusarium head blight respectly. 2 new substitution lines AS1677 and X005 were identified from 52 wheat-Th. intermedium ssp. trichophorum offsprings and 45 wheat-Th. ponticum offsprings. AS1677 is highly resistant to strip rust and powdery mildew, and X005 is highly resistant to strip rust. 2 translocation lines with powdery mildew resistance, 1StS/W (W indicates wheat chromosomse) and 1StL/W, were roughly identified from hybrids of wheat-Th. intermedium ssp. trichophorum substitution line 1St (1D) and MianYang11. Therefore, molecular markers that developed in this study could be used for assisting wheat breeding, and new disease resistant materials identified could be used as valuable intermediate gene pool for wheat breeding in the future, and they possess the important application value.
引文
[1]董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81
    [2] J. M. Armstrong. Hybridization of Triticum and Agropyron: I. Crossing results and description of the first generation hybrids. Can J Res, 1936, 14C: 190-202
    [3]李锁平,孟兆江.外源染色体安及其抗性基因导入小麦的研究进展.武汉植物学研究,1999,17: 25-30
    [4] D. R. Dewey. Salt tolerance of 25 strains of Agropyron. Agron J, 1960, 52: 631-635
    [5] C. C. Sharma, H. W. Ohm, L. Goulart, et al. Introgression and characterization barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome, 1995, 38: 406-413
    [6] H. C. Sharma, B. S. Gill, J. K. Uyemoto. High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol Z, 1984, 119: 143-147
    [7] R. de V. Pienaar. Wheat×Thinopyrum hybrids. In: Bajaj YPS, ed. Biotechnology in agriculture and forestry. Berlin and Heidelberg: Springer-Verlag , 1990, Vol 13, Wheat: 167-217
    [8] P. D. Chen, L. L. Qi, S. Z. Zhang, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125-1128
    [9] B. Friebe, J. M. Jiang, W. J. Raupp, et al. Characterization of wheat-alien translocations conferring resistance to disease and pests: Current status. Euphytica, 1996, 91: 59-87
    [10] Q. Chen, J. Collin, A. Comeau, et al. Comparison of various sources of resistance to barley yellow dwarf virus in wheat-Thinopyrum amphiploid lines. Can J Plant Pathol, 1997, 19: 414-417
    [11] A. L. Rayburn, B. S. Gill. Isolation of a D-genome species repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1986b, 4: 102-109
    [12] W. L. Gerlach, J. R. Bedbrook. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res, 1979, 7: 1869-1885
    [13]王洪刚,刘树兵,亓增军,等.中间偃麦草在小麦遗传改良中的应用研究.山东农业大学学报,2000,31(3):333-336
    [14]朴真三.天兰冰草染色体形态和带型的研究.遗传学报,1982,9(5):350-356
    [15]高明君,郝水,何孟元,等.中间偃麦草染色体组构成的同工酶研究遗传学报,1992,19(4):336-343
    [16] G. L. Stebbins. A new classification of the tribe Cichorieae, family Compositae. Madrono, 1953, 12: 65-81
    [17] D. R. Dewey. The genome structure of intermedium wheatgrass. J. Hered, 1962, (53): 282-290
    [18] J. Dvorak. Genome relationships among Elytrigia (=Agropyron) elongate, E. stipifolia,“E.elongata 4×”, E. Caespitosa, E. intermedia, and“E. elongata 10×”. Can J Genet Cytol, 1981b, 23: 481-492
    [19]张大明,李集临.偃麦草和小偃麦染色体组构成的细胞遗传学研究.哈尔滨师范大学自然科学学报,1985,3:57-69
    [20]杨世湖,徐利远,刘大钧.中间偃麦草染色体组型研究.作物学报,1988,14(4):279-283
    [21] Z. W. Liu, R. R. C. Wang. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geneiculata ssp. scythica and Thinopyrum intermedium (Triticeae: Gramineae). Genome, 1993, 36: 102-111
    [22]韩方普.天兰冰草及八倍体小冰麦染色体组构成研究.遗传,1994,16(5):3l-34
    [23] Q. Chen, R. L. Conner, A. Laroche, et al. Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome, 1998a, 41: 580-586
    [24]吉万全,薛秀庄,王长有,等.中间偃麦草的GISH分析.西北植物学报,2001,21(3):401-405
    [25]刘树兵,王洪刚.抗白粉病小麦-中间偃麦草(Thinopyrum intermedium, 2n= 42)异附加系的选育及分子细胞遗传鉴定.科学通报,2002,47(19):1500-1504
    [26]尤明山,李保云,唐朝晖,等.偃麦草E染色体组特异RAPD和SCAR标记的建立.中国农业大学学报,2002,7(5):1-6
    [27]王晓萍,张增艳,张群宇,等.抗黄矮病小麦-中间偃麦草易位系基因组可转化人工染色体文库的构建及初步筛选.遗传学报,2002,29(8):712-718
    [28]张宏,罗恒,吉万全,等.一个小麦-中间偃麦草异代换系抗条锈病的遗传研究.麦类作物学报,2003,23(1):31-33
    [29]孙善澄,袁文业,裴自友,等.小麦缺体转育及异代换系的筛选.山西农业科学,1995,23(2):7-9
    [30]辛志勇,徐惠君,陈孝,等.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(C辑),1991,1:36-42
    [31]聂道泰,贾旭,胡适全,等.利用生物化学标记分析鉴定一个抗小麦黄矮病的小麦新种质.遗传学报,1994,21(6):468-473
    [32]艾山江.阿布都拉,文玉香,唐顺学,等.一个多抗小麦-中间偃麦草新种质的选育和细胞分子生物学鉴定.遗传学报,1997,24(5):441-446
    [33]唐顺学,B. Frieb,李义文,等.抗大麦黄矮病毒小麦-中间偃麦草二体异代换系的选育和细胞、生化、分子生物学鉴定.植物学报,2000,42(9):952-956
    [34]张增艳,马有志,辛志勇,等.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质.中国农业科学,1998,31(3):1-4
    [35]张增艳,辛志勇,陈孝.中间偃麦草第二组染色体带有BYDV抗性的PCR标记.21世纪小麦遗传育种展望-小麦遗传育种国际学术讨论会文集.中国农业出版社,2001:260-264
    [36]张增艳,辛志勇,陈孝,等.源于L1的小麦抗黄矮病基因的特异PCR标记及辅助育种的研究.作物学报,2002,28(4):486-491
    [37]张增艳,辛志勇,马有志,等.小麦外源抗黄矮病基因的RFLP标记分析.中国农业科学,1999,32(4):45-48
    [38] Z. Y. Zhang, Z. Y. Xin, P. J. Larkin. Molecular characterization of a Thinopyrum intermedium group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome, 2001, 44(6): 1129-1135
    [39] P. Stoutjesdijk, S. J. Kammholz, S. Kleven, et al. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Aust J Agr Res , 2001, 52(11-12): 1383-1388
    [40]陈孝,辛志勇,肖世和,等.抗BYDV小麦-中间偃麦草易位系α-淀粉酶2同工酶的研究.作物学报,1998,24(1):16-20
    [41] L. Ayala-Navarrete, N. Thompson, H. Ohm, et al. Molecular markers show a complex mosaic pattern of wheat-Thinopyrum intermedium translocations carrying resistance to YDV. Theor Appl Genet, 2010, 121: 961-970
    [42]王长有,吉万全,薛秀庄,等.小麦-中间偃麦草异附加系条锈病抗性的研究.西北植物学报,1999,19(6):54-58
    [43]王长有,吉万全,王秋英,等.小麦-中间偃麦草抗条锈衍生系的分子细胞遗传学研究.西北植物学报,2002,22(3):530-534
    [44]胡英考,辛志勇,陈孝.抗条锈病小麦-中间偃麦草异附加系的生化与分子标记.西北植物学报,2002,22(1):136-140
    [45]张宏,罗恒,吉万全,等.一个小麦-中间偃麦草异代换系抗条锈病的遗传研究.麦类作物学报,2003,23(1):31-33
    [46] B. Friebe, F. J. Zeller, Y. Mukai, et al. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in-situ hybridization and isozyme analysis. Theor Appl Genet, 1992, 83: 775-782
    [47] B. Friebe, J. M. Jiang, B. S. Gill, et al. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet, 1993, 86: 141-149
    [48] P. M. Banks, S. J. Xu, R. R. C. Wang. Varying chromosome composition of 56-chromosome wheat×Thinopyrum intermedium partial amphiploids. Genome, 1993, 36: 207-215
    [49] P. J. Larkin, P. M. Banks, E. S. Lagudah, et al. Disomic Thinopyrum intermedium addition lines in wheat yellow barley yellow dwarf virus resistance and with rust resistances. Genome, 1995, 38: 385-394
    [50]陈万权,秦庆明.国际上已知小麦抗叶锈病基因在中国的可利用性研究.中国农业科学,2002,35(7):794-801
    [51]王洪刚,孔令让,姜丽君,等.八倍体小偃麦与普通小麦杂种自交和回交后代染色体和性状分离的研究.作物学报,1996,22(4):508-513
    [52]王洪刚,孔令让,李平路,等.中间偃麦草与小麦杂交后代的细胞遗传学及性状特点的研究.作物学报,1999,25(3):373-381
    [53]王洪刚,张建民,刘树兵.抗白粉病小麦-中间偃麦草异附加系的细胞学和RAPD鉴定.西北植物学报,2000b,20(1):64-67
    [54]王洪刚,朱军,刘树兵.利用细胞学和RAPD技术鉴定抗病小偃麦易位系.作物学报,2001,27(6):856-890
    [55]李平路,王洪刚.小麦-中间偃麦草双体异附加系的选育及形态学和细胞学鉴定研究.西北植物学报,2002,22(3):535-542
    [56]丁斌,王洪刚,孙海艳,等.小偃麦异附加系的细胞学及分子标记鉴定.山东农大学报,2003,34(2):172-176
    [57] P. E. McGuire, J. Dvorak. High salt tolerance potential in wheatgrass.Crop Sci, 1981, 21: 702-705
    [58] D. R. Dewey. The genomic system of classification as a guide to intergeneric hybridization with the perennial Tritceae. In: Gustafson JP, ed. Gene manipulation in plant improvement. New York: Plenum Publishing Corp, 1984, 209-279
    [59] G. Fedak. Alien species as sources of physiological traits for wheat improvement. Euphytica, 1985, 34: 673-680
    [60] G. M. Littlejohn. Salt tolerance of amphiploids and derivatives of crosses between wheat and wild Thinopyrum species. In: Miller TE, Koebner RMD, eds. Proc 7th Int Wheat Genet Symp. Cambridge (UK): Institute of Plant Sci Res, 1988: 845-849
    [61] J. Dvorak, M. Edge, K. Ross. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proc Acad Sci USA, 1988, 85: 3805-3809
    [62] G. Y. Zhong, J. Dvorak. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L., genomes. Theor Appl Genet, 1995, 90: 229-236
    [63] B. A. Roundy. Emergence and establishment of Basin wild rye Elymus-Cinereus and tall wheatgrass Agropyron-Elongatum in relation to moisture and salinity. J Rang manage , 1985, 38: 126-131
    [64] J. X. Ma, R. H. Zhou, Y. S. Dong, et al. Gene location for resistance to wheat strip rust derived from Lophopyrum elongatum (Host) A. L?ve. Chin Science Bull, 1999, 44: 65-69
    [65] Z. J. Yang, Z. L. Ren. Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. L?ve genes for adult plant resistance to stripe rust in wheat background. Genet Resour Crop Ev , 2001, 48: 183-187
    [66] X. Shen, L. Kong, H. Ohm. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet, 2004, 108: 808-813
    [67] P. P. Jauhar, T. S. Peterson, S. S. Xu. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome, 2009, 52: 467-483
    [68] M. Garg, H. Tanaka, N. Ishikawa, et al. Agropyron elongatum HMW-glutenins have the potential to improve wheat end product quality through targeted chromosome introgression. J Cereal Sci, 2009, 50: 358-363
    [69] R. R. C. Wang, R. von Bothmer, J. Dvorak, et al. Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C, eds. Proc 2nd int Triticeae symp. Logan UT USA: Utah State University Press. 1994, 29-34
    [70] C. Yen, J. L. Yang, Y. Yen. Hitoshi Kihara, Askell Love and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotax Sin, 2005, 43: 82-93
    [71] H. Li, X. Wang. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics . 2009, 36(9): 557-565
    [72] J. Dvorak, D. Knott. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol, 1974, 16: 399-417
    [73] J. Dvorak, K. C. Chen. Distribution of nonstructural variation between wheat cultivars along chromosome arm 6Bp: evidence from the linkage map and physical map of the arm. Genetics, 1984, 106: 325-333
    [74] N. A. Tuleen, G. E. Hart. Isolation and characterization of wheat-Elytrigia elongate chromosome 3E and 5E addition and substitution line. Genome, 1988, 30: 289-292
    [75] A. Mujeeb Kazi, A. Cortes, A. Gul, et al. Production and cytogenetics of a new Thinopyrum elongatum/Triticum aestivum hybrid, its amphiploid and backcross derivatives. Pak J Bot, 2008, 40: 565-579
    [76] M. D. Gale, P. J. Sharp, S. Chao, et al. Applications of genetic markers in cytogenetic manipulation in wheat. Genome, 1989, 31: 137-142
    [77] U. Hohmann, K. Badaeva, W. Busch, et al. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome, 1996, 39: 336-347
    [78] P. M. Rogowsky, F. L. Y. Guidet, P. Langridge, et al. Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet, 1991, 82: 537-544
    [79] T. Schwarzacher, J. S. Heslop-Harrison, K. Anamthawat Jónsson, et al. Parental genome separation in reconstructions of somatic and premeiotic metaphases of Hordeum vulgare×H. bulbosum. J Cell Sci, 1992, 101: 13-24
    [80] G. Ishikawa, J. Yonemaru, M. Saito, et al. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics, 2007, 8: 135
    [81] M. S. You, B. Y. Li, Z. H. Tian, et al. Development of specific SSR markers for Ee-genome of Thinopyrum ssp. by using wheat microsatellites. J Agr Biotechnol, 2003, 11: 577-581
    [82] G. Y. Chen, P. Dong, Y. M. Wei, et al. Development of Ee-chromosome-specific RGAP markers for Lophopyrum elongatum (Host) A. L?ve in wheat background by using resistance gene analog polymorphism. Acta Agron Sin, 2007, 33: 1782-1787
    [83] G. Y. Chen, Y. M. Wei, Y. X. Liu, et al. Identification of resistance gene analogues (RGA) and development of E chromosome-specific RGA markers in wheat-Lophopyrum elongatum addition lines. Crop & Pasture Sci, 2010, 61: 929-937
    [84] X. Y. Zhang, Y. C. Dong, P. Li, et al. Distribution of E- and St- RAPD fragments in few genomes of Triticeae. Acta Genetica Sinic, 1998, 25(2): 131-141
    [85] C. Liu, Z. J. Yang, G. R. Li, et al. Analysis of St-chromosome-containing triticeae polyploids using specific molecular markers. Hereditas, 2007, 29(10): 1271-1279
    [86] Z. X. Zeng, Z. J. Yang, L. J. Hu, et al. Development of St genome specific ISSR marker. Acta Bot Boreal Occident Sin, 2008, 28(8): 1533-1540
    [87] S. B. Liu, J. Z. Jia, H. G. Wang, et al. Special chromosome markers for E genome and DNA polymorphism between Agropyron elongatum (2n=14) and common wheat detected by RAPD marker. Acta Agro Sin, 1998, 24: 687-690
    [88] S. Xue, Z. Zhang, F. Lin, et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet, 2008, 117: 181-189
    [89]白云,李欣,张丛卓,等.小麦新抗源CH7103抗条锈基因的遗传及其与已知基因的关系.麦类作物学报,2011,31(2):364-369
    [90] Z. S. Li, S. Rong, S. Chen, et al. Wheat wide hybridization. Beijing: Scientific Publishing Company, 1985
    [91] Q. Chen. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe-A landmark approach for Thinopyrum genome research. Cytogenet Genome Res, 2005, 109: 350-359
    [92] G. Ishikawa, T. Nakamura, T. Ashida, et al. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet, 2009, 118: 499-514
    [93] K. M. Devos, T. Millan, M. D. Gale. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet, 1993, 85: 784-792
    [94] M. G. Francki, O. R. Crasta, H. C. Sharma, et al. Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome, 1997, 40: 716-722
    [95] P. J. Larkin, P. M. Banks, E. S. Lagudah, et al. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome, 1995, 38: 385-394
    [96] C. L. McIntyre, B. C. Clarke, R. Appels. Ampli?cation and dispersion of repeated DNA sequences in the Triticeae.Plant Syst Evol , 1988, 160: 39-59
    [97] H. B. Zhang, J. Dvorak. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome, 1990, 33: 283-293
    [98] M. S. You, B. Y. Li, Z. H. Tian, et al. Development of speci?c SSR marker for Ee-genome of Thinopyrum ssp. by using wheat microsatellites. J Agr Biotechnol, 2003, 6: 577-581
    [99] M. S. You, B. Y. Li, Z. H. Tang, et al. Establishment of E-genome-specific RAPD and SCAR markers for Thinopyrum ssp. Journal of China Agricultural University, 2002, 7(5): 1-6
    [100] S. B. Liu, J. Z. Jia, H. G. Wang, et al. Identi?cation of homology between the Elytrigia elongatum (2n = 14, EE) and wheat chromosomes using biochemical and molecular markers. Acta Genetica Sinic, 1999, 1: 37-42
    [101] X. M. Li, B. S. Lee, A. C. Mammadov, et al. CAPS markers specific to Eb, Ee, and R genomes in the tribe Tritieae. Genome, 2007, 50: 400-411
    [102] R. R. C. Wang, S. R. Larson, K. B. Jensen. Analyses of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers. Genome, 2010, 53: 1083-1089
    [103] L. Zhang, H. Z. Yan, Y. L. Zheng, et al. Development of Ee-chromosome specific AFLP and STS molecular marker for Lophopyrum elongatum in Chinese Spring wheat background. J Agr Biotechnol, 2008, 16(3): 465-473
    [104] D. J. Mullan, A. Platteter, N. L. Teakle, et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005, 48: 811-822
    [105] H. B. Zhang, J. Dvorak. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome, 1990, 33: 283-293
    [106] C. B. Ding, Y. H. Zhou, R. W. Yang, et al. Relationships among Pseudoroegneria Species based on RAMP. Acta Botanica Yunnanica. 2005, 27(2): 163-170
    [107] Q. W. Dou, Z. G. Chen, Y. A. Liu, et al. High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breeding Sci, 2009, 59: 651-656
    [108] Y. Z. Ma, M. Tomita, L. X. Cao, et al. Isolation and characterization of a retrotransposon-like sequence derived from Thinopyrum intermedium. Acta Agronomica Sinica, 2004, 30(4): 299-303
    [109] K. Lu, Z. Xu, Z. Liu, et al. Fish analysis of a CRW-homology sequence from Pseudoroegneria spicata in Thinopyrum ponticum and Th. intermedium. Hereditas, 2009, 31(11): 1141-1148
    [110] R. M. Lister, D. J. Barbara, E. E. Kawata, et al. Development and use of cDNA probes in studies of barley yellow dwarf virus. In: Burnett PA, ed. World perspectives on barley yellow dwarf. Mexico, D. F., Mexico: CIMMYT, 1990, 186-193
    [111] Z. Y. Xin, H. J. Xu, X. Chen, et al. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology. Sci China Ser B, 1991, 34(9): 1055-1062
    [112] Z. Y. Zhang, Z. Y. Xin, Z. S. Lin, et al. Identification of molecular markers for the Thinopyrum intermedium chromosome 2Ai-2 with resistance to barley yellow dwarf virus. Acta Bot Sin, 2000, 42(10): 1051-1056
    [113] Z. Y. Zhang, L. L. Wang, Z. Y. Xin, et al. Development of new PCR markers specific to a Thinopyrum intermedium chromosome 2Ai-2 and cloning of the St-specific sequences. Acta Genetica Sinic, 2002, 29(7): 627-633
    [114] J. Q. Jia, G. R. Li, C. Liu, et al. Sequence variations of PDHA1 gene in Triticeae species allow for identifying wheat-alien introgression lines. Front Agric China, 2010, 4(2): 137-144
    [115] L. J. Hu, G. R. Li, Z. X. Zeng, et al. Molecular cytogenetic identi?cation of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011, 177: 169-177
    [116] L. J. Hu, G. R. Li, Z. X. Zeng, et al. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its dericed substitution line for resistance to stripe rust. J Appl Genet , 2011, 52(3): 279-285
    [117] K. Devos. Updating the ?crop circle?. Curr Opin Plant Biol, 2005, 8: 155-162
    [118] J. Salse, S. Bolot, M. Throude, et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell, 2008, 20: 11-24
    [119] J. A. Anderson, Y. Ogihara, M. E. Sorrells, et al. Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet, 1992, 83: 1035-1043
    [120] A. Mohan, A. Goyal, R. Singh, et al. Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes. The Plant Genome, 2007, 1: 3-13
    [121] K. F. X. Mayer, M. Martis, P. E. Hedley, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 2011, 23(4): 1249-1263
    [122] J. A. Udall, P. A. Quijada, T. C. Osborn. Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics, 2005, 169: 967-979
    [123] J. H. Xu, J. Messing. Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet, 2009, 119: 1397-1412
    [124] G. R. Li, C. Liu, T. Zhang, et al. The genomic evolution of the Thinopyrum and Dasypyrum: Evidence fromα-gliadin sequences. Annual Wheat Newsletter, 2010, 56: 41-44
    [125] X. F. Ma, P. Fang, J. P. Gustafson. Polyploidization-induced genome variation in triticale. Genome, 2004, 47: 839-848
    [126] Z. Tang, S. Fu, Z. Ren, et al. Rapid evolution of simple sequence repeat induced by allopolyploidization. J Mol Evol, 2009, 69: 217-228
    [127] J. M. Jiang, B. Friebe, B. S. Gill. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199-212
    [128] B. Friebe, J. M. Jiang, W. J. Raupp, et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59-87
    [129] B. Friebe, N. A. Tuleen, E. D. Badaeva, et al. Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome, 1996, 39: 272-276
    [130] C. Liu, G. R. Li, K. S. Sehgal, et al. Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst Evol , 2010, 288: 149-156
    [131] P. Okito, I. W. Mott, Y. Wu, et al. A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome, 2009, 52(4): 391-400
    [132] T. A. Jones, X. Y. Zhang, R. R. C. Wang. Genome characterization of MT-2 perennial and OK-906 annual wheat×intermediate wheatgrass hybrids. Crop Science, 1999, 39: 1041-1043
    [133] M. G. Redinbaugh, T. A. Jones, Y. T. Zhang. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome, 2000, 43: 846-852
    [134] M. Arterburn, A. Kleinhofs, T. Murray, et al. Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas, 2011, 148: 8-27
    [135] X. Y. Zhang, Y. S. Dong, R. R. C. Wang. Characterization of genomes and chromosomes in partial amphiploids of the hybrids Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39: 1062-1071
    [136] R. R. C. Wang, X. Y. Zhang. Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. Chromosome Res, 1996, 4: 583-587
    [137] G. Mirzaghaderi, H. Shahsevand Hassani, G. Karimzadeh. C-banded karyotype of Thinopyrum bessarabicum and identification of its chromosomes in wheat background. Genet Resour Crop Evol, 2010, 57: 319-324
    [138] X. W. Cai, S. S. Jones, T. D. Murray. Molecular cytogenetic characterization of Thionpyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thinopyrum amphiploid. Chromosome Res, 1998, 6: 183-189
    [139] A. Sepsi, I. Molnar, D. Szalay, et al. Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet, 2008, 116: 825-834
    [140] X. S. Tang, Z. S. Li, X. Jia, et al. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet, 2000, 100: 344-352
    [141]畅志坚.几个小麦-偃麦草新种质的创制和分子细胞遗传学分析:[博士学位论文].雅安:四川农业大学,1999
    [142] Q. Zheng, B. Li, S. Mu, et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49: 1109-1114
    [143] Q. Chen, R. L. Conner, F. Ahmad, et al. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum×Thinopyrum ponticum and T. aestivum×Th. intermedium assources of resistance to wheat streak mosaic virus and its vector Aceria tosichella. Theor Appl Genet, 1998b, 97: 1-8
    [144] Z. J. Chang, X. J. Zhang, Z. J. Yang, et al. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147(6): 304-312
    [145] S. X. Huang, A. Sirikhachornkit, X. J. Su, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA , 2002, 99: 8133-8138
    [146] G. Fedak, Q. Chen, R. L. Conner, et al. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica, 2001, 120: 373-378
    [147] L. Kong, M. Anderson, H. W. Ohm. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breeding, 2009, 128: 591-597
    [148] A. P. Roelfs, R. P. Singh, E. E. Saari. Rust diseases of wheat: concepts and methods of disease management. Mexico: CIMMYT, 1992
    [149] R. A. Mcintosh, Y. Yamazaki, J. Dubcovsky, et al. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, et al, eds. Proc 11th int wheat genet symp (on CD). Australia: University of Sydney Press, 2008, 143-150
    [150] Q. Chen, R. L. Conner, H. J. Li, et al. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat-Thinopyrum intermedium partial amphiploids. Genome, 2003, 46: 135-145
    [151] Z. J. Yang, G. R. Li, Z. J. Chang, et al. Characterization of a partial amphiploid between Triticum aestivum cv Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006, 149: 11-17
    [152] R. E. Oliver, X. Cai, S. S. Xu, et al. Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Sci, 2005, 45: 1353-1360
    [153] B. Friebe, J. Jiang, D. R. Knott, et al. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 1994, 34: 400-404
    [154] H. J. Li, R. L. Conner, Q. Chen, et al. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004, 47: 215-223
    [155] C. Liu, Z. J. Yang, J. Q. Jia, et al. Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun, 2009, 37: 363-372
    [156] B. Friebe, L. L. Qi, D. L. Wilson, et al. Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci, 2009, 49: 1221-1226
    [157] R. He, Z. Chang, Z. Yang, et al. Inheritance and mapping of a powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173-1180
    [158] P. G. Luo, H. Y. Luo, Z. J. Chang, et al. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059-1064
    [159] H. W. Ohm, J. M. Anderson, H. C. Sharma, et al. Registration of yellow dwarf virus resistant wheat germplasm line P961341. Crop Sci, 2005, 45: 805-806
    [160] Z. Y. Zhang, Z. Y. Xin, Y. Z. Ma, et al. Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci China C, 1999, 42: 663-668
    [161] H. Li, Q. Chen, R. L. Conner, et al. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome, 2003, 46: 906-913
    [162]钟冠昌,张荣琦,等.八倍体小偃麦与普通小麦杂交的细胞遗传学研究.作物学报,1987,13(3):187-192
    [163]张学勇、董玉琛.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究Ⅲ小麦和偃麦草基因重组的遗传基础浅析.遗传学报,1995,22(3):217-222
    [164] L. L. Qi, B. Friebe, P. Zhang, et al. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 2007, 15: 3-19
    [165] Prem P. Jauhar, Terrance S. Peterson. Cytologocal and molecular characterization of homoeologous group-1 chromosomes in hybrid derivaties of a Durum Disomic alien addition line. The plant genome. 2011, 4 (2): 102-109
    [166]张勇,刘朝辉,刘成,等.外源种质导入引发小麦表观遗传变异的MASP分析.科学通报,2007,52(24):2857-2865
    [167] A. Giure,赵锁劳.大粒小麦品种中控制籽粒体积基因的染色体定位.国外农学-麦类作物(麦类作物学报),1996,6:27-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700