用户名: 密码: 验证码:
CFRP片材加固混凝土梁抗剪承载力可靠度分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对现有结构进行加固与修复,可以充分发挥结构的潜力,满足结构使用功能的要求,同时能够带来巨大的经济效益和社会效益。碳纤维增强塑料(英文简称CFRP)片材凭借其高强、轻质、耐腐蚀、抗疲劳、无磁性、施工便捷等诸多优点,已广泛应用于混凝土结构构件的修复加固与改造工程当中。对混凝土梁构件进行抗剪加固可以有效提高其受剪承载力,避免脆性破坏模式地发生。目前,FRP抗剪加固混凝土梁承载力计算模型多是在钢筋混凝土梁受剪承载力计算方法的基础之上,基于对试验的分析而建立起来的。我国的《纤维增强复合材料工程应用技术规范》(征求意见稿)拟于近期正式发布。其中的一些设计条款的设计参数还缺乏足够的理论依据,具有一定的经验性。为了对相关参数有更为合理而又充分地认识,本文借助可靠度理论针对该规范中的一些设计条款进行了可靠度分析,并且在此基础上分析了考虑时间因素的不利环境对构件性能的影响,对加固构件的耐久性设计具有借鉴意义。
     本文采用JC法针对《纤维增强复合材料工程应用技术规范》(征求意见稿)中,FRP抗剪加固混凝土梁构件的设计方法进行了可靠度分析。研究表明,当采用粘贴FRP片材对混凝土梁进行U型、侧面粘贴或封闭粘贴等方式抗剪加固后,构件的可靠度水平与加固前相比均有不同程度地降低,三种加固方式可靠指标的降低幅度分别为19.2%-28.5%、7.4%-19.9%和17.1%-31.9%;荷载效应比、混凝土强度等级、钢筋的配箍率以及FRP加固量是影响可靠度指标的主要因素。
     为了对受剪加固系数进行深入的可靠度研究,本文引入了“可靠度加固率”的概念,即构件加固后与加固前可靠度指标的比值。经过对加固前后构件可靠度水平的分析计算,将U型加固、侧面粘贴加固和封闭粘贴加固三种加固模式下,用于确定FRP抗剪贡献的受剪加固系数与从概率的角度表征构件性能的可靠指标联系起来,建立了受剪加固系数与可靠度加固率之间的关系式。这样,可以根据不同的可靠度水平采用不同的受剪加固系数用于工程设计,做了以可靠度理论为基础的基于性能设计的探索性研究。
     建立了氯离子侵蚀环境下构件抗剪承载力随时间变化的计算模型,在此基础上进行了时变剪力分析。采用Monte Carlo-JC法计算了氯离子环境下梁的时变可靠度,并进行参数分析。结果表明,箍筋的保护层较小,与纵筋相比更容易发生锈蚀;氯离子环境下,当考虑箍筋与纵筋同时发生锈蚀对构件受剪性能的影响时,构件达到50年服役期后,其受剪承载力仅为初始时刻的40.6%,可靠指标仅为初始时刻的15.6%-32.2%;采用CFRP对构件进行加固可以有效提高构件的受剪承载力,并且减小可靠指标的衰减速率,延长构件的使用寿命;保护层厚度和锈蚀电流对构件受剪承载力时变可靠度影响较大
Strengthening and rehabilitation of existing reinforced concrete structures can fully tap the potential of the structure, meet the different requirements of using function of structure, and bring enormous economic and social benefits as well. Due to their advantages of high tensile strength, low mass density, corrosion resistance, fatigue endurance, nonmagnetic, easy treatment during construction, etc, carbon fiber reinforced polymer (CFRP) laminates have been widely applied to strengthening reinforced concrete components. Their shear capacities would be therefore improved and the brittle failure model could also be avoided, effectively. So far, the computational models of the shear capacity of concrete beams strengthened with FRP are experienmentally based on those for conventional unstrengthened reinforced concrete beams. The draft of design guideline'Technical Specification for Engineering Application of Fiber Reinforced Polymers'is coming soon. Some design parameters of relevant provisions in this guideline are short of theorectial basis and empirical to some extent. To make a comprehensive and reasonable understanding of those design parameters, those design provisions were assessed from a probabilistic point of view. After this, the effect of environmental factor on the performance of components was also taken into account, which is meaninigful for developing a durability-based reliability design method for FRP strengthened reinforced concrete structures.
     The Rackwitz-Fiessler method was used to study the reliability of the shear design method of FRP reinforced concrete beams in the'Technical Specification for Engineering Application with Fiber Reinforced Polymer'(Draft). The research results showed that the application of FRP laminates to the beams might lead to a decrease in reliability level compared with the unstrengthened ones, no matter which mode was adopted. The depressed scopes of reliability index of the three modes were 19.2%~28.5%,7.4%~19.9% and 17.1%-31.9%, respectively. The effects of the load effect factor, concrete strength grade, stirrup reinforcement ratio and FRP reinforcement ratio on reliability were great.
     In order to make a further investigation on the resistance factor from the probabilistic point of view, a so-called reliability strengthening ratio was introduced, which was defined as the ratio of average reliability indexes of beams after and before strengthening. By calculating the reliability indexes of unstrenghted beams and strenghted ones using U jacketing, side bonding and complete wrapping strengthening modes, the relationships between resistance factor and reliability strengthening ratio of three strengthening modes, which characterized the structural performance applying probabilistic approach, were drawn. So different resistance factor could be used according to different reliability strengthening ratio. The performance-based research work, which was based on probability theory, was explored.
     The time-dependent ultimate state functions of beams before and after FRP shear strengthening were established on the basis of the time-dependent resistances and time variant load effects, under the chlorine-circumstance. The time-dependent shear capacity analysis of pre-and post-strengthened reinforced concrete beams was carried out. The Monte Carlo-Rackwitz-Fiessler method was used to study the time-dependent reliability with an emphasis on chloride-ingress corrosion in reinforcement. The research results showed that the stirrups, with smaller concrete covers, were prone to be corroded. Significant degradation of shear capacity and reliability of the beams exposed to chloride environmental conditions were observed. When it is approaching the end of 50-year service life and the effect of corrosion of both stirrups and longitudinal bars to shear capacity was considered, the shear capacity dropped to 40.6%, and the scope of reduced reliability indexes was 15.6%-32.2%, compared with the initial moment. CFRP laminates were effective to enhance shear capacity, decrease the decay rate of reliability index, and prolong the service life of components. The effects of concrete cover and corrosion current on time-dependent reliability were notable.
引文
1.张益多,刘荣桂.混凝土结构加固技术研究及应用综述[J].江苏大学学报(自然科学版).2003,24(6):91-94.
    2. 李永川,黄勇.关于土木工程中的FRP应用问题[J].东北电力学院学报.2005,2(4):56-60.
    3.霍艳华.锈蚀钢筋混凝土简支梁受剪承载力研究[D].南昌:南昌大学学位论文.2007.
    4.赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版),2008,42(1):19-24.
    5. Japan Society of Civil Engineers.1997. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials [R]. Concrete Engineering Series 23, Tokyo, Japan.
    6. ACI 440.1R-06. Guide for the design and construction of concrete reinforced with FRP bars [R]. American Concrete Institute. Detroit, MI, USA,2006.
    7. ACI 440.2R-02. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [R]. American Concrete Institute. Detroit, MI, USA, 2002.
    8. ISIS Design Manual No.3. Reinforcing concrete structures with fiber reinforced polymers (FRP) [R]. ISIS Canada Corporation. Manitoba. Canada,2001.
    9. ISIS Design Manual No.4. Strengthening reinforced concrete structures with externally-bonded fiber reinforced polymers [R]. ISIS Canada Corporation. Manitoba. Canada,2001.
    10. CEB-FIP Bulletin No.14. Externally bonded FRP reinforcement for RC structures [R]. Technical report on the'Design and use of externally bonded fiber reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures'. Task Group 9.3, Lausanne, Switzerland,2001.
    11. CSA S806-02. Design and construction of building components with fibre-reinforced polymers [R]. Canadian Standard Association International, Toronto, Ontario, Canada, 2002.
    12.中国工程建设标准化协会标准.碳纤维片材加固混凝土结构技术规程(CECS146:2003)[S].北京:计划出版社,2003.
    13.中华人民共和国国家标准.纤维增强复合材料土木工程应用技术规范(征求意见稿)[S].北京,2006.
    14.吴刚.FRP加固钢筋混凝土结构的试验研究与理论分析[D].南京:东南大学学位论文,2002.
    15.夏春红,王溥.碳纤维布加固RC梁抗剪试验研究[C].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集,岳清瑞主编,昆明,2002,pp.163-168.
    16. Al-Sulaimani G. J., Sharif A., Basunbul I., Baluch M. H. and Ghaleb B. N. Shear repair for reinforced concrete by fiberglass plate bonding [J]. ACI Structural Journal,1994, 91(3):458-464.
    17. Chaallal O., Nollet M. J. and Perraton D. Strengthening of reinforced concrete beams with externally bonded fibre-reinforced-plastic plates:design guidelines for shear and flexure [J]. Cannadian Journal of Civil Engeering,1998,25(4):692-704.
    18. Triantafillou T. C. Shear strengthening of reinforced beams using epoxy-bonded FRP composites [J]. ACI Structural Journal,1998,95(2):386-394.
    19. Triantafillou T.C. and Antonopoulos C. P. Design of concrete flexural members strengthened in shear with FRP [J]. Journal of Composites for Construction,2000,4(11): 198-205.
    20. Khalifa A., Gold W.J., Nanni A. and Aziz A. Contribution of externally bonded FRP to shear capacity of RC flexural members [J]. Journal of Composites for Construction,1998, 2(11):195-202.
    21. Khalifa A. and Nanni A. Improving shear capacity of existing RC T-section beams using CFRP composites [J]. Cement and Concrete Composites,2000,22(2):165-174.
    22. Khalifa A. and Nanni A. Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP [J]. Construction and Building Materials,2002,16(3): 135-146.
    23. Deniaud C. and Cheng J. R. Review of shear design methods for reinforced concrete beams strengthened with fiber reinforced polymer sheets [J]. Cannadian Journal of Civil Engineering.2001,28(2):271-281.
    24. Penllegrino C. and Modena C. Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement [J]. Journal of Composites for Construction,2002,5 (3):104-111.
    25. Chaallal O., Shahawy M. and Hassan M. Performance of reinforced concrete T-girders strengthened in shear with carbon fiber-reinforced polymer fabric [J]. ACI Structural Journal,2002,99(3):335-343.
    26.谭壮,叶列平.纤维复合材料布加固混凝土梁受剪性能的试验研究[J].土木工程学报,2003,36(11):12-18.
    27.任海东,黄承逵,赵国藩,于建.玻璃纤维布加固二次受力钢筋混凝土梁抗剪试验研究[J].大连理工大学学报,2004,44,(3):425-430.
    28. Chen J. F. and Teng J. G. Shear capacity of FRP-strengthened RC beams:FRP debonding [J]. Construction and Building Materials,2003,17:27-41.
    29.曹双寅,滕锦光,陈健飞,邱洪兴.外贴纤维加固梁斜截面纤维应变分布的试验研究[J].土木工程学报,2004,36(11):6-11.
    30.李松辉,赵国藩.CFRP加固钢筋混凝土梁受剪承载能力实用计算方法[J].土木工程学报,2005,38(7):75-80.
    31.陆新征,叶列平,陈建飞,李天虹.混凝土梁外贴FRP抗剪加固承载力计算[J].建筑结构,2006,36(9):31-36.
    32.叶列平,陆新征,腾锦光,陈建飞.FRP片材加固混凝土梁剥离承载力计算及设计[J].建筑结构,2007,37(12):79-82.
    33.周英武,王苏岩.FRP加固钢筋混凝土梁抗剪计算公式的对比分析[J].铁道科学与工程学报,2005,2(3):22-28.
    34.陈俊.纤维增强塑料加固钢筋混凝土梁斜截面受力特性实验研究[D].南京:东南大学学位论文.2001.
    35.吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗剪加固的试验研究[J].建筑结构, 2000,30,(7):16-20,51.
    36.冯雪松,陈忠范.外包碳纤维布加固梁抗剪性能的试验研究[J].工业建筑,2004年增刊:89-93.
    37.邓宗才,张建军,杜修力.纤维布抗剪加固混凝土梁的研究与发展[J].高科技纤维与应用,2005,30(6):31-34,41.
    38.任海东,黄承速,于建.玻璃纤维布用于加固钢筋混凝土梁抗剪性能研究[J].混凝土,2003,(5):35-37.
    39. Khalifa A., Tumialan G., Nanni A. and Belarbi A. Shear strengthening of continuous reinforced concrete beams using externally bonded CFRP sheets [C]. Proceedings of the 4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS-4), edited by Dolan C.W. Rizkalla S.H. and Nanni A. University of Toronto, American, Baltimore, Nov,1999, pp.995-1008.
    40.敬大德.在役RC桥梁基于可靠度的耐久性分析[D].长安:长安大学学位论文,2006.
    41. Plevris N., Triantafillou T. C. and Veneziano D. Reliability of RC members strengthened with CFRP laminates [J]. Journal of Structural Engineering, ASCE,1995,121(7): 1037-1044.
    42. Okeil A. M., El-Tawil S. and Shahawy M. Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates [J]. Journal of Bridge Engineering, ASCE.2002,7(5):290-299.
    43. Pham H. B. and Al-Mahaidi R. Reliability analysis of bridge beams retrofitted with fiber reinforced polymers [J]. Composite Structures,2008,82(2):177-184.
    44. Egyptian code for design and construction of fiber reinforced polymers [S]. Standing committee established by the housing and building research centre in Egypt. Cairo, Egypt,2005.
    45.向志虎.碳纤维布加固构件的可靠度与全过程质量控制研究[D].武汉:武汉大学学位论文.2004.
    46.董旭峰.智能CFRP加固钢筋混凝土结构荷载效应与可靠度模拟测评[D].哈尔滨:哈尔滨工业大学学位论文.2005.
    47.朱剑俊.碳纤维加固钢筋混凝土受弯构件研究及其可靠性分析[D].杭州:浙江工业大学学位论文.2003.
    48.卢少微,谢怀勤.Monte Carlo法模拟CFRP加固梁的抗弯可靠度[J].武汉理工大学学报,2005,27(12):45-48.
    49.黄永春.基于ACI和ISIS设计指南的FRP配筋混凝土构件可靠度评估[D].哈尔滨:哈尔滨工业大学学位论文.2005.
    50.何政,黄永春.应用Monte Carlo-JC法评估FRP加固RC梁受弯承载力可靠度[J].复合材料学报,2007,24(1):116-121.
    51.姜良芹.基于CECS146的FRP加固梁正截面受弯承载力可靠度分析[D].哈尔滨:哈尔滨工业大学学位论文.2006.
    52.孙琦.基于耐久性的FRP加固现役钢筋混凝土梁受弯承载力可靠度分析[D].哈尔滨:哈尔滨工业大学学位论文.2008.
    53.中国工程建设标准化协会标准.混凝土结构耐久性评定标准(CECS 220:2007)[S].北京:中国建筑工业出版社,2007.
    54.孙晓燕.服役期及加固后的钢筋混凝土桥梁可靠性研究[D].大连:大连理工大学学位论文.2004.
    55. Val D.V. Reliability of fiber-reinforced polymer-confined reinforced concrete columns [J]. Journal of Structural Engineering, ASCE,2003,129(8):1122-1130.
    56. ACI 318-99. Building code requirements for structural concrete and commentary (ACl 318-99) [S]. American Concrete Institute, Detroit, MI, USA,1999.
    57. Al-Tersawy S. H., Hodhod O. A. and Hefnawy A. A. Reliability and code calibration of RC short columns confined with CFRP wraps [C]. Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-8), Triantafillou T. C. (ed.), Patras, Greece,2007, ID:14-8.
    58.林志钊.CFRP加固混凝土柱抗剪承载力可靠度分析[J].黎明职业大学学报,2004,3:45-48.
    59.张大山.CFRP加固轴心受压钢筋混凝土圆柱可靠度分析与设计[D].哈尔滨:哈尔滨工业大学学位论文.2007.
    60. ACI 440.2R-XX. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [R] (submitted to TAC). American Concrete Institute. Detroit, MI, USA, July,2007.
    61. Atadero R. A. and Karbhari V. M. Probabilistic based design for FRP strengthening of reinforced concrete [C]. Proceedings of the 7th International Symposium Fiber-Reinforcement for Concrete Structures (FRPRCS-7). Shield C. K. et. al. (ed.), Kansas City, MO, USA,2005.
    62. Atadero R., Lee L. and Karbhari V. M. Consideration of material variability in reliability analysis of FRP strengthened bridge decks [J]. Composite Structures,2005,70(4): 430-443.
    63. Sen R., Shahawy M., Rosas J. and Sukumar S. Durability of aramid fiber reinforced plastic pretensioned elements under tidal/thermal cycles [J]. ACI Structural Journal,1999, 96(1):95-104.
    64. Sen R., Shahawy M., Sukumar S. and Rosas J. Durability of carbon fiber reinforced polymer (CFRP) pretensioned elements under tidal/thermal cycles [J]. ACI Structural Journal,1999,96(3):450-457.
    65. Sen R., Shahawy M., Mullins G. and Spain J. Durability of carbon fiber-reinforced polymer/epoxy/concrete bond in marine environment [J]. ACI Structural Journal,1999, 96(6):906-914.
    66. Karbhari V. M., Chin J. W., Hunston D., Benmokrane B., Juska T., Morgan R., Lesko J. J., Sorathia U. and Reynaud D. Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure [J]. Journal of Composites for Construction, ASCE, 2003,7(3):238-247.
    67. ACI 440R-07. Report on fiber-reinforced polymer (FRP) reinforcement for concrete structures [R]. American Concrete Institute, Farmington Hills, MI, USA,2007.
    68.任慧韬.纤维增强复合材料加固混凝土结构基本力学性能和长期受力性能研究[D].大连:大连理工大学学位论文,2003.
    69.肖建庄,于海生,秦灿灿.复合材料加固混凝土结构耐久性研究[J].玻璃钢/复合材料,2003,(2):16-21.
    70.肖建庄,于海生.纤维布与混凝土间的粘结耐久性试验研究[J].同济大学学报(自然科学版),2005,3(3):291-296.
    71. Grace N. F. and Singh S. B. Durability evaluation of carbon fiber-reinforced polymer strengthened concrete beams:experimental study and design [J]. ACI Structural Journal. 2005,102(1):40-53.
    72.郭春红.FRP力学性能和FRP及其加固混凝土结构耐久性能的评价研究[D].北京:中冶集团建筑研究总院硕士论文,2006.
    73.杨勇新,岳清瑞,郭春红,赵颜和才鹏.FRP耐久性评价方法[J].工业建筑,2006,36(8):6-9.
    74. Karbhari V. M. and Abanilla M. A. Design factors, reliability, and durability prediction of wet layup carbon/epoxy used in external strengthening [J]. Composites:Part B Engineering,2007,38:10-23.
    75. Walker R. A. and Karbhari V. M. Durability based design for FRP rehabilitation of concrete [C]. Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-8). Triantafillou T. C. (ed.), Patras, Greece. July,2007, ID:13-7.
    76. Technical Report 55. Design guidance for strengthening concrete structures using fiber composites [R]. The Concrete Society, Crowthorne, Berkshire, UK.2000.
    77. Bonacci J. F. and Maalej M. Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams [J]. ACI Structural Journal,2000, 97(5):703-711.
    78. Sherwood E.G. and Soudki K.A. Rehabilitation of corrosion damaged concrete beams with CFRP laminates—a pilot study [J]. Composites:Part B,2000, (31):453-459.
    79. Maaddawy T. E. Behavior of corrosion-damaged RC columns wrapped with FRP under combined flexural and axial loading [J]. Cement and Concrete Composites,2008, (30): 524-534.
    80.左宏斌.海水腐蚀下碳纤维增强钢筋混凝土梁柱试验研究与分析[D].天津:天津大学硕士论文,2002.
    81.毕永清.碳纤维增强钢筋混凝土梁、柱抗海水腐蚀的试验研究[D].天津:天津大学硕士论文,2002.
    82. Gadve S., Mukherjee A. and Malhotra S.N. Corrosion of steel reinforcements embedded in FRP wrapped concrete [J]. Construction and Building Materials,2008.
    83. Debaiky A.S., Green M. F. and Hope B. B. Long-term monitoring of carbon fiber-reinforced polymer-wrapped reinforced concrete columns under severe environment [J]. ACI Structural Journal,2006,103(6):865-873.
    84. Masoud S. and Soudki K. Evaluation of corrosion activity in FRP repaired RC beams [J]. Cement and Concrete Composites,2006,28(10):969-977.
    85. Debaiky A. S., Green M. F. and Hope B. B. Carbon fiber-reinforced polymer wraps for corrosion control and rehabilitation of reinforced concrete columns [J]. ACI Materials Journal,2002,99(2):129-137.
    86. Teng M. H., Sotelino E. D. and Chen W. F. Performance evaluation of reinforced concrete bridge columns wrapped with fiber reinforced polymers [J]. Journal of Composites for Construction, ASCE,2003,7(2):83-92.
    87. Suh K., Mullins G., Sen R. and Winters D. Effectiveness of fiber-reinforced polymer in reducing corrosion in marine environment [J]. ACI Structural Journal,2007,104(1): 76-83.
    88. Pantazopoulou S. J., Bonacci J. F., Sheikh S., Thomas M. D. A. and Hearn N. Repair of corrosion-damaged columns with FRP wraps [J]. Journal of Composites for Construction, ASCE,2001,5(1):3-11.
    89.牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003,pp.37.
    90.牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995,25(6):36-38.
    91.牛荻涛.海洋环境下混凝土强度的经时变化模型[J].西安建筑科技大学学报,1995,27(1):49-52.
    92.李田,刘西拉.混凝土结构的耐久性设计[J].土木工程学报,1994,27(2):47-55.
    93. CEB-FIP Model Code 1990 [R]. Thomas Telford Services Ltd. London, UK,1993, pp. 51-52.
    94. ISO 2736-2:1986. Concrete Tests-Test Specimens-Part 2:Making and curing of test specimens for strength Tests [R]. Technical Committee/Subcommittee TC71/SC1, International Organization for Standardization, Geneva, Switzerland,1986.
    95.张笑冬.钢筋混凝土桥梁耐久性影响因素分析[J].黑龙江交通科技.2007,(2):44-45.
    96. Mejlbro L. The complete solution of Fick's second law of diffusion with time-dependent coefficient and surface concentration [R]. Durability of Concrete in Saline Environment, Cementa AB, Danderyd, Sweden,1996, pp.127-158.
    97. Ferreira R. M. and Jalali S. Software for probability-based durability analysis of concrete structures [C]. Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting(ICCRRR), Alexandereds.2006 Taylor and Francis Group, London, UK, pp.321-326.
    98. Schiessl P. New approach to service life design of concrete structrue [J]. Asian Journal of Civil Engineering (Building and Housing).2005,6(5):393-407.
    99. Edvardsen C. and Mohr L. Duracrete-a guideline for durability-based design of concrete structures [C]. Proceedings of fib Symposium on Structural Concrete-the Bridge between people. Prague, October 1999.
    100.Hong H. P. Assessment of reliability of aging reinforced concrete structures [J]. Journal of Structural Engineering, ASCE,2000,126(12):1458-1465.
    101.Enright M. P. and Frangopol D. M. Condition prediction of deteriorating concrete bridges using bayesian updating [J]. Journal of Structural Engineering, ASCE,1999,125(10): 1118-1125.
    102.Stewart M. G. and Rosowsky D. V. Time-dependent reliability of deteriorating reinforced concrete bridge decks [J]. Structural Safety,1998,20:91-109.
    103.Stewart M. G and Rosowsky D. V. Structural safety and serviceability of concrete bridges subject to corrosion [J]. Journal of Infrastructure Systems,1998,4(4):146-155.
    104.The European Union-Brite EuRam III. Probabilistic performance based durability design of concrete structures [R]. DuraCrete final technical report, Project No. BE95-1347, Lyngby, Denmark,2000.
    105.Vu K. A. and Stewart M. G. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Structural Safety,2000,22(4):313-333.
    106.Li C. Q. Reliability based service life prediction of corrosion affected concrete structures [J]. Journal of Structural Engineering, ASCE,2004,130(10):1570-1577.
    107.Duprat F. Reliability of RC beams under chloride-ingress [J]. Construction and Building Materials,2007,21:1605-1616.
    108.Liu T. and Weyers R. W. Modeling the dynamic corrosion process in chloride contaminated concrete structures [J]. Cement Concrete Research,1998,28(3):365-379.
    109.Yalcyn H. and Ergun M. The prediction of corrosion rates of reinforcing steels in concrete [J]. Cement Concrete Research,1996,26(10):1593-1599.
    110.Jung W. Y., Yoon Y. S. and Sohn Y. M. Predicting the remaining service life of land concrete by steel corrosion [J]. Cement and Concrete Research,2003, (33):663-677.
    111.Bertolini L., Elsener B., Pedeferri P. and Polder R. B. Corrosion of steel in concrete: prevention, diagnosis, repair [M]. Wiley-VCH, Weinheim, Germany,2004, pp.104-108.
    112.Val D. V., Stewart M. G. and Melchers R. E. Effect of reinforcement corrosion on reliability of highway bridges [J]. Engineering Structures,1997,20(11):1010-1019.
    113.中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    114.史志华,胡德忻,陈基发.钢筋混凝土结构安全度水准修订评估[J].建筑科学,2002年增刊,18(2):50-57.
    115.胡德忻,马坤贞.钢筋混凝土结构可靠度的研究[J].建筑结构学报,1987,8(3):16-22.
    116.Monti G. and Santin S. Reliability-based calibration of partial safety coerricients for fiber-reinforced plastic [J]. ASCE. Journal of Composites for Construction,2002,6(3): 162-167.
    117.金建平.CFRP带载约束加固混凝土圆柱轴压力学性能试验研究[D].沈阳:东北大学学位论文.2008.
    118.朱红,张继文.结构加固过程中CFRP布基本力学性能的检测[C].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集,岳清瑞主编,昆明,2002,pp.324-328.
    119.Shield C., Alkhrdaji T. and Okeil A. Reliabibity for shear. Submitted to ACI 440 subcommittee task group on reliabibity for shear.2007.
    120.殷志文,曲延全.钢筋混凝土梁受剪承载力计算公式的比较[J].公路交通科技,2007,24(7):76-81.
    121.Diagana C., Li A., Gedalia B. and Delmas Y. Shear strengthening effectiveness with CFF strips [J]. Engineering Structures,2003, (25):507-516.
    122.Adhikary B. B., Mutsuyoshi H. and Ashraf M. Shear strengthening of reinforced concrete beams using fiber-reinforced polymer sheets with bonded anchorage [J]. ACI Structural Journal,2004,101(5):660-668.
    123.Khalifa A., Lorenzis L.D. and Nanni A. FRP composites for shear strengtheneing of RC beams [C]. Advanced Composite Materials in Bridges and Structures,3rd International Conference(ACMBS-3), edited by Humar J. L., Ottawa and Ontario. Canada,2000, pp. 137-144.
    124.Deniaud C. and Cheng J. R. Reinforced concrete T-beams strengthened in shear with fiber reinforced polymer sheets [J]. Journal of Composites for Construction, ASCE,2003, 7(4):302-310.
    125.Deniaud C. and Cheng J. R. Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets [J]. ACI Structural Journal,2001,98, (3):386-394.
    126.Taerwe L., Khalil H. and Matthys S. Behaviour of R/C beams strengthened in shear by external CFRP sheets[C]. Proceedings of the 3rd International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPRCS-3), edited by Okamura H., Morita S. and Uomoto T. Sapporo, Japan, October,1997: 483-490.
    127.Kamiharako A., Maruyama K., Takada K. and Shimomura T. Evaluation of shear contribution of FRP sheets attached to concrete beams [C]. Proceedings of the 3th International Symposium on Non-Metallic FRP for Concrete Structure, edited by Okamura H., Morita S. and Uomoto T. Japan Concrete Institute, Sapporo, Japan,1997, pp.467-474.
    128.Umezu K., Fujita M., Nakai H. and Tamaki K. Shear behavior of RC beams with aramid fiber sheet [C]. Proceedings of the 3th International Symposium on Non-Metallic FRP for Concrete Structure, edited by Okamura H., Morita S. and Uomoto T. Japan Concrete Institute, Sapporo, Japan, July,1997, pp.491-498.
    129.Funakawa I., Shimono K., Watanabe T., Asada S. and Ushijima S. Experimental study on shear strengthening with continuous fiber reinforcement sheet and methyl methacrylate resin [C]. Proceedings of the 3th International Symposium on Non-Metallic FRP for Concrete Structure, edited by Okamura H., Morita S. and Uomoto T. Japan Concrete Institute, Sapporo, Japan, July,1997, pp.475-482.
    130.Ianniruberto U. and Imbimbo M. Role of fiber reinforced plastic sheets in shear response of reinforced concrete beams:experimental and analytical results [J]. Journal of Composites for Construction,2004,8(5):415-424.
    131.郝震.外贴碳纤维(CFRP)加固梁斜截面受力性能的实验研究[D].东南大学硕士学位论文,2004.
    132.张国栋,朱暾.碳纤维加固一次受力钢筋混凝土梁试验研究[J].武汉水利电力大学(宜昌)学报.2000,2(4):283~285,294.
    133.赵彤,谢剑,戴自强.碳纤维布提高钢筋混凝土梁受剪承载力试验研究[J].建筑结构.2000,30(7):11-15.
    134.李松辉.碳纤维布加固桥梁的设计理论研究[D].大连:大连理工大学学位论文.2003.
    135.中华人民共和国国家标准.建筑结构荷载规范(GB 50009-2001)[S].北京:中国建筑工业出版社,2001.
    136.中华人民共和国国家标准.建筑结构可靠度设计统一标准(GB500682001)[S].北京:中国建筑工业出版社,2001.
    137.赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    138.Rackwitz R. and Fiessler B. Structural reliability under combined random load sequences [J]. Computer and Structures,1978,9(5):489-494.
    139.王福保,闵华玲,叶润修.概率论与数理统计[M].第二版.上海:同济大学出版社.1988.
    140.Romeu J. L. Kolmogorov-Simirnov:a goodness of fit test for small samples [J]. RAC, Selected Topics in Assurance Related Technologies,2003,10(6):1-6.
    141.Romeu J. L. Anferson-Darling:a goodness of fit test for small samples assumptions [J]. RAC, Selected Topics in Assurance Related Technologies,2003,10(5):1-6.
    142.惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):10-13.33.
    143.Jones D. A. Principles and prevention of corrosion [M] (2nd edition). Prentice Hall, New York, USA,1995.
    144.张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001,34(5):40-44.
    145.田瑞华,颜桂云,孙炳楠.锈蚀钢筋混凝土构件抗剪承载力的试验研究与理论分析[J].四川建筑利学研究.2003,29(3):36-38.
    146.余璠璟.锈蚀钢筋混凝土梁斜截面性能试验研究和分析[D].南京:河海大学学位论文.2005.
    147.邵卓民,沈文都,徐有邻.钢筋混凝土的锚固可靠度及锚固设计[J].建筑结构学报,1987,8(4):36-49.
    148.User's Manual for Life-365 (v2.0). Computer program for predicting the service life and life-cycle costs of reinforced concrete exposure to chlorides [R]. The Silica Fume Association, January,2008.
    149.Maaddawy E., Chahrour A. and Soudki K. Effect of fiber-reinforced polymer wraps on corrosion activity and concrete cracking in chloride-contaminated concrete cylinders [J]. Journal of Composites for Construction, ASCE,2006,10(2):139-147.
    150.Wootton I. A., Spainhour L. K. and Yazdani N. Corrosion of steel reinforcement in carbon fiber-reinforced polymer wrapped concrete cylinders [J]. Journal of Composites for Construction, ASCE,2003,7(4):339-347.
    151.Masoud S., Soudki K. and Topper T. CFRP-strengthened and corroded RC beams under monotonic and fatigue loads [J]. Journal of Composites for Construction, ASCE,2001, 5(4):228-236.
    152.Maaddawy E. and Soudki K. Carbon-fiber-reinforced polymer repair to extend service life of corroded reinforced concrete beams [J]. Journal of Composites for Construction, ASCE,2005,9(2):187-194.
    153.姚继涛.服役结构可靠性分析方法[D].大连:大连理工大学学位论文,1996.
    154.张俊芝.在役工程结构和工程系统可靠性理论及应用[D].武汉:武汉理工大学学位论文,2001.
    155.贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003.
    156.牛荻涛,王庆霖.服役结构的动态可靠性[J].工程力学,1996增刊,pp.692-695.
    157.张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社,2007,pp.63-64,72-73.
    158.欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑,1995,25(8):11-16,35.
    159.Mori Y. and Ellingwood B. R. Reliability-based service-life assessment of aging concrete structures [J]. Journal of Structural Engineering, ASCE,1993,119(5):1600-1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700