用户名: 密码: 验证码:
基于云计算的地学G~4I系统结构设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是国民经济发展所需的重要物质基础,国家“十二五”规划对资源战略部署提出了明确要求。矿产资源预测是资源发现与勘察中的指导性工作。由于矿产资源预测属于系统工程,近四十年来,国内外众多学者与科研团体在矿产资源预测研究领域的不懈努力与投入,形成了以矿产资源预测理论、方法及技术为主要内容的数学地质学重要分支。进入二十一世纪以来,随着矿产资源预测理论的不断进步,以及与地学信息(计算机技术、3S技术,SAR技术)的不断融合,以矿产资源预测理论为内核,以空间数据库为基础,以精细化、智能化及三维可视化功能为目标的地学软件系统—矿产资源预测系统不断出现。由于矿产资源预测系统属于复杂的地学信息工程,涉及到跨学科数据集成及地学大数据融合分析、地质空间建模、矿产资源定位定量预测等一系列过程,其中高性能计算或云计算为地学大数据快速处理提供了高效手段,因此基于云计算条件下的矿产资源预测系统已成为当代学科的前沿研究方向;而云计算下的地学G~4I系统是导师几年来科研主攻方向之一,作者作为课题的主要参加人员承担了该系统的结构设计工作。复杂系统的结构设计是实现系统研制的先导性工作,本文所做的工作是在地学G~4I系统基础上就云计算架构的从新整合及其系统的更新设计,目的是使系统成为嵌入式的云计算重要结点,为系统的云计算升级提供理论与技术准备。
     我国地学软件系统开发起步较晚,自上世纪九十年代后期因加大科技投入,科技成果明显增多,功能多为地学测量及制图系统;以矿产资源预测及地质灾害预警为目标的地学软件系统在我国并不多见。由于矿产资源预测系统的技术层面涉及地学基础理论与信息领域中的许多高新技术,我国地学软件系统在质与量竞争力上均有待提高,矿产资源预测系统的水平在某种程度上代表我国地学科技竞争力,目前本领域的国内外研究趋势具有如下特点:
     系统赖以支撑的空间数据链多元化,数据类型涉及地质学、地球物理学、地球化学、地质遥感等众多学科,地学空间数据库的设计涉及到空间数据集合、空间数据管理、空间数据应用等若干子系统,多学科地学数据库融合与图形图像数据互操作技术成为系统的基本功能。在可能条件下,地学数据的元数据设计以成为不可缺少的内容,空间数据挖掘与空间数据仓库设计日益成为地学空间数据库研究的重要方向。
     目前,国内外矿产资源预测在系统集成、图形图像表达、数据库及互操作技术方面日益成熟,主要的技术热点是系统的内核理论支持与地学模型数值计算方面;同时,由于矿产资源预测中的关键环节—地质找矿模型在很大程度上依赖于找矿专家头脑的知识结构,此前,曾出现过不少地质找矿专家系统,但应用效果均不理想,甚至曾一度中断过地质成矿专家系统的开发工作。实践证明,矿产资源预测中,机器始终不能代替找矿专家的知识水平,其原因在于机器对人脑智能仿真程度尚处低级阶段,使得目前预测过程完全自动化产生的效果不尽如意。采用人机交互式操作或机器学习相结合方式效果更好。所谓人机交互是指在系统运行过程中将人工智能作为一个独立操作模块,采用人工解释与机器学习交错并行的方式执行系统设定的技术路线。
     由于互联网技术、虚拟现实技术及近年来云计算技术的兴起,使得基于Internet/Intranet的信息资源共享平台研制成为可能,尤其是云计算技术为复杂地学计算提供了远程服务条件,同一地学问题并行计算可扩展到无限空间范围内进行,因此将云计算技术融进矿产资源预测系统开发成为一种发展趋势。
     综上所述,针对矿产资源系统研制中所面临的各项技术问题,本文结合地学G~4I初级版本的技术积累,在融入矿产资源预测新理论和创新方法条件下,开展地学G~4I系统的技术集成与结构设计研究。其中重要的模块是将有关地质找矿专家的知识结构作为系统的有机部分,采用人机交互方式的执行方式构成系统一大特色,即在功能模块设计中,将机器学习理论及知识推理作为系统的智能模块,与地质专家人工操作形成互为一体式的操作模式,优化地质成矿模型与地质找矿模型的分析过程。同时,将云计算技术与G~4I系统相融合,提供云计算数据存储和计算服务,力求达到地学数据资源共享和快速运算,极大提高系统运行效率。本系统结构设计中重点包括矿产资源预测理论模型模块、空间数据库集成、机器学习及云计算技术架构等内容。
The mineral resources prediction is the fastest growing and most active branches inmathematical geology that involves the theory of metallogenic prognosis, mathematicalgeological modeling, geology space database, geophysical and geochemical computingtechnology, remote sensing and computer technologies, and many other disciplines.Mineral resources prediction system is a computer system to solve the regionalquantitative evaluation of mineral resources, which is based on geology space databaseand supported by mineral resource prediction method and technique. As regional mineralresource prediction comes to massive geospatial data and numerous technologyintegrations, since the1990s, domestic and international researchers bring the GIS systemtechnology and high-performance computing technology to the evaluation process, andachieved remarkable results. Therefore, the development of specialized mineral resourcesprediction computer systems have become the general trend of geographical studies, inwhich professional system based on GIS has been accepted by the majority of geologists.For the realization of refinement of mineral resources, three-dimensional and intelligentprediction, the development of mineral resources prediction system has entered intointerdisciplinary-based spatial database integration and high-performance computing orcloud computing stage of development, the technique is much higher than the purelynumerical level in the1990s. In this situation, the development of high standards mineralresources prediction system has become the national strategic needs of mineral industries.
     The G~4I system is a computer system to provide refined mineral resources predictionof solutions, in which based on4G (Geography, Geology, Geochemistry, and Geophysics) geospatial data integration, and the advanced theory prediction of mineral resources as thekernel. The system's main core technology derived from independent intellectual propertyresearch findings of mineral resource information system development project related tothe G~4I system of Jilin University Digital Geoscience Centre, the system's coretechnologies include mineral resources prediction technology and system integrationtechnology.
     In order to solve the various technical problems in the development of mineralresources system, this paper combine with the accumulated technology of G~4I preliminaryversion carry out the G~4I systems technology integration and structural design study withintegrated new theories of mineral resources and innovative approaches prediction. Oneimportant module of system is that we set the knowledge structure of geologicalprospecting expert as an integral part of the system, and the human-computer interactionsystem was used as the operation mode that is a major feature of the system. By designingof functional module, the machine learning theory and knowledge reasoning as theintelligent modules of system, with the manual operation by geologist the analysis processof geological mineralization model and geological prospecting model were optimized.Meanwhile, the cloud computing technology was combined with G~4I systems thatproviding the cloud data storage and cloud computing services. The system strives toachieve the geoscience data resource sharing and rapid operation, which greatly improvesthe system’s operation efficiency. The key system structures include mineral resourceforecasting model module, spatial database integration, machine learning, cloudcomputing technology architecture, and so on.
     The study of cloud computing geoscience G~4I system architecture design included thefollowing:
     1. Mineral resources prediction system functional design package
     Geoscience G~4I system is the computer system which provides whole process servicefunction for medium or large scale regional mineral resource prediction. The systemincludes three modules: a4G geospatial database, a collection of mineral resourcesprediction calculation methods, cloud computing environments functional design. The system is an integration of three modules which supported by multi-GIS-platform.
     2.4G geospatial database integration design
     4G spatial database is the data resources for the evaluation of mineral as the basicmaterial, but also constitute the basic module of system. Since4G geoscience databelonging to different disciplines, data of various disciplines comes from different sources,different measurement methods, different data conversion format, different requirement ofcalculation methods, different input and output graphics contents, but the execution of datainformation provided by all disciplines in system are submit to the prediction of mineralresources. Technically demanding integrated database design for4G, that is, using modulardesign concept unified and integrated the4G data in the underlying system; integrateddatabase space requires the interoperability feature, which is the main technology ofsystem design.
     3. Knowledge learning module design based on the machine learning
     In system design, the current advanced technology of artificial intelligence whichbased on machine learning module was integrated on the4G database. Its main function isdesigned for solve the multiple solutions problem of geological structure characteristicline extraction by geophysical gravity and magnetic data inversion process. The systemintegrated of machine learning module, and continuously simulates the human brainintelligence thinking process of inversion interpretation expert, to provide a simulationalgorithm, called continuous learning process. By such combination of manuallyinterpreted and machine learning, minimizing the information extraction error wasarchived.
     4. The system architecture for cloud computing
     Facing the integration of4G data processing, a high requirement for hardware isdemanded for I/O of data and the transmission and transformation process. Execution ofsystem actually belongs to the high performance computing process, because the supercomputer resources are scarce, and there is contradiction between the computation timeand customer demand. For greatly saves the computational cost, the most advancedparallel computing technology at present that cloud computing is embedded system environment, the whole process of data analysis conducted entirely in the cloudarchitecture.
     5. Face of the internet self-diagnosis system and firewall design
     Since the cloud system is a node belongs to at least a LAN or WAN environment, thesystem's firewall design is an important part too. Security of the system is necessary forany kind of computer system to strengthen the peripheral design. In addition, theself-diagnosis function and the self-repair ability of system is an effective means to ensurethe efficient operation of the system. These two elements in design of the systemenvironment must be considered as the important parts.
     In this paper, deeply developing of system which aiming at a series of technicaldesign problem of G~4I system based on the original results seek the optimization schemeof network design module design. Expected results to be achieved as follows:
     1. Realizing the optimization design of4G database and the interoperability modeldesign.
     2. The design of optimization method of system interface software package formineral resources prediction.
     3. Cloud computing small cluster system simulation program design.
     4. Machine learning module design for4G geoscience data integration analysis andinformation extraction.
     5. The hardware design of the touch-screen for expert interpretation operation andmachine learning parallel scheme.
     The expected goal of the system is through the research of system kernel and designof updated system structure to provide new theories and innovative technology ofprediction of mineral resources field. As the supporting system, interoperability andinteractive technology combined with the4G database, providing a high added value ofgeo information processing software tool. The theory study of system related with frontiertechnology of domestic and international research, proposed with independent intellectualproperty innovative mineral resources prediction theory and practical techniques forsolving the current three major problems exist in the field (geological characteristics of digital expression problem, nonlinear geological modeling, geological processesthree-dimensional simulation system).
引文
[1]乔金海.综合信息矿产预测信息集成系统[M].长春:吉林大学,2007.
    [2]谭征兵.矿产资源GIS评价系统及成矿预测BP模型[D].北京:中国地质大学(北京),2002.
    [3]滕菲,路来君,孟庆龙.地学G4I系统的开发研究[J].吉林地质,2006,25(4):50-55.
    [4]蔡洪春,张春明,姜绍飞等.基于GIS技术的矿产资源信息系统[J].地质与资源,2003,12(2):111-114.
    [5]闫希.地学G4I系统结构与组件接口技术研究[D].长春:吉林大学,2010.
    [6]朱思才,吴家齐,刘和发.GIS技术在区域矿产资源勘查评价中的应用[J].有色金属矿产与勘查,1999,8(6),615-618.
    [7]陈述彭,何建邦,承继成.地理信息系统的基础研究——地球信息科学[J].地球信息——科学·技术·产业,1997(3):11-20.
    [8]蔡洪春,张春明,姜绍飞等.基于GIS技术的矿产资源信息系统[J].地质与资源,2003,12(2):111-114.
    [9] Davidson D.A., Theocharopoulos S.P., Bloksma R.J.. A land evaluation project inGreece using GIS and based on Boolean and fuzzy set methodologies. InternationalJournal of Geographical Information System,1994,8(4):369-384.
    [10]Schetselaar E.M.. Computerized field data capture and GlS analysis for generation ofcross-sections in3-D perspective views。ComPuter&Geosciences,1995,21(5):687-701.
    [11]Thoen Bill. Internet resources for the geosciences, with an emphasis on GIS andmapping.ComPuters&Geosciences,1995,21(6):779-786.
    [12]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001:114-121.
    [13]李德仁.地理信息学的形成及带来的机遇和挑战[J].科技导报,1995(3):79.
    [14]李德仁.数字地球与“3S”技术[J].中国测绘,2003(2):28-31.
    [15]吴肖炎,郭瑞.基于机器学习的计算机安全技术综述(上)[J].保密科学技术,2013,3:41-45.
    [16]周楠.基于高斯过程机器学习方法的证券预测模型研究[M].成都:电子科技大学,2012.
    [17]韩冰.地学G4I系统中数据集成技术研究[D].长春:吉林大学,2010.
    [18]张春明,孙豁然,李元辉等.设计模式在矿产资源评价专家系统中的应用[J].金属矿山,2006(8):1-3.
    [19]张春明,孙豁然,王恩德等.矿产资源信息系统空间属性数据建模方法[J].金属矿山,2005(6):33-35.
    [20]刘威,路来君,徐昊,曹延波.基于云计算的G4ICCS系统结构设计[M].吉林大学学报(信息科学版),2013,31(2),187-190.
    [21]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.
    [22]李刚健.基于虚拟化技术的云计算平台架构研究[J].吉林建筑工程学院学报,2011,28(1):79-81.
    [23]陈维崧,陈庆秋.基于云计算的GIS研究[J].测绘与空间地理信息,2011,34(1):157-161.
    [24]李嘉虓,陈华根.基于云计算的地学云系统设计[J].计算机工程与科学,2011,33(6):108-113.
    [25]王磊,陈刚,陆忠华.基于云计算的高效科学计算应用软件框架[J].华中科技大学学报:自然科学版,2011,39(1):166-169,183.
    [26]张晓林.元数据开发应用的标准化框架[J].现代图书情报技术,2001(2):9-11.
    [27]彭静,高林,张展新.元数据互操作技术研究[J].信息技术与标准化,2008(11):50-53.
    [28]韩冰,路来君.地学G4I系统中空间元数据的设计技术[J].世界地质,2011,30(2):307-312.
    [29]周新忠,余木良,陶亮,郭朋飞.关于地理空间元数据技术发展趋势的理论探讨[J].测绘科学,2007,32(1):172-175.
    [30]刘峻明,朱德海,张晓东.分布式区域农业信息系统元数据设计研究[J].资源科学,2004,26(6):166-171.
    [31]王卷乐,游松财,孙九林.地学数据共享网络中的元数据扩展和互操作技术[J].兰州大学学报,2006,42(5):22-25.
    [32]包世泰,余应刚.地理数据共享与互操作技术[J].测绘工程,2000,9(4):32-36.
    [33]蒋红兵,蒙印.WebGIS的空间数据共享与互操作[J].四川测绘,2005(1):20-22.
    [34]胡诚,陈方林,刘俊亮.空间数据共享与互操作技术探讨[J].现代测绘,2003,26(6):31-33.
    [35]刘超.土地资源管理中的资源实体互操作方法研究[D].杭州:浙江大学,2008.
    [36]龚健雅.空间信息资源共享与互操作技术[J].国土资源信息化.2003(5):15-21.
    [37]张书亮,陶陶,闾国年.地理信息共享与互操作框架研究[J].测绘科学.2004(6):58-60.
    [38]梁济宇,范继璋.综合信息矿产资源评价数据库构建[J].吉林地质,2004,23(4):132-136.
    [39]申胜利,冯文新,杜舰.国土资源空间数据集成共享探讨[J].2004(7):30-32.
    [40]惠军,王欢,徐晗.GIS互操作的实现及发展[J].新疆师范大学学报(自然科学版),2005,24(3):184-186.
    [41]骆成凤,吴国平,余倩.地理信息共享与互操作的实现初探[J].计算机应用研究,2001.
    [42]Robert Laurini. Spatial multi-database topological continuity and indexing A steptowards seamless GIS data interoperability.INT.J.GIS,1998,12(4):373-402.5.
    [43]Yaser Bishr. Overcoming the semantic and other barriers to GIS interoperabilityINTJGIS1998,12(4):299-314.
    [44]周铱鑫,程承旗.地理信息资源共享的关键技术[C].1999年GIS年会会刊.
    [45]韩夏,李秉严.元数据的互操作研究[J].情报科学,2004,22(7):812-814.
    [46]韩聪,路来君.基于地学G4I系统的元数据分类方法[J].吉林大学学报:地球科学版,2006,36(11):224-227.
    [47]张嘉桐,路来君.混合类型地质变量亲近关系度量模型[J].吉林大学学报:地球科学版,2012,42(增刊1):224-227.
    [48]闾国年,吴平生,周晓波.地理信息科学导论[M].北京:中国科学技术出版社,1999.
    [49]缪宏钢.分布式环境下地理信息互操作技术研究[J].遥感技术与应用,2006,21(4):376-379.
    [50]季斌,穆斌,王浩,徐勇.基于语义Web的GIS互操作技术[J].微机发展,2005,15(11):130-132.
    [51]唐桂芬,廖巍,陈荦,景宁.面向地理数据服务的空间数据集成关键技术研究[J].计算机科学,2007,34(9):99-102.
    [52]王方雄,侯英姿,杨俊.网格环境下空间数据共享与互操作技术研究[J].计算机科学,2009,36(1):96-100.
    [53]孔维娟,谢顺平,邓敏.基于网格的多源空间数据集成模型[J].河南科学,2008,26(6):69-72.
    [54]修长虹,梁建坤,董鸿晔.云计算技术综述[J].网络安全技术与应用,2012,(3).
    [55]胡云.对云计算技术及应用的研究[J].电脑开发与应用,2011,24(3).
    [56]蒋伟.基于GIS和KPCA的农业空间数据特征提取研究[D].重庆:西南大学,2009.
    [57]孙运生,李庆宣,许惠平.地球物理位场数据转换图像处理及编程[M].长春:吉林科学技术出版社,1995.
    [58]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000.
    [59]周光亚,夏立显.非定量数据分析及其应用[M].北京:科学出版社,1993.
    [60]周光亚.多元统计方法[M].长春:吉林大学出版社,1988.
    [61]曾衍伟.空间数据质量控制与评价技术体系研究[D].武汉:武汉大学,2004.
    [62]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [63]吴芳华,张跃鹏,金澄. GIS空间数据质量的评价[J].测绘学院学报,2001(3):63-66.
    [64]刘文宝,邓敏,夏宗国.矢量GIS中属性数据的不确定性分析[J].测绘学报,2000(1).
    [65]遥感数据-百度百科. http://baike.baidu.com/view/908987.htm
    [66]图形数字化-百度百科. http://baike.baidu.com/view/1307403.htm
    [67]扫描数字化-百度百科. http://baike.baidu.com/view/285299.htm
    [68]龚健雅,高文秀.地理信息共享与互操作技术及标准[J].地理信息世界,2006(6):18-27.
    [69]何芝.基于GIS的土地利用空间数据处理[D].成都:西南交通大学,2002.
    [70]孙枢.地球数据是地球科学创新的重要源泉—从地球科学谈科学数据共享[J].中国基础科学,2003(1):19-23.
    [71]蔡晓兵.数据共享和互操作的新思路[J].地理信息世界,2003,01(2):4-6.
    [72]冯琰,施一民.开放式地理信息系统(OpenGIS)与互操作技术分析[J].测绘工程,2002,11(4):22-24.
    [73]黄裕霞,Kottman C.可互操作的GIS研究[J].中国图像图形学报,2001,6(9):925-931.
    [74]Berners-LeeT, Hendler J, Lassila O. The Semantic Web[J].Scentific American,2001,284(5).
    [75]崔巍.用地理本体实现地理信息系统互操作[J].测绘信息与工程,2004,29(1):20-22.
    [76]潘军.多元地学空间数据融合及可视化研究[D].长春:吉林大学地探学院,2005.
    [77]吴信才.地理信息系统设计与实现[M].北京:电子工业出版社,2002.
    [78]叶水盛,王世称,刘万崧等.GIS基本原理与应用开发[M].长春:吉林大学出版社,2004.
    [79]张新长,马林兵,张青年.地理信息系统数据库[M].北京:科学出版社,2005.
    [80]郑涛.基于云计算的档案存档图片处理系统的客户端设计与实现[D].成都:电子科技大学,2012.
    [81]曹青.云计算技术的应用及展望[J].江苏通信,2012,2.
    [82]吴妍文.基于U盘的防火墙设计与实现[M].上海:华东师范大学,2011.
    [83]梁济宇,范继璋.综合信息矿产资源评价数据库构建[J].吉林地质,2004,23(4):132-136.
    [84]赵永军,傅晓宁,杨雯雯.地理信息系统在地质领域中的应用[J].西南石油大学学报(自然科学版),2008,30(3):68-71.
    [85]肖克炎,张晓华,王四龙等.矿产资源GIS评价系统[M].北京:地质出版社,2000.
    [86]Noy N F,Musen M A.Ontology Versioning as an Element of an Ontology-Management Framework[J].Intelligent Systems,2004,19(7-8):6-13.
    [87]Laxton L, Becken K.The design and implementation of A spatial data base fortheproduction of geological maps[J].Computers&Geosciences,1996,22(7):723-733.
    [88]路来君,张嘉桐.地质空间三重划分理论初探[J].吉林大学学报:地球科学版,2012,42(增刊3):279-284.
    [89]刘耀林.地理信息系统[M].北京:中国农业出版社,2004.
    [90]毕明丽.白山地区金多金属矿产资源预测研究[D].长春:吉林大学,2009.
    [91]毕明丽.白山地区地球化学元素组合分布特征及其地质意义[J].长春工程学院学报:自然科学版,2012,(1).
    [92]彭媛媛.哀牢山地区金多金属矿产资源预测研究[D].长春:吉林大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700