用户名: 密码: 验证码:
高氟铍矿石的冶炼工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铍矿石是一种重要的战略资源。由于高品质的绿柱石日益匮乏,使得从高氟铍矿石中提取氧化铍的工艺研究越来越受到重视。
     水口山六厂处理绿柱石的工艺流程为硫酸法流程。用该流程处理高氟铍矿,不仅需对高氟铍矿进行预处理,而且给产品的质量和回收率带来了不良影响。本文对硫酸法处理高氟铍矿石,进行了工艺改进的研究。氟的脱除不是采用对矿石进行预处理的办法,而是采用氢氧化铍沉淀法。改进后工艺的产品质量、成本、BeO回收率等指标,都优于预处理法。
     硫酸法主要工序的实验研究表明,在蒸发结晶除铝时,采用氨气中和浓缩的浸出液至pH=1.5,冷却至室温结晶,以产生的(NH_4)_2SO_4来形成铁铵矾和铝铵矾,能使杂质铁、铝与铍得到初步分离。在沉淀试验研究中,当溶液中F/BeO在20%~40%之间时,控制适当的操作条件,可使50%~70%的F留在溶液中而与Be分离。进入沉淀中的F量约为F/BeO12%,其数量与中和液F/BeO的关系不大,而与沉淀温度和沉淀剂浓度密切相关。对于废液处理试验,通过控制适当的废液温度,氟浓度,和pH值,可将BeO损失控制在1.5%以下。
     应用新流程处理高氟矿,BeO的质量可以达到GB3135—82,BeO回收率为75.17%,成本比预处理法减少约7000元/tBeO,并且新流程基本不改变硫酸法流程的主要工序和主体设备,仅增加沉淀脱氟和废液回收工序,从而新流程具有可行性。
     本文还对氟、铝的分离原理以及氟浓度、硫酸铵浓度对BeO回收率的影响进行了初步探讨。研究结果表明,中和液氟浓度对铝的分离效果影响显著,需进行有效控制;同时降低废液的氟浓度和硫酸铵浓度,有利于提高BeO回收率。
The beryllium plays an important role in many branches of engineering, especially in the aircraft industry, for its outstanding physical properties. With the decreasing of beryl ore, one of the best quality beryllium minerals, much attention has been payed in the research on extracting beryllium oxide from the beryllium minerals containing large amounts of fluorine.
    The sulphate process has been used to treat beryl ore in 6th SMELTERY OF SHUIKOUSHAN for many years. However, when the beryllium minerals contain a large amount of fluorine, the pretreatment should be employed and resulted in lower grade and recovery of beryllium . In this thesis, Be(OH)2 precipitation, instead of ore pretreatment was investigated and a new flowsheet based on sulphate process has been proposed. Compared with the ore pretreatment, the new flowsheet has some advantages, such as higher grade and recovery, lower cost.
    In the process of evaporation-neutralization-crystallization, it was found that most of the impurities (iron, aluminum) in the concentrated leach liquor could be separated from beryllium, when the solution was adjusted to pH1.5 with ammonia gas and cooled to room temperature for crystallization, because of aluminum and iron forming ammonium alum and ferrous ammonium sulphate with the (NH4)2SO4 in the solution. Research on precipitation conditions showed that 50-70% fluorine still remained in the waste liquor and can be separated from beryllium when the F/BeO of the solution was 20-40%, and the amount of fluorine in the precipitate was about 12%. It is known that the process is greatly depended on the precipitating temperature and precipitant's concentration, with less relation to the ratio of F/BeO of the neutralized solution. The waste liquor treatment
    
    
    showed that the loss of BeO could be reduced to 1.5%, when the waste liquor was under good conditions, including temperature, concentration of fluorine and ammonium sulphate and pH of the waste liquor.
    Research of the recovery of beryllium oxide from the ores containing a large amount of fluorine by the new flowsheet showed that the quality of BeO could meet the standard of GB3135-82, the recovery of BeO could reach 75.17%, and the cost for 1000Kg BeO was about Y7000 lower than that with the ores pretreatment process.
    Fluorine and aluminum removing behavior and their effects on BeO recovery have been also discussed. It was found that the concentration of fluorine in the neutralized solution has a great influence on the separation of aluminum and should be controlled in a narrow range. It was deduced that a high recovery of BeO was able to be obtained by reducing the concentration of both fluorine and (NH4)2SO4.
引文
[1] 吴源道.铍——性质、生产和应用[M].冶金工业出版社,1986,53-59.
    [2] D A Everest. The Chemistry Of Beryllium[M]. Elsevier Publishing Company, 1964, 109-113. 10.
    [3] 《无机化学丛书》编委会.无机化学丛书,第二卷[M].科学出版社,1990,1-3.
    [4] 刘世友.铍的生产现状与应用开发[J].稀有金属与硬质合金.1998,(135):56—61.
    [5] 孙本双,宋兴海.等静压技术正在促进铍的应用和发展[J].稀有金属与硬质合金.1995,(120):34—39.
    [6] 马晋辰.加快铍材应用步伐[J].航天工艺.1997,(4):46—47.
    [7] 闵学仁,钟景明.铍中铁铝杂质对铍材性能的影响[J].稀有金属与硬质合金.2000,(142):45.
    [8] 刘世友.日本铍工业生产,应用与展望[J].有色矿冶.1999,(2):62.
    [9] 刘世友.美国铍工业概况[J].上海有色金属.1999,20(1):34—35.
    [10] 潘奇汉.铸造铍青铜[J].特种铸造及有色合金.1997,(1):25—26.
    [11] 王花华.铍青铜线材的生产工艺[J].甘肃有色金属,1997,(4):39—40.
    [12] 鹿尽忠.铍青铜淬火工艺的研究[J].航天工艺,1994,(2):1—2.
    [13] 张友寿秦有钧,吴东周,谢志强,铍和含铍材料的性能及应用[J].焊接学报.2001,22(6):94—95.
    [14] 陆臣道.采用铍青铜提高接点电寿命[A].北京邮电大学.第十届全国电接融学术会议论文集[C].1996,212—218.
    [15] 王一云,许雄成,李灼华.新型铍青铜材料及其在电连接器上的应用[A].北京邮电大学.第十届全国电接融学术会议论文集[C].1996,189—199.
    [16] 孙本双.铍的应用进展[J].稀有金属.1995,19(2):127-131.
    [17] 水口山六厂.开拓铍市场搞活企业经济[Z],1995
    [18] R G Bellamy and N A Hill. Extraction and Metallurgy of Uranium, Thorium and Beryllium[M]. Pergamon Press Ltd.. 1963, 45-48.
    [19] 孙延绵.从发展稀有金属工业看矿产资源勘查开发前景[J].有色金属矿产与勘查.1999,8(6):638-642.
    [20] 水口山六厂.硫酸法处理日光榴石生产工业氧化铍[Z].1987
    
    
    [21] (苏联)B.H.斯皮钦院士主编.田冰译.铍的化学工艺学和冶金学[M],1965,58-65.39-41.63.
    [22] 鲍慈光,冯健,杨宗璐.水溶液中氟铍络合体系的研究[J].云南化工,1990,(1):7-9.
    [23] 武汉大学主编.分析化学[M].高等教育出版社,1985,274.
    [24] 上海吴泾化工厂编.氨的合成工艺与操作[M].燃化工业出版社.1974,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700