用户名: 密码: 验证码:
盾构装备掘进中的力学特征分析与载荷建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构是地下工程中的典型掘进装备,具有结构复杂、体积庞大、重型巨载等特点。掘进载荷是装备核心力学参量,实现装备掘进载荷的力学建模与合理计算,是装备正向设计的理论基础,也是不同地质隧道施工中载荷控制的重要科学依据。
     本文分析了刀盘系统载荷的力学特征,抓住刀盘与土体相互作用耦合系统的本质,首次提出一种刀盘载荷解耦模型。将刀盘与界面土体耦合系统分解为两个相互关联的子系统,建立平衡微分方程并由原系统耦合特征确定其定解条件,对刀盘与土体间相互耦合作用解耦求解,提出了一种在考虑整体平衡条件下,利用弹性-塑性屈服损伤理论的更接近土体实际状态的本构模型,给出了盾构刀盘在掘进状态下,沿刀盘半径方向非线性的载荷分布,并引入刀盘拓扑结构、地下埋深等因素的影响,建立了刀盘载荷解耦模型,给出了有实用意义的刀盘系统载荷分布的解析表达式。
     在刀盘载荷解耦模型基础上,本文系统地研究了装备总载荷的特点,考虑盾壳、后续设备等装备部件所受载荷分量,建立了装备总载荷正向计算模型,实现了施工地质条件、装备操作状态、装备结构特征三类关键要素与掘进载荷间相互影响规律的力学描述。进一步将上述总载荷计算模型应用于我国天津、北京、深圳三类典型地质条件下地铁工程案例的载荷计算与分析,验证了本文总载荷计算模型的合理性与有效性。并基于该模型,对Krause经验公式进行了理性分析,分类归纳各类载荷影响参数,给出便于工程应用的改进形式的载荷设计公式。
     本文还开展了盾构工程实测数据的反演识别研究,提出一种新型的量纲分析和数据挖掘技术结合的力学建模方法。将基于内在力学机理研究的量纲分析和数据挖掘技术有机融合,形成一种新的基于实测数据的缺乏正问题模型表述的反演识别建模方法。利用该方法建立了基于工程实测数据的掘进载荷与效能的反演识别模型,讨论了载荷变化特征与进尺优化范围。这种建模方法为非线性、多参数、多场耦合的实测(实验)数据的力学分析提供了一种新思路。
Shield machine is a kind of typical equipment for tunneling, which hascharacteristics of heavy body, complex structure and high load. The load duringtunneling is a core mechanics parameter for the equipment. Mechanical modeling forthe reasonable calculation of the load is important in terms of positive equipmentdesign and load control of tunnel constructions with different geological conditions.
     A decoupled model of the cutterhead load is established, in which the interactionbetween the cutterhead and the soil on the excavation interface is considered. Thecoupled system between the cutterhead and the soil is considered as two correlativesubsystems. Equilibrium differential equations and boundary conditions areestablished for decoupled analysis. A constitutive model closer to the actual state ofthe soil based on the elastic-plastic yield damage theory is used. In addition, acomprehensive consideration of the contributions of the depth burial and thecutterhead topological structure to the interface load is made. Then nonlineardistributions of the normal and tangential loads on the cutterhead are presented. Thenormal and tangential stress expressions acting on the soil interface by the cutterheadare presented.
     Based on the decoupled model of the cutterhead load, the characteristic of totalloads is systematically analyzed. Load components on shield skin and follow-upequipment are taken into account. Then the dissertation establishes a predicting modelof total loads acting on the equipment interface. The model fully reflects theinfluences of geological parameters, operating parameters, and structural parameters.The effectiveness of the proposed model is verified by applying it to several metroengineering projects with three typical geological conditions in Tianjin, Beijing andShenzhen. According to the predicting model above, the rational analysis for theKrause empirical formulae is presented to classify various types of load impactparameters. Then the improved load formulae are provided for engineeringapplications.
     The inverse identification for on-site data during tunneling construction is carriedout. A new mechanical modeling method based on the combination of dimensional analysis and data mining techniques is proposed. The dimensional analysis based onthe intrinsic mechanical mechanism and data mining techniques are effectivelycombined for the identification and modeling of on-site data without a direct model.An identification and optimization model for the load and energy consumption ofshield machines can be worked out. Load variation characteristics and efficiencyoptimal ranges are discussed. The modeling method provides a new way for themechanical analysis of on-site data (experimental data) in the nonlinear,multi-parameter, multi-field coupling problems.
引文
[1]竺维彬,鞠世健,地铁盾构施工风险源及典型事故的研究,广州:暨南大学出版社,2009
    [2] Maidl B, Herrenknecht M, Anheuser L, Mechanised Shield Tunneling, Berlin:Ernst&Sohn,1996
    [3]陈馈,洪开荣,吴学松,盾构施工技术,北京:人民交通出版社,2009
    [4] Krause T, Schildvortrieb mit flüssigkeits-und erdgestützter Ortsbrust, Mitteilungdes Instituts für Grundbau und Bodenmechanik, TU Braunschweig, Heft24,1987
    [5]日本土木学会编(朱伟译),隧道标准规范(盾构篇)及解释,北京:中国建筑工业出版社,2001
    [6] Shi H, Yang H Y, Gong G F, et al., Determination of the cutterhead torque forEPB shield tunneling machine, Automation in Construction,2011,20:1087~1095
    [7]徐前卫,朱合华,丁文其等,均质地层中土压平衡盾构施工刀盘切削扭矩分析,岩土工程学报,2010,32(1):47~54
    [8]李向红,傅德明,土压平衡模型盾构掘进试验研究,岩土工程学报,2006,28(9):1101~1105
    [9]夏毅敏,罗德志,周喜温,盾构地质适应性配刀规律研究,煤炭学报,2011,36(7):1232~1236
    [10]宋克志,孙谋,复杂岩石地层盾构掘进效能影响因素分析,岩石力学与工程学报,2007,26(10):2092~2096
    [11]Gertsch R, Gertsch L, Rostami J, Disc cutting tests in Colorado Red Granite:Implications for TBM performance prediction, International Journal of RockMechanics&Mining Sciences,2007,44:238~246
    [12]程永亮,盾构泡沫系统优化技术研究,建设机械技术与管理,2011,11:141~144
    [13]Beaucour A L P, Kastner R, Experimental and analytical study of friction forcesduring microtunneling operations, Tunnelling and Underground SpaceTechnology,2002,17:83~97
    [14]Okubo S, Fukui K, Applicability of the variable-compliance-type constitutiveequation to rock breakage by excavation machinery, Tunnelling and UndergroundSpace Technology,2011,26:29~37
    [15]Acaroglu O, Prediction of thrust and torque requirements of TBMs with fuzzylogic models, Tunnelling and Underground Space Technology,2011,26:267~275
    [16]Dollinger G L, Handewith H J, Breeds C D, Use of the punch test for estimatingTBM performance, Tunnelling and Underground Space Technology,1998,13(4),403-408
    [17]李建斌,何於琏,软岩盾构中具有小范围变径功能的切削装置,隧道建设,2011,31(1),33~36
    [18]韩亚丽,吕传田,张宁川,北京铁路地下直径线盾构选型及功能设计,中国工程科学,2010,12:29~34
    [19]Chen R P, Zhu J, Liu W, et al., Ground movement induced by parallel EPBtunnels in silty soils, Tunnelling and Underground Space Technology,2011,26:163~171
    [20]赵宝虎,王燕群,岳澄等,盾构始发过程反力架应力监测与安全评价,工程力学,2009,26(9):105~111
    [21]刘志杰,史彦军,滕弘飞,机械工程学报,基于实例推理的全断面岩石隧道掘进机刀盘主参数设计方法,2010,46(3):158~164
    [22]苏鹏程,王宛山,霍军周等,TBM的滚刀布置优化设计研究,东北大学学报,2010,31(6):877~881
    [23]Jung H S, Choi J M, Chun B S, et al., Causes of reduction in shield TBMperformance-A case study in Seoul, Tunnelling and Underground SpaceTechnology,2011,26:453~461
    [24]Yamamoto T, Shirasagi S, Yamamoto S, et al., Evaluation of the geologicalcondition ahead of the tunnel face by geostatistical techniques using TBM drivingdata, Tunneling and Underground Space Technology,2003,18:213~221
    [25]Mikaeil R, Naghadehi M Z, Sereshki F, Multifactorial fuzzy approach to thepenetrability classification of TBM in hard rock conditions, Tunnelling andUnderground Space Technology,2009,24:500~505
    [26]丁峻宏,金先龙,李根国等,基于并行计算的盾构机刀盘三维切削仿真,系统仿真学报,2007,19(23):5376~5396
    [27]Wang X Y, Cai Z X, Su P C, et al., Numerical modeling of the effects of wears oncutting loads, Advanced Materials Research,2011,308~310:2340~2344
    [28]Su C X, Wang Y Q, Zhao H F, et al., Analysis of Mechanical Properties of TwoTypical Kinds of Cutterheads of Shield Machine, Advanced Science Letters,2011,4:2049~2053
    [29]敖日汗,张义同,盾构施工引起的固结沉降分析,岩土力学,2011,32(7):2157~2161
    [30]高健,张义同,考虑盾构掘进速度的隧道掘进面稳定性分析,岩土力学,2010,31(7):2232~2238
    [31]Zhong D H, Tong D W,3D finite element simulation of tunnel boring machineconstruction processes in deep water conveyance tunnel, Transactions of TianjinUniversity,15(2):101~107
    [32]上官子昌,李守巨,孙伟等,土压平衡盾构机密封舱土压力控制方法,煤炭学报,2010,35(3):402~405
    [33]Wen W L, Feng P F, Wu Z J, et al., Study on External Load Domain of ShieldMachine Cutterhead, Intelligent Robotics and Applications,2009,5928:1176~1182
    [34]Shen J Q, Jin X L, Li Y, et al., Numerical simulation of cutterhead and soilinteraction in slurry shield tunneling, Engineering Computations,2009,26(8):985~1005
    [35]Eberhardt E, Numerical modelling of three-dimension stress rotation ahead of anadvancing tunnel face, International Journal of Rock Mechanics&MiningSciences,2001,38:499~518
    [36]Kasperz T, Meschke G, A3D finite element simulation model for TBM tunnellingin soft ground, International Journal for Numerical and Analytical Methods inGeomechanics,2004,28:1441~1460
    [37]Zhang K Z, Yu H D, Liu Z P, et al., Dynamic characteristic analysis of TBMtunnelling in mixed-face conditions, Simulation Modelling Practice and Theory,2010,18:1019~1031
    [38]Cho J W, Jeon S, Yu S H, et al., Optimum spacing of TBM disc cutters: Anumerical simulation using the three-dimensional dynamic fracturing method,Tunnelling and Underground Space Technology,2010,25:230~244
    [39]施虎,龚国芳,杨华勇等,盾构掘进机推进力计算模型,浙江大学学报,2011,45(1):126~131
    [40]王洪新,土压平衡盾构刀盘挤土效应及刀盘开口率对盾构正面接触压力影响,土木工程学报,2009,42(7):113~118
    [41]唐晓武,朱季,刘维等,盾构施工过程中的土体变形研究,岩石力学与工程学报,2010,29(2):417~422
    [42]管会生,高波,复合式土压平衡盾构刀具切削扭矩的研究,现代隧道技术,2008,45(2):73~78
    [43]Yu Y, Xue F, Xi Y. Theoretical force modeling of cutting tools based on earthpressure balanced shield machine, Advanced Science Letters,2011,4:2420~2425
    [44]Wang L H, Kang Y L, Cai Z X, et al., The energy method to predict disc cutterwear extent for hard rock TBMs, Tunnelling and Underground Space Technology,2012,28:183~191
    [45]Li F H, Cai Z X, Kang Y L, A theoretical model for estimating the wear of thedisc cutter, Applied Mechanics and Materials,2011,90~93:2232~2236
    [46]张厚美,隧道掘进机掘进过程中刀具磨损的检测方法,中国专利,200610034017.4,2006
    [47]Komatsu LTD, Wear detecting method for disc cutter and wear detectingequipment, Japanese Patent, JP10140981-A,1998
    [48]Rostami J, Ozdemir L, Nilson B, Comparison between CSM and NTH hard rockTBM performance prediction models, Proceedings of Institute of Shaft DrillingTechnology(ISDT) annual Technical Conference,1996,11
    [49]Bruland A, Hard rock tunnel boring:[Doctorate Thesis], Trondheim: NorwegianUniversity of Science and Technology,1998
    [50]龚秋明,赵坚,张喜虎,岩石隧道掘进机的施工预测模型,岩石力学与工程学报,2004,23卷(增2):4709~4714
    [51]Hertz H, On the contact of elastic solids, Journal für die Reine und AngewandteMathematik,1881,92:156~171
    [52]Muskhelishvili N I, Some Basic Problems of the Mathematical Theory ofElasticity, Groningen: Noordhoff,1953
    [53]Muskhelishvili N I, Singular Integral Equations, Groningen: Noordhoff,1953
    [54]Sneddon I N, Fourier Transforms, New York: McGraw-Hill,1951
    [55]Gladwell G M L, Contact problems in the classical theory of elasticity, TheNetherlands: Sijthoff&Noordhoff,1980
    [56]Johnson K L, Contact Mechanics, Cambridge: Cambridge University Press,1985
    [57]翟婉明,车辆—轨道耦合动力学,北京:科学出版社,2007
    [58]刘铁军,汪越胜,功能梯度材料涂层半空间的轴对称光滑接触问题,固体力学学报,2007,28(1):49~54
    [59]Chen Z R, Yu S W, Interaction between a rigid cylinder with a piezoelectrichalf-space with partial adhesion, Advanced Materials Research,2008,33~37:333~338
    [60]刘永健,姚振汉,三维弹性体移动接触边界元法的一类新方案,工程力学,2005,22(1):6~10
    [61]张洪武,廖爱华,吴昌华,压气机过盈配合的弹塑性有摩擦接触的研究,工程力学,2007,24(1):186~177
    [62]Bell T,Sun Y,Dong H,表面工程系统接触力学模型,中国表面工程,2007,20(2):1~10
    [63]陈家庆,罗纬,蔡镜仑等,牙轮钻头变曲率滑动轴承的结构分析与摩擦学性能研究,摩擦学学报,2000,20(5):374~378
    [64]庄茁,朱万旭,彭文轩等,预应力结构锚固—接触力学与工程应用,北京:科学出版社,2006
    [65]伍国军,褚以惇,陈卫忠等,地下工程锚固界面力学模型及其时效性研究,岩土力学,2011,32(1):237~243
    [66]Zhang X J, Zhang X H, Wen S Z, Finite element modeling of the nano-scaleadhesive contact and the geometry-based pull-off force, Tribology Letters,2011,41:65~72
    [67]张朝辉,杜永平,雒建斌,CMP中接触与流动关系的分析,科学通报,2006,51(16):1961~1965
    [68]Li Q Y, Yu S W, A model for computational investigation of elasto-plastic normaland tangential contact considering adhesion effect, Acta Mechanica Sinica,2004,20(2):165~171
    [69]Jandt K D, Atomic force microscopy of biomaterials surfaces and interfaces,Surface Science,2001,491:303~332
    [70]Williams J A, Friction and wear of rotating pivots in MEMS and other small scaledevices, Wear,2001,251:965~972
    [71]Komvopoulos K, Head-disk interface contact mechanics for ultrahigh densitymagnetic recording, Wear,2000,238:1~11
    [72]Baratunde A C, Jun X, Timothy S F, Contact mechanics and thermal conductanceof carbon nanotube array interfaces, International Journal of Heat and MassTransfer,2009,52:3490~3503
    [73]Coker E G, Filon L N G, A treatise on photoelasticity, London: CambridgeUniversity Press,1931
    [74]Frocht M M, Photoelasticity, New York: Wiley,1941:252~286.
    [75]Chandrashekhara K, Jacobs K A, An experimental-numerical hybrid techniquefor two-dimensional stress, Strain,1977,13(4):25~31
    [76]Laermann K H, Hybrid analysis of two-and three-dimensional solids composdof different materials, Optics and Lasers in Engineering,1999,32:183~203
    [77]Kobayashi A S, Hybrid experimental-numerical stress analysis, ExperimentalMechanics,1983,23(3):338~347
    [78]Li X D, Su D C, Zhang Z, A novel technique of microforce sensing and loading,Sensors and Actuators A: Physical,2009,153:13~23
    [79]骆英,王自平,顾建祖,混凝土损伤识别中的叠加偏移成像技术,无损检测,2008,12:881~884
    [80]许峰,胡小方,卢斌,碳化硼固相烧结微观结构演化的同步辐射CT观测,无机材料学报,2009,24(1):175~181
    [81]陈凡秀,何小元,连续振动悬臂梁的瞬时三维形貌测量,光学学报,2006,26(11):1647~1650
    [82]郭保桥,陈鹏万,谢惠民,虚位移场方法在石墨材料力学参数测量中的应用,实验力学,2011,26(5):565~572
    [83]Lin X H, Kang Y L, Qin Q H, et al., Identification of interfacial parameters in aparticle reinforced metal matrix composite Al6061–10%Al2O3by hybrid methodand genetic algorithm, Computational Materials Science,2005,32:47~56
    [84]Kang Y L, Lin X H, Qin Q H, Inverse/genetic method and its application inidentification of mechanical parameters of interface in composite, CompositeStructures,2004,66(1~4):449~458
    [85]Wang J, Qin Q H, Kang Y L, Li X Q, Rong Q Q, Viscoelastic adhesive interfacialmodel and experimental characterization for interfacial parameters, Mechanics ofMaterials,2010,42:537~547
    [86]Zhang H L, Lin X H, Wang Y Q, et al., Identification of elastic-plastic mechanicalproperties for bimetallic sheets by hybrid-inverse approach, Acta MechanicaSolida Sinica,2010,23(1):29~35
    [87]刘迎曦,张军,赵文志等,反演在骨生长方程参数识别中的应用,力学学报,2005,37(6):805~809
    [88]Broggiato G B, Campana F, Cortese L, Identification of material damage modelparameters: an inverse approach using digital image processing, Meccanica,2007,42:9~17
    [89]Créac'hcadec R, Cognard J Y,2-D modeling of the behavior of an adhesive in anassembly using a non-associated elasto-visco-plastic model, Journal of Adhesion,2009,85(4~5):239~260
    [90]Zhao H F, Chen M, Jin Y, Determination of interfacial properties between metalfilm and ceramic substrate with an adhesive layer, Materials and Design,2009,30(1):154~159
    [91]Avril S, Bonnet M, Bretelle A S, et al., Overiew of identification methods ofmechanical parameters based on full-field measurements, ExperimentalMechanical,2008,48:381~402
    [92]Grediac M, Pierron F, Applying the virtual fields method to the identification ofelasto-plastic constitutive parameters, International Journal of Plasticity,2006,22:602~627
    [93]Geymonat G, Pagano S, Identification of mechanical properties by displacementfield measurements: a variational approach, Meccanica,2003,38:535~545
    [94]Bui H D, Constantinescu A, Maigre H, Numerical identification of linear cracksin2D elasodynamics using the instantanueous reciprocity gap, Inverse Problems,2004,20:993~1001
    [95]向先全,陶建华,水信息学及其在水环境中的应用研究综述,生态环境学报2009,18(4):1587~1593
    [96]康晓东,基于数据仓库的数据挖掘技术,北京:机械工业出版社,2004
    [97]徐雪琪,基于统计视角的数据挖掘研究,杭州:浙江工商大学出版社,2010
    [98]姜弦子,张大亮,基于数据挖掘的中高端客户金融产品购买行为模型与应用研究,浙江金融,2010,9:58~59
    [99]宋观礼,郭伟星,张启明,中医心病证Logistic回归分析,中华中医药杂志,2011,26(2):334~337
    [100]王媛,刘杰,重力坝坝基渗透参数进化反演分析,岩土工程学报,2003,23(5):552~557
    [101]李彩林,许慧君,王金文,数据挖掘技术在径流预报中的应用,水电自动化与大坝监测,2007,31(2):75~78
    [102]张厚美,吴秀国,曾伟华,土压平衡式盾构掘进试验及掘进数学模型研究,岩石力学与工程学报,2005,24(A02):5762~5766
    [103] Hassanpour J, Rostami J, Zhao J, A new hard rock TBM performance predictionmodel for project planning, Tunnelling and Underground Space Technology,2011,26:595~603
    [104] Yagiz S, Gokceoglu C, Sezer E, et al., Application of two non-linear predictiontools to the estimation of tunnel boring machine performance, EngineeringApplications of Artificial Intelligence,2009,22:808~814
    [105] Grima M A, Bruines P A, Verhoef P N W, Modeling tunnel boring machineperformance by neuro-fuzzy methods, Tunnelling and Underground SpaceTechnology,2000,15(3):259~269
    [106]施虎,龚国芳,杨华勇等,盾构掘进土压平衡控制模型,煤炭学报,2008,33(3):343~346
    [107] Gong Q M, Zhao J, Influence of rock brittleness on TBM penetration rate inSingapore granite, Tunnelling and Underground Space Technology,2007,22:317~324
    [108]宋克志,袁大军,王梦恕,基于盾构掘进参数分析的隧道围岩模糊判别,土木工程学报,2009,42(1):107~113
    [109] Hamidi J K, Shahriar K, Rezai B, Rostami J, Performance prediction of hardrock TBM using Rock Mass Rating (RMR) system, Tunnelling andUnderground Space Technology,2010,25:333~345
    [110] Benardos A G, Kaliampakos D C, Modelling TBM performance with artificialneural networks, Tunnelling and Underground Space Technology,2004,19:597~605
    [111]张义同,隧道盾构掘进土力学,天津:天津大学出版社,2010
    [112]卢廷浩,刘斯宏,陈亮等,土力学,北京:高等教育出版社,2009
    [113]苏翠侠,基于数值仿真技术的盾构刀盘系统载荷与结构特性研究:[博士学位论文],天津:天津大学,2011
    [114]林世响,侯振德,对模拟土压盾构刀盘刀具的受力研究,实验力学,2012(待发表)
    [115]张凤祥,朱合华,傅德明,盾构隧道,北京:人民交通出版社,2004
    [116] Liu G R, Han X, Computational inverse techniques in nondestructive evaluation,Florida: CRC Press,2003
    [117] Teale R, The concept of specific energy in rock drilling, International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1965,2(1):57~73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700