用户名: 密码: 验证码:
土压平衡盾构机主减速器三级行星齿轮系统动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土压平衡盾构机(Shield Tunnelling Machine, STM)是盾构法掘进施工中的关键装备,其刀盘驱动系统在掘进施工中起着驱动刀盘切割岩土的作用,它包括液压马达、主减速器、小齿轮/大齿圈减速单元。主减速器是盾构机刀盘驱动系统的核心部件,采用三级行星齿轮传动,结构复杂且功率密度高,动力学特性较为复杂。该主减速器多级行星齿轮的耦合振动会加速其疲劳失效,其动态性能对系统可靠性及整机运行稳定性有较大影响。基于动力学理论研究主减速器振动特性,并通过型式试验分析评价其动态性能,是开展盾构机整机试验及产品批量投产前的重要工作。
     本课题结合国家863计划资助项目(2007AA041802)——“土压平衡盾构大功率减速器”的研究任务,并考虑到盾构机的实际工况要求和项目指南所规定的具体指标,针对土压平衡盾构机三级行星减速器的动力学问题开展了较全面深入的研究。主要研究内容包括以下方面:
     ①盾构机主减速器三级行星齿轮传动系统动力学
     基于齿轮啮合理论和Lagrange方程,运用集中参数法建立了多级行星齿轮系统的扭转动力学模型,计算了三级行星齿轮传动系统的固有特性。采用梯形波表示啮合刚度的时变特征,分析行星齿轮啮合过程中的相位关系,计算了三级行星齿轮不同啮合位置的扭转振动结构频率。针对齿轮啮合误差特点,采用轴频和齿频叠加的谐波函数表示行星齿轮传递误差,考虑受啮合相位关系影响的行星齿轮系统时变刚度,系统地分析了多级行星齿轮传动的内部激励特征。基于某施工标段盾构机的统计负载,考虑系统的内外部激励,求解了三级行星齿轮系统的动态响应,并对齿轮振动频谱特性进行了分析。通过计算减速器不同转速下系统构件的动态响应,研究了齿轮振动与盾构机减速器输入转速的关系,为盾构机驱动系统运行工况的选择提供了依据。
     ②主减速器多级行星齿轮——箱体耦合动力学研究
     考虑各级齿圈的扭转支撑刚度,采用集中参数法建立了多级行星齿轮—箱体的耦合扭转动力学模型。运用有限元方法获取了各齿圈的扭转支撑刚度,并在分析行星齿轮啮合相位和主要内部激励特征的基础上,求解了系统动态响应,分析了各级齿圈振动的时频特性和齿轮传动系统——箱体的耦合振动机理。
     ③盾构机主减速器齿轮传动系统变载工况下的动态响应
     建立了土压平衡盾构机的刀盘力学模型,分析了掘进时的刀盘载荷特性。利用盾构机监控系统采集的掘进过程中刀盘承受的扭矩数据,得到主减速器的外部载荷。依据载荷数据的变化规律,运用随机插值和数据拟合得到主减速器的连续载荷谱。求解了盾构机刀盘驱动主减速器三级行星齿轮传动系统在变载荷工况下的动态响应,分析了其振动特征,并研究了主减速器传动系统振动响应与盾构机刀盘转速之间的关系。
     ④主减速器箱体模态分析与实验
     建立了主减速器箱体的有限元模型,计算了其特征值问题,获取了箱体的低阶固有频率及相应振型。开展了主减速器箱体的模态实验,运用最小二乘复频域法分析了模态数据,得到了箱体的固有特性,并通过模态置信判据验证了实验模态参数。通过对比理论分析结果和实验数据,验证了模态参数识别的可靠性和有效性。根据模态分析结果确定了箱体的薄弱环节,为结构优化提供了依据。
     ⑤盾构机主减速器动态性能测试与分析
     根据实验模态分析方法,进行了主减速器的模态实验,获取了系统的频响函数及模态频率。依据盾构机三级行星减速器大传动比的工作特性,采用背靠背能量回馈的试验台架,设计了动态性能测试方案。测量了多种工况载荷下主减速器的振动加速度,分析了其振动特性,计算了主减速器的1/3倍频程结构噪声。采用数值积分法计算了主减速器的振动速度和振动烈度,对主减速器的动态性能进行综合评价。对比分析了各级齿圈的振动计算结果和测试数据,验证了所建立的多级行星齿轮—箱体耦合扭转动力学模型的正确有效性。在采用隔声罩降低背景噪声的条件下,运用声压法进行了主减速器的噪声测试和声压级确定,同时采用声强法对主减速器台架运行的噪声强度分布进行了测量。
Earth pressure balance (EPB) shield tunnelling machine (STM) is a key equipment in shield excavation project, and its main driving system is to drive the cutter head cutting rock and soil, which includes hydraulic motor, main reducer and pinion-ring unit. The main reducer with three-stage planetary gears train (PGT) is the primary part of the driving system. The dynamic behaviors of main reducer are more complex because of the demand for high power density, and the coupling vibration would accelerate its fatigue failure, which has a great effect on system reliability and whole performance. It is an important work before production to study the vibration property of main reducer by dynamic theory and testing.
     According to the research task of national 863 program (2007AA041802)“EPB STM high-power reducer”, and considering the practical operating condition of STM and the guide line of project, for the three-stage planetary gearbox used in EPB STM, the dynamic problems are investigated fairly comprehensively and deeply in this dissertation. The main researches are as following:
     ①Dynamics of 3-stage planetary gears train of STM main reducer
     According to gear mesh theory and Lagrange equation, the torsional dynamic model for multi-stage PGT is developed by lumped-parameter method, and the natural characteristics of 3-stage PGT are computed. Trapezoid waves are used to express the time-varying mesh stiffness, and the mesh phasing relations among planetary gears are analyzed. For the 3-stages planetary gears of shield tunnelling machine, the torsional vibration frequencies are calculated at the different mesh position of sun-planet-ring gearing. According to the characteristics of the gears mesh errors, the harmonic waves with composite shaft frequencies and mesh frequencies are presented to describe the transmission errors of the planetary gears. Considering the time-varying mesh stiffness with different mesh phases of planet gears, the inner excitations of 3-stages planetary gears are analyzed systematically. The dynamic responses of the 3-stages planetary gears are simulated under the inner and external excitation got from a statistical load, and the spectrum properties of gears vibration are also analyzed. The dynamic response of system components are calculated under different speeds for the reducer, and the relationship between gears vibration and the rotational speed of the reducer is studied, which provides the base for choosing the suitable operating condition of driving system of the shield tunnelling machine.
     ②Coupling dynamics of multi-stage PGT—housing of main reducer
     Considering the torsional support stiffnesses of ring gears, the coupling torsional dynamic model for multi-stage PGT-housing is developed by lumped-parameter method. The torsional support stiffnesses of ring gears are obtained by using the FE method. Based on the analysis of mesh phase and inner excitations, the system dynamic response and time-frequency characteristics of ring gears are analyzed, and then realize the vibration coupling mechanism between gears train and housing.
     ③The gears train dynamic response of STM main reducer under variable load
     The load characteristics of cutter head are analyzed by developing the mechanical model for the cutter head of EPB shield tunnelling machine. The external load of main reducer is obtained through the torque data of cutter head from the STM control system. According to the fluctuating range and randomness of the load data, the continuous load data are simulated by using the IVS (Insert-value stochastically) and data fitting. The dynamic responses of three-stage PGT of main reducer are computed, moreover, the vibration property and the relationship between the system response and the speed of STM cutter head are investigated.
     ④Experimental and theoretical modal analysis on main reducer housing
     The eigenvalue problem is solved by developing the FE model for the gearbox housing, and the low order natural frequencies and corresponding modes are extracted. The modal testing is made for the gearbox housing. The least-squares complex frequency-domain (LSCF) estimation method is used to analyze the modal data, and the natural characteristics of housing are obtained. According to the modal assurance criterion (MAC), the experimental modal parameters are validated. The experimental data is coincided with analytical results, which indicates the accuracy of modal parameters. Modal analysis shows the weak position, which provides a basis for structural optimization.
     ⑤Testing and analysis on dynamic performance of STM main reducer
     The frequency responses and natural frequencies of the gearbox are obtained by modal experiment on the basis of the experimental modal analysis method. According to the large speed ratio of 3-stage planetary gearbox, the experimental project of back-to-back power circulation set-up is developed, and the test scheme is designed. The vibration properties of the gearbox are analyzed by using the acceleration data tested under different operating condition, and 1/3 octave structural borne noise have been calculated. The vibration velocities are computed, and the vibration severity is valuated synthetically. The ring gear responses from the theoretical and experimental method are successfully compared, which validates the rationality and validity of the analytical model for multi-stage PGT-housing. The sound pressure level is obtained by sound pressure testing under background noise suppressed through using the acoustic enclosure. At the same time, the sound intensity measurement is also carried out, and the sound intensity distribution is understood.
引文
[1]杨华勇,龚国芳.盾构掘进机发展战略研究[C]//上海国际隧道工程研讨会论文集.上海:同济大学出版社,2003:339-346.
    [2] Ricard Anguera.The Channel Tunnel—an ex post economic evaluation[J].Transportation Research Part A:Policy and Practice,2006,40(4):291-315.
    [3] Barbara Stack.Handbook of mining and tunnelling machinery[M].Chichester:John Wiley & Sons,1982.
    [4]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004,11.
    [5]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004,9.
    [6]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991,11.
    [7]程骁,潘国庆.盾构施工技术[M].上海:上海科学技术文献出版社,1990,12
    [8]刘宣宇,邵诚.盾构机自动控制技术现状与展望[J].机械工程学报,2010,46(20):152-160.
    [9]张厚美.盾构隧道的理论研究与施工实践[M].北京:中国建筑工业出版社,2010,11.
    [10]袁大军,王梦恕,宋克志。盾构技术在中国的应用与发展[C]//中日第三届盾构技术研讨会,日本东京:2005.
    [11]傅德明,周文波.土压盾构技术在我国地铁隧道工程中的应用和发展[J].岩石力学与工程学报,2004,23(增2):4888-4892.
    [12]琚时轩.土压平衡盾构和泥水平衡盾构的特点及适应性分析[J].工程机械,2007,38(12):20-22.
    [13]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006.
    [14]白云,丁志诚.隧道掘进机施工技术[M].北京:中国建筑工业出版社,2008.
    [15]邢彤.盾构刀盘液压驱动与控制系统研究[D].杭州:浙江大学,2008.
    [16] Herrenknecht AG.Using earth pressure to drill through soft grounds [EB/OL]. http://www.herrenknecht.com/
    [17]鲁志军.海瑞克土压平衡式盾构机分析[C]//中国土木工程学会隧道及地下工程学会地下铁道专业委员会第十五届学术交流会.成都:西南交通大学出版社, 2003:567-572.
    [18]邓新灵,何达贤,唐小兵.广重盾构机媲美进口货[N].广东建设报,2003,9-11.
    [19]方梓.国产盾构机进入产业化阶段[N].中国建设报,2004,11-08.
    [20]谢建蒲,段宏杰.中隧集团站在盾构施工领域的前沿[N].中国建设报,2004, 5-20.
    [21]李江涛,通讯员,段宏杰.盾构机:隧道施工的“穿山甲”[N].洛阳日报,2006,7-11.
    [22]贾柱.北方重工:让国产盾构机挺起“腰板[N].中国交通报,2009,6-10.
    [23]郭宇.盾构机行业虚火上升自主技术待提高[N].中国工业报,2010,8-9.
    [24]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24(增2):5762-5766.
    [25]李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101-1104.
    [26]吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报,2006,25(增1):3137-3143.
    [27] Hu Shi,Huayong Yang,Guofang Gong,et al.Determination of the cutterhead torque for EPB shield tunneling machine[J].Automation in Construction,2011,xxx (xxx):xxx–xxx.
    [28]邓立营,刘春光,党军锋.盾构机刀盘扭矩及盾体推力计算方法研究[J].矿山机械,2010,38(17):1101-1104.
    [29]王化更.液压缸直接驱动盾构刀盘系统结构优化及控制研究[D].北京:北京交通大学,2006.
    [30]奚鹰.盾构掘进机异形断面隧道切削机构的理论研究[D].上海:同济大学,2006.
    [31]管会生.土压平衡盾构机关键参数与力学行为的计算模型研究[D].成都:西南交通大学,2007.
    [32]谈理.基于MAS的盾构机故障诊断知识引擎系统的研究[D].上海:上海大学,2008.
    [33]肖正明,秦大同,王建宏,武文辉.盾构机主减速器三级行星传动系统扭转动力学[J].中国机械工程,2010,21(18):2176-2182.
    [34]余海东,丁晟,张凯之,王皓.盾构机主轴回转支承轴承刚度及变形特性研究[J].中国机械工程,2011,22(4):452-457.
    [35] Kaizhi Zhang, Haidong Yu,Zhongpo Liu,et al.Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions[J].Simulation Modelling Practice and Theory,2010,18(7):1019–1031.
    [36] Deng Kongshu,Tang Xiaoqiang,Wang Liping,et al.Force transmission characteristics for the non-equidistant arrangement thrust systems of shield tunneling machines[J].Automation in Construction,2011,20(5):588–595.
    [37] Qianwei Xu,Hehua Zhu,Wenqi Ding,et al.Laboratory model tests and field investigations of EPB shield machine tunnelling in soft ground in Shanghai[J].Tunnelling and Underground Space Technology,2011,26(1):1-14.
    [38]邵忍平.机械系统动力学[M].北京:机械工业出版社.2005.
    [39] R. Kasuba, J.W. Evans. An extended model for determing dynamic loads in spur gearing[J]. ASME Journal of Mechanical Design, 1981, 103(3):398-409.
    [40] E.Buckingham. Dynamic loads on gear teeth[J]. ASME Special Research Publication, New York, 1931.
    [41] H.Walker. Gear tooth deflections and profile modifications[J]. The Engineer, 1938, 166: 434-436 and 1940, 170: 102-104.
    [42] W. A.Tuplin. Gear-tooth stressess at high speed[J]. Proceedings of the Institute of Mechcnical Engineers, 1950, 163: 162.
    [43] W. A.Tuplin. Dynamic loads on gear teeth[J]. Machine Design, 1953, 25:203-211.
    [44] T. Nakada. M. Utagawa. The dynamic loads on gear caused by the varying elasticity of the mating teeth of spur gears[C]// Proceedings of the 6th Japanese National Congress on Apllied Mechanics, 1956, 493-497.
    [45] J. Zeman. Dynamische Zusatzkraefte in zahnradetrieben, Zeitschrift des Vereines Deutscher ingenieure, 1957, 99: 244-254.
    [46] S. L.Harris. Dynamic loads on the teeth of spur gears[J]. Proc. I. Mech. E., 1958, 172:87-112.
    [47] R. W. Gregory. S. L. Harris, R. G. Munro,et. al. Dynamic Behavior of Spur Gears[J]. Proceedings of the Institute of Mechanical Engineers, 1963, 178(18):207-226.
    [48] R. W. Gregory. S. L. Harris. R. Munro. Torsional Motions of a Pair of Spur Gears[J]. Proceedings of the Institute of Mechanical Engineers, 1963, 178(280):166-173.
    [49] G. Tordion, H. Geraldin. Dynamic Measurement of the Transmission Error in Gears[C]// Proc. JSME Semi-International Symposium, 1967.
    [50] D. R. Houser. Analysis of the influence of errors and stiffness on dynamic loads developed in spur and helical gears[D]. PhD Thesis, Madison: University of Wisconsin, 1968.
    [51] H. K. Kohler, A. Pratt, A. M.Thompson. Dynamics and noise of parallel-axis gearing[J]. Proceedings of the Institute of Mechanical Engineers, 1969, 184(30): 111-121.
    [52] R. C. Azar, Crossly. An experimental investigation of impact phenomenon in spur gear systems[C]//Proceedings of the Fourth world Congress on the Theory of Machines and Mechanisms,1975.
    [53] R. C.Azar, Crossly. Digital simulation of impact phenomenon in spur gear system[J]. ASME Journal of Engineering for Industry, 1977, 99(3):792-798.
    [54] M. Benton, A. Seireg. simulation of resonances and instability conditions in pinion-gear systems[J]. ASME Journal of Mechanical Design, 1978, 100(1):26-31.
    [55] M. Benton, A. Seireg. Factor influencing instability and resonances in geared systems[J]. ASME Journal of Mechanical Design, 1981, 103(4):372-378.
    [56] K. Umezawa, Vibration of power transmission helical gear with narrow face-width[J]. ASMEpaper,1984,150-det-159.
    [57] K. Umezawa. The developed simulator and the performance diagrams for the vibration of helical gear[J]. Proc. Inter. Conf. On Gears, Zhengzhou, China,1988:659~662
    [58] L. D. Mitchell, J. W. Daws. Proposed solution methodology for the dynamically coupled nonlinear gear rotor mechanics equation[J]. ASME Journal of Vib. Acous. Stress Reliab. Des., 1985, 107(1):112-116.
    [59] S. V. Neriya et. al. Coupled torsional-flexural vibration of a geared shaft system using finite element analysis[J]. Shock and Vibration Bulletin, 1985, 55(3): 13-25.
    [60] S. V. Neriya. On the dynamic response of a helical geared system subjected to a static translation error in the form of deterministic and filtered white noise inputs[J]. ASME Journal of Vibration, Acoustics. Stress, and Reliability in Design, 1988, 110(4): 501-506.
    [61] C. C. Wang. On analytical evaluation of gear dynamic factors based on rigid body dynamics[J]. ASME Journal of Mechanisms, 1985, 107(6): 301-311.
    [62] D. C. H. Yang, Z. S. Sun. A rotary model for spur gear dynamics[J]. ASME Journal of Mechanisms, 1985, 107(12): 529-535.
    [63] A. S. Kumar, M. O. M Osman, T. S. Sankar. On statistical analysis of gear dynamic loads[J]. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1986, 108(7): 362-368.
    [64] M. S. Tavakoli, D. R. Houser. Optimum profile modifications for the minimization of static transmission errors of spur gears[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1986, 108(3):86-94.
    [65] H. N. Ozguven, D. R. Houser. Dynamic analyses of high speed gears by using loaded static transmission error[J]. Journal of Sound and Vibration, 1988, 125: 71- 83.
    [66] H. N. Ozguven, D. R. Houser. Mathematical models used in gear dynamics–a review[J]. Journal of Sound and Vibration, 1988, 121(3):383- 411.
    [67] A. Kahraman, H. N. Ozguven, D. R. Houser, et al. Dynamic analysis of geared rotors by finite elements[J]. ASME Journal of Mechanical Design, 1992,114(3): 507-514.
    [68] A. Kahraman. Effect of axial vibrations on the dynamics of a helical gear pair[J]. ASME Journal of Vobration and Acoustics, 1993,115(1): 33-39.
    [69] A. Kahraman. Dynamic analysis of a multi-mesh helical gear train[J]. ASME Journal of Mechanical Design, 1994,116(3): 706-712.
    [70] A. Kahraman, G. W. Blankenship. Effect of involute contact ratio on spur gear dynamics[J]. ASME Journal of Mechanical Design, 1999, 121(1):112-118.
    [71] A. Kahraman, G. W. Blankenship. Effect of involute tip relief on dynamic response of spur gear pairs[J]. ASME Journal of Mechanical Design, 1999, 121(2):313-315.
    [72] P. H. Lin. Dynamic design of optimal spur gear sets[D]. PhD Thesis, Tennessee: University of Memphis, 1995.
    [73] Xu Xinmin. Nonlinear dynamic and finite element analysis of gear teeth meshing[D]. PhD Thesis, Chicago: University of Illinois at Chicago, 1998.
    [74] R. G. Parker, S. M. Vijayakar, T. Imajo. Non-linear dynamic response of a spur gear pair- modelling and experimental comparisons[J]. Journal of Sound and Vibration, 2000, 237(3):435-455.
    [75] Manish Vaishya. Vibro-acoustic characteristics of sliding friction in geared rotor systems[D]. PhD Thesis, Ohio: The Ohio State University, 2001.
    [76] S. Baud, P. Velex. Static and dynamic tooth loading in spur and helical geared systems- experiments and model validation[J]. ASME Journal of Mechanical Design, 2002, 124(2):335-347.
    [77] P. Velex, M. Ajmi. Dynamic tooth loads and quasi-static transmission errors in helical gears–Approximate dynamic factor formulae[J]. Mechanism and Machine Theory, 2007, 42: 1512–1526.
    [78] T.C. Lim, M.f. Li. Active shaft transverse vibration control of a spur gear pair system[C]// ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5b: Power Transmission and Gearing Conference, California, USA. 2005, September 24–28.
    [79] S. Li, A. Kahraman. A transient mixed elastohydrodynamic lubrication model for spur gear pairs e[J]. Journal of Tribology, 2010,132(1):011501-1-9.
    [80]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [81]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998, 9(12):55-58.
    [82]李润方,韩西,林腾蛟,等.齿轮系统耦合振动的理论分析与试验研究[J].机械工程学报,2000, 36(6):79-81.
    [83]林腾蛟.齿轮系统非线性冲击振动数值模拟及实验研究[D].重庆:重庆大学,1999.
    [84]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆:重庆大学,2004.
    [85]杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究[D].重庆:重庆大学,2006.
    [86]王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分叉研究[J].机械工程学报,2002, 38(9):8-11.
    [87]刘梦军,沈允文,董海军.单级齿轮非线性系统吸引子的数值特性研究[J].机械工程学报,2003, 39(10):111-116.
    [88]董海军,沈允文,刘梦军,张锁怀.含离合器的齿轮传动系统的拍击动力学行为研究[J].西北工业大学学报,2004, 22(2):225-230.
    [89]杨建明.三环传动弹性动力学的理论与实验研究[D].天津:天津大学,2001.
    [90]张锁怀,李忆平,丘大谋.齿轮耦合的转子—轴承系统非线性动力特性的研究[J].机械工程学报,2001, 37(9):53-59.
    [91]陈安华,罗善明,王文明.齿轮系统动态传递误差和振动稳定性的数值研究[J].机械工程学报,2004, 40(4):21-25.
    [92]朱才朝,黄泽好,唐倩风.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005, 41(8):203-207.
    [93]朱才朝,陆波,宋朝省,等.大功率船用齿轮箱系统耦合非线性动态特性研究[J].机械工程学报,2009, 45(9):31-35.
    [94]陈思雨,唐进元,谢耀东.齿轮传动系统的非线性冲击动力学行为分析[J].振动与冲击,2009, 28(4):70-75.
    [95]郭磊,郝志勇,蔡军,等.汽车变速箱齿轮传动系动力学振动特性的研究[J].振动与冲击,2010, 29(1):103-107
    [96]卢剑伟,曾凡灵,杨汉生,等.随机装配侧隙对齿轮系统动力学特性的影响分析[J].机械工程学报,2010, 46(21):82-87.
    [97]王彦刚,郑海起,杨通强.非线性齿轮系统单齿故障动力学特性[J].振动、测试与诊断,2010, 30(6):665-667.
    [98] R. Kasuba, E. I. Radzimovsky. A multi-purpose planetary gear testing machine for studies of gear drive dynamics, efficiency, and lubrication[J]. ASME Journal of Engineering for Industry, 1973, 95(4): 1123-1130.
    [99] F. Cunliffe, J.D. Smith, D.B.Welbourn. Dynamic tooth loads in epicyclic gears[J]. ASME Journal of Engineering for Industry, 1974, 96(2): 578-584.
    [100] M. Botman. Epicyclic gear vibrations[J]. ASME Journal of Engineering for Industry,1976, 98(3):811-815.
    [101] T. Hidaka, Y. Terauchi. Dynamic behaviour of planetary gear (1st report: load distribution in planetary gear) [J]. Bulletin of the JSME, 1976,19 (132): 690-698.
    [102] P. Ma, M. Botman. Load sharing in a planetary gear stage in the presence of gear errors and misalignment[J]. ASME Journal of Mechanisms Transmissions and Automation in Design, 1985, 107(1): 4-10.
    [103] R. August, R. Kasuba. Torsional vibrations and dynamic loads in a basic planetary gear system[J]. ASME Journal of Vibration Acoustics Stress and Reliability in Design, 1986, 108(3):348-353.
    [104] A. Kahraman. Planetary gear train dynamics[J]. ASME Journal of Mechanical Design, 1994, 116(3): 714-720.
    [105] A. Kahraman. Natural modes of planetary gear trains[J]. Journal of Sound and Vibration,1994, 173 (1): 125-130.
    [106] P. Velex, L. Flamand. Response of planetary trains to mesh parametric excitations restore desktop view[J]. ASME Journal of Mechanical Design, 1996, 118(1): 7-14.
    [107] J. Lin and R.G. Parker. Analytical characterization of the unique properties of planetary gear free vibration[J]. ASME Journal of Vibration and Acoustics,1999, 121(3):316-321.
    [108] J. Lin and R.G. Parker, Sensitivity of planetary gear natural frequencies and vibration modes to model parameters[J]. Journal of Sound and Vibration, 1999, 228(1):109-128.
    [109] J. Lin. Analytical investigation of planetary gear dynamics[D]. PhD Thesis, Ohio: The Ohio State University, 2000.
    [110] R.G. Parker. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration, 2000, 236(4):561-573.
    [111] J. Lin, R.G. Parker. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002, 249(1):129-145.
    [112] R.G. Parker , J. Lin. Mesh phasing relationships in planetary and epicyclic gears[J], ASME Journal of Mechanical Design, 2004, 126(2): 365-370.
    [113] V. K. Ambarisha, R.G. Parker. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007, 302(3):577–595.
    [114] D.R. Kiracofe, R.G. Parker. Structured vibration modes of general compound planetary gear systems[J]. ASME Journal of Vibration and Acoustics, 2007, 129(1): 1-16.
    [115] V. Abousleiman, P. Velex, A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets[J]. Mechanism and Machine Theory, 2006, 41(6):725-748.
    [116] M. Inalpolat, A.Kahraman. A theroretical and experimental investigation of modulation sidebands of planetary gear sets[J], Journal of Sound and Vibration, 2009, 323 (3): 677-696.
    [117] W. Bartelmus, R. Zimroz. Vibration condition monitoring of planetary gearbox under varying external load[J], Mechanical Systems and Signal Processing, 2009, 23 (1): 246–257.
    [118] Yi Guo, R. G. Parker. Dynamic modeling and analysis of a spur planetary gear involving toothwedging and bearing clearance nonlinearity[J]. European Journal of Mechanics - A/Solids, 2010,29(6):1022-1033.
    [119]王世宇.基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D].天津:天津大学, 2005.
    [120]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程, 2005, 16(16):1461-1465.
    [121]宋轶民,许伟东,张策,等. 2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报, 2006, 42(5):16-21.
    [122]杨通强,宋轶民,张策,等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报, 2005, 1(7):50-55.
    [123]孙涛,沈允文,孙智明等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报, 2002, 38(3):11-15。
    [124] Tao Sun, HaiYan Hu S. Nonlinear dynamics of a planetary gear system with multiple clearances[J]. Mechanism and Machine Theory, 2003, 38(12): 1371-1390.
    [125]孙智民,季林红,沈允文. 2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003, 43(5):636-639。
    [126]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002, 38(2):44-52.
    [127]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报, 2008, 44(7):24-31.
    [128] M. Inalpolat, A. Kahraman. Dynamic modeling of planetary gears of automatic transmission[J]. Proc. IMechE,Part K: J.Multi-body Dynamics, 2008, 222:229-242.
    [129] A. Al-shyyab, K. Alwidyan, A. Jawarneh, et al. Non-linear dynamic behaviour of compound planetary gear trains: model formulation and semi-analytical solution[J]. Proc. IMechE,Part K: J.Multi-body Dynamics, 2009, 223: 1-11.
    [130]本书编纂委员会.岩石隧道掘进机(TBM)施工及工程实例[M].北京:中国铁道出版社,2004,9.
    [131]王梦恕,盾构机国产化迫在眉睫[N].中国工业报,2006,11-28.
    [132]中华人民共和国国务院.关于加快振兴装备制造业的若干意见.国务院文件,国发[2006]8号.
    [133] Leonard Meeirovitch.Fundamentals of vibrations[M].New York:McGraw-Hill,2001.
    [134]师汉民.机械振动系统[M].武汉:华中科技大学出版社,2003.
    [135]徐业宜.机械系统动力学[M].北京:机械工业出版社,1990.
    [136] Douglas Thorby.Structural Dynamics and Vibration in Practice[M].Oxford:Elsevier Ltd.,2008.
    [137] Paolo L. Gatti, Vittorio Ferrari.Applied Structural and Mechanical Vibrations [M].London: Taylor & Francis Group LLC,2003.
    [138]机械设计手册编委会.机械设计手册—机械振动和噪声. [M].北京:机械工业出版社,2008.
    [139]张策.机械动力学[M].北京:高等教育出版社,2008.
    [140] Anette Andersson.An Analytical Study of the Effect of the Contact Ratio on the Spur Gear Dynamic Response[J]. J. Mech. Des. Transactions of the ASME,2000,122(4):508-514.
    [141] J. Derek Smith.Gear.Noise.And.Vibration Second Edition [J].New York: MARCEL DEKKER INC,2003.
    [142]刘文.齿轮系统结构噪声及空气噪声分析与试验研究[D].重庆:重庆大学,2010.
    [143] A. S. Kumar, M. O. M. Osman, T. S. Sankar. On Statistical Analysis of Gear Dynamic Loads[J].J. Vib. Acoust. Transactions of the ASME. 1986,108:362-368.
    [144] R G Schlegel,K. C. Mard. Transmission noise control-approaches in helicopter design[C]// American Society of Mechanical Engineers. Design Engineering Conference,1967,New York:ASME,1967:67-DE-58.
    [145]朱孝录.齿轮传动设计手册[M].北京:化学工业出版社,2005.
    [146]日本土木学会.隧道标准规范(盾构篇)及解说[M].朱伟,译.北京:中国建筑工业出版社,2001.
    [146]曹树谦,张文德.振动结构模态分析[M].天津:天津大学出版社,2000.
    [147] P. Guillaume, P. Verboven, S. Vanlanduit, et al. A poly-reference implementation least squares complex frequency domain estimator [C]//Proc of the 21th International Modal Analysis Conference. Kissimmee, USA, 2003.
    [148] T. D. Troyer, P. Guillaume, et al. Fast calculation of confidence intervals on parameter estimates of least-squares frequency-domain estimators[J]. Mechanical Systems and Signal Processing, 2009, 23(2):261-273.
    [149] J. Helsen, F. Vanhollebeke, B.Marrant. Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes[J]. Renewable Energy, 2011, 36(11): 3098-3113.
    [150]郭伟强,刘岩,张晓排,等.环板式针摆行星减速器箱体的模态分析[J].噪声与振动控制, 2008, 3: 29-31.
    [151]王文平,项昌乐.某型复杂变速器壳体的模态研究[J].汽车工程, 2007, 29(8): 673-676.
    [152]骆志高,李举,王祥.基于试验模态分析的薄壳塑件刚度研究[J].振动与冲击, 2009, 28(4): 185-187.
    [153]杨毅青,刘强,Munoa Jokin.基于实验模态分析的集中参数法建模[J].振动测试与分析, 2010,30(6): 621-625.
    [154]刘军,高建立,穆桂脂,等.改进锤击法试验模态分析技术的研究[J].振动与冲击, 2009, 28(4): 175-178.
    [155]李德葆.实验模态分析及其应用[M].北京:科学出版社,1999.
    [156]王基,吴新跃,朱石坚.某型船用传动齿轮箱振动模态的试验与分析[J].海军工程大学学报,2007,19(2):55-58
    [157] LMS International. The LMS Test.Lab Modal Analysis manual[G].2008.
    [158]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [159]周广林.扫描声强法测量声功率的几个关键问题研究[D].西安:西北工业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700