用户名: 密码: 验证码:
LED基片专用摇摆式数控多线切割机系统控制研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LED基片专用摇摆式多线切割机是半导体照明产业中衬底切片的专用装备。衬底材料的切片质量好坏直接影响LED后续加工步骤。传统多线切割机的切割对象为莫氏硬度5左右(金刚石的莫氏硬度为10)的水晶和硅片,LED衬底材料主要采用蓝宝石和碳化硅,这两种材料的莫氏硬度都在9以上,传统多线切割机切割效率低,甚至切不动,必须使用LED专用多线切割机。而LED多线切割机被日本和瑞士企业垄断,成为制约我国LED产业发展的瓶颈。LED多线切割机在系统功能结构、控制策略、自动化程度等几个方面与传统多线切割机有较大区别和提升。本文以传统多线切割机为参照对比,以LED多线切割机项目研发过程中的关键技术难点为主线,对LED多线切割机数控系统关键技术进行深入研究。
     (1)阐述课题研究的背景和意义;依据项目开发要求,研究LED衬底基片多线切割机和与之相关的几项关键控制技术的国内外研究状况,论述数控多线切割技术的发展趋势;介绍LED衬底基片多线切割机控制技术基础;概括作者承担的科研任务以及本文主要研究内容。
     (2)分析传统多线切割机的机械结构和原理,得出传统多线切割机高速切割LED材料时切割效率低和切割质量不稳定的原因。针对传统多线切割机的缺点,提出用金刚石线+冷却液切割模式替代钢丝线+砂浆模式,解决磨料游离的问题;设计一种摆动装置的机械结构,克服传统多线切割机p值不恒定的缺点。同时增加自动绕线机构和放线侧排线器,得到LED多线切割机机械机构。根据LED切片的要求和特点,设定LED多线切割机总体性能指标,设计系统整体与各个模块的电气和控制系统。分析了LED多线切割机控制的重点和难点
     (3)针对常规张力控制在LED多线切割机系统中精度不高,非线性干扰系统不稳定的问题,提出干扰观测的线性H∞张力控制算法。该算法充分考虑系统中具有子系统模型的动态干扰和未建模动态干扰以及参数和结构的不确定性引起的误差,并给出解决方案。研究线性H∞控制系统的稳定性,并在系统稳定的条件下,利用Chelosky分解方法,得到动态方程的解,大幅提高系统响应速度。样机的实验结果表明该系统具有系统张力波动小,稳定性能好,断线率低的特点。
     (4)分析机械结构改进后出现的多轴同步控制难点,根据其固有的特点,充分利用模糊控制鲁棒性强和迭代学习控制精度高的优点,同时避免模糊控制稳态精度不高,迭代学习控制对参数变化敏感的缺陷,提出模糊迭代学习控制方法。通过实验对比了模糊控制和模糊迭代学习控制算法的运行结果,证明模糊迭代学习控制算法的有效性。
     (5)详尽分析机器结构和功能发生变化之后的自动绕线控制要求。根据系统控制要求,对主流的主从同步控制算法进行改进,得到主从-位置控制算法。相对单一的主从控制算法,主从-位置控制算法减少了控制层次,缩小延时,有一定的进步意义。针对主从-位置算法的局限性,建立LED多线切割机自动绕线的数学模型,提出一种并联差分耦合控制算法,并对其有效性进行证明。并联差分耦合控制算法建立系统线速度同步和角速度同步的统一模型,综合相邻交叉耦合控制和偏交叉耦合控制的优点;在与主从-位置控制算法的对比试验中,控制精度高,响应速度快,效果良好。
     (6)传统多线切割机往往凭借经验设定多线切割机的系统线速度、张力以及工件台速度等参数,且参数一旦设定,整个切割过程中保持不变。依赖经验的操作自动化程度低,且不一定是最佳选择,切割参数固定不变未必效率最高。通过试验找出上述三项参数对于切割效率的定量关系,并根据其关系建立数学模型,提出切割时间最优控制。试验对比证明该控制算法能够提高生产效率,且本文的试验结果和控制方法对传统多线切割机同样有效。通过切片试验结果和数据对比分析,表明整机具有切片精度高,稳定性好的特点。
     本课题成功开发一款LED多线切割机产品,整机性能指标达到预期目标,该新产品已于2011年投入市场应用。本文研究的LED多线切割机的几项核心控制技术,对数控多线切割机系列化装备的研制具有重要意义,同时对工业领域相关控制课题的研究具有重要的借鉴作用和参考价值。
Swing type multi-wire saw (MWS) for LED substrate is the special equipment in the LED wafer manufacturing process in semiconductor lighting industry. The quality of the substrate sliced sheet direct impact on LED subsequent processing step. The cutting object of traditional MWS is silicon wafer and crystal with Moh's hardness about5(Moh's hardness of diamond is10). LED substrate mainly uses the sapphire and silicon carbide. The two kinds of material in more than nine's hardness, but due to its high hardness and heavy brittle, there are some problems in the precision machining course. Traditional MWS cutting efficiency is low, even cut motionless and it must use special LED MWS. LED MWS is monopolized by Japanese and Swiss enterprises, and becomes a development bottleneck that constrains our country LED industry. LED MWS have great differences and ascend than traditional MWS in the system function structure, control strategy, automation degree and so on several aspects. Traditional MWS as reference to more contrast, LED MWS key technical difficulties in the process of project research as the main line, LED MWS NC system is further research.
     (1) The background and meaning of subject research are expounded. The domestic and foreign present study situation of MWS for LED wafers and for several key control technology have been studied. The development trend of numerical control multi wire slice technology is described. According to the project request, the theory foundation has been deeply researched on control system of MWS for LED wafer. The project tasks undertaken by author are introduced. And the main contents of this dissertation are given.
     (2) Through the analysis of the traditional MWS mechanical structure and principle,the reasons that cutting efficiency of traditional MWS cutting LED material with high speed is low and cutting quality is not stable is got. According to the disadvantages of traditional MWS, the diamond wire+cooling fluid cutting model alternative steel wire+mortar model; the problem of free abrasive is solved.A swinging mechanical structure is designed; the fault that traditional MWS p value is not constant is solved. At the same time, automatic winding institutions and row wire institutions of the pay-off side are increased, and LED MWS mechanical institutions is got. The key and difficult problem of LED MWS is analyzed.
     (3) To deal with the low precision and instability of nonlinear interference with normal control in the LED MWS, a disturbance observer linear H-infinity control algorithm is proposed.This algorithm take full account of error that caused by dynamics disturbances of subsystem model and unmodeled dynamics disturbances as well as the uncertainty of the parameters and structure of the LED MWS, and the solution is given. The stability of linear H-infinity control systems is studied, and under the conditions of the system stability, the analytical solution of dynamic equation is obtained by using the method of Chelosky decomposition. The system response speed is improved significantly. The experiment result of model machine illustrates that the system is undulating of tension small, stabilizes performance well and the break line ratio low.
     (4) A detailed analysis of the control difficulty comes after mechanical structure improvement. According to its inherent characteristics, making full use of the advantages of fuzzy control strong robustness and iterative learning control high precision, a fuzzy iterative learning control method is proposed. The control method avoids defects of fuzzy control that steady precision is not high and the iterative learning control that is sensitive to the parameters changes. Through the contrast of fuzzy control and fuzzy iterative learning control the operation of the algorithm, the experiment results show that the fuzzy iterative learning control algorithm is effective.
     (5) The automatic winding control requirements are analyzed after the change of machine structure and function. According to the system control requirements, the mainstream master-slave synchronous control algorithm was improved, a master-slave-position control algorithm is proposed. Compare with single master-slave control algorithm, master-slave-position control algorithm reduce the control grade and delay.It has the certain progressive significance. The limitations of master-slave-position control algorithm are analyzed, and through establishing a LED MWS mathematics model of the automatic winding, a kind of parallel differential coupled control algorithm is put forward. Its effectiveness is prooved. Parallel differential coupled control algorithm establish unified synchronous model of angular velocity and linear velocity for the system, absorbs the advantages of the adjacent cross coupling control and partial cross coupling control.In the contrast test with master-slave-position control algorithm, it prove that high control accuracy, fast response and the effect is good.
     (6) People often set machine parameters like the linear speed, tension and speed of the work piece platform with experience. And once the parameters set, the cutting process remains unchanged. Relying on operation experience is the low automatic degree, and is not necessarily the best choice. Fixed cutting parameters may not have the highest efficiency.These parameters is very important to cutting efficiency. This article find out the quantitative relationship between cutting efficiency and above three parameters, and according to the relationship established the mathematical model. A time optimal control is put forward. The experiment results and data analysis show that the machine has high sliced precision and good stability.
     This scientific project has developed a LED MWS product successfully. The complete machine performance has achieved the expected goal, this new product already put into market application in2011. In this paper, a few core control technology reserched in LED MWS has an important meaning for the NC MWS series equipment development. At the same time, it has important reference function and value for the industry related control topic research.
引文
[1]Francis Nguyen. Challenges in the design of a RGB LED display for indoor applications[J]. Synthetic Metals,2001,122(1):215-219
    [2]Jonathan Wood. Ultraviolet LED promises new applications:Electronic materials [J]. Materials Today,2006,9(16):7-8
    [3]赵清泉.半导体发光二极管及其在照明的应用[J].光源与照明,2005(3):18-19
    [4]杨静,王广奇.照明工程中LED的应用[J].机电信息,2011,291(9):139-140
    [5]N.Jr.Holonyak. Is the light emitting diode (LED) an ultimate lamp[J].Am. J. Phys,2000,68(9):864-866
    [6]梁丽芳,余彬海,龙孟华等.中国LED应用领域的专利分析[J].仪器仪表用户,2011,(18)4:4-8
    [7]H.Mech. Machine and method for cutting brittle materials using a reciprocating cutting wire. US patent.3831576,1974
    [8]H.Mech. Machine for cutting brittle materials. US patent.3841297,1974
    [9]H.B. McLaughlin. Use X and Y table to contour cut the workpiece. US patent. 4016856.1977
    [10]R.C. Wells. Wire saw. US patent.4494523,1985
    [11]蒋近.传统多线切割机张力系统控制机理研究及应用:[湖南大学博士学位论文].湖南:湖南大学电气与信息工程学院,2011
    [12]赵明明.中国电科国家科技重大专项任务获突破300mm多线切割机研制成功www.cnr.cn,2011-01-12
    [13]J. Li, I. Kao, V. Prasad. Modeling stresses of contacts in wire saw slicing of poly crystalline and crystalline ingots:application to silicon wafer production[J]. ASME Journal of Electronic Packaging,1998,120:123-128
    [14]R.K. Sahoo, V. Prasad, I. Kao, et al. Towards an integrated approach for analysis and design of wafer slicing by a wire saw[J]. ASME Journal of Electronic Packaging,1998,120:35-40
    [15]I. Kao. Technology and research of slurry wiresaw manufacturing systems in wafer slicing with free abrasive machining[J]. International Journal of Advanced Manufacturing Systems,2004,7:7-20
    [16]C. Funke, H.J. Moeller. Microscopic mechanisms of multi-wire sawing[J]. Freiberger Forschungshefte,2004,327:206-228
    [17]H.J. Moeller, Basic mechanisms and models of multi-wire sawing[J]. Advanced Engineering Materials,2004,6:501-513
    [18]T. Liedke, M.Kuna. A macroscopic mechanical model of the wire sawing process[J]. International Journal of Machine Tools & Manufacture,2011, 51:711-720
    [19]陈建魁.非连续卷绕系统动力学建模与张力/位置控制及其应用:[华中科技大学博士学位论文].武汉:华中科技大学机械电子工程,2010
    [20]何金保.卷绕张力系统鲁棒控制策略的研究:[上海大学博士学位论文].上海:上海大学机械制造及其自动化学院,2009
    [21]W.I. Clark, A.J. Shih b, C.W. Hardin, et al. Fixed abrasive diamond wire machining-part Ⅰ:process monitoring and wire tension force[J]. International Journal of Machine Tools & Manufacture,2003,43:523-532
    [22]张义兵,戴瑜兴,袁巨龙,等.多线切割机线张力控制系统设计实现[J].机械工程学报,2009,(45)5:295-300
    [23]Wolfermann W. Tension Control of Webs-A Review of The Problems and Solutions In The Present and Future[C]. In Proceedings of the Third International Conference on Web Handling, Oklahoma,1995,198-228
    [24]F. Janabi-Sharifi. A neuro-fuzzy system for looper tension control in rolling mills[J]. Control Engineering Practice,2005,13(1):1-13
    [25]Ren S L, Lu H, Wang Y Z,et al. Development of PLC-based Tension Control System [J]. Chinese Journal of Aeronautics,2007,20(3):266-271
    [26]何金保,郭帅,何永义,等.基于遗传优化的张力模糊控制[J].控制理论与应用,2009,26(3):243-248.
    [27]Yan M T, Huang P H. Accuracy improvement of wire-EDM by real-time wire tension control[J]. International Journal of Machine Tools and Manufacture, 2004,44(7):807-814
    [28]Chunxiang Wang, Yongzhang Wang, Ruqing Yang, et al.Research on precision tension control system based on neural network[J].IEEE Transactions on Industrial Electronics,2004,51(2):381-386
    [29]J.E.Geddes, M.Postlethwaite.Improvements in product quality in tandem cold rolling using robust multivariable control[J]. IEEE Transaction on Contr.Syst. Technol,1998,6(2):257-269
    [30]杨娅君,周泽魁.传动带成形机上智能型放卷‘张力控制器及应用[J].中国机械工程,2004,15(5):384-387
    [31]王春香.微机数控纤维缠绕机精密张力控制系统研究:[哈尔滨工业大学博士 学位论文].哈尔滨:哈尔滨工业大学机电学院,1999
    [32]KOREN Y, LO C C. Variable gain cross coupling controller for contouring [J]. A-nnals of the CIRP,1991,40(1):371-374
    [33]Seok-Kwon Jeong, Sam-Sang You. Precise position synchronous control of multi-axis servo system[J]. Mechatronics,2008,18(3):129-140
    [34]Li S Y, Liu H B, Cai W J. A new coordinated control strategy for boiler-turbine system of coal-fired power plant[J]. IEEE Transactions on Control Systems Technology,2005,13(6):943-954
    [35]于海生.多电机同步传动微机控制装置的研制[J].青岛大学学报,1999,14(1):41-44
    [36]张承慧,石庆升,程金.一种基于相邻耦合误差的多轴同步控制策略[J].中国电机工程学报,2007,27(15):59-63
    [37]张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007,22(1):30-34
    [38]Sun D, Shao X Y,Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions:theory and experiments[J]. IEEE Transactions on Control Systems Technology,2007,15(2):306-314.
    [39]Chin-Sheng Chen, Li-Yeh Chen. Cross-coupling position command shaping control in a multi-axis motion system[J]. Mechatronics,2011,21(3):625-632
    [40]Srinivasan K, Kulkarni P K. Cross-coupled control of biaxial feed drvie servo mechanisms[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1990,112(1):225-232
    [41]Perez P,Calderon G,Araujo-Vargas I. Relative coupling strategy [C]. Electronic Machines and Drives Conference,Mexico City,2003
    [42]王宣银,程佳.基于相关耦合的并联四轴电动伺服平台鲁棒控制[J].中国电机工程学报,2009,29(6):117-121
    [43]刘国海,刘平原,沈跃,等.两电机变频调速系统的神经网络广义逆解耦控制[J].中国电机工程学报,2008,28(36):98-102
    [44]曹玲芝,李春文,牛超,等.基于相邻交叉耦合的多感应电机滑模同步控制[J].电机与控制学报,2008,12(5):586-592
    [45]刘然,孙建忠,罗亚琴等.基于环形耦合策略的多轴同步控制研究[J].控制与决策,2011,26(6):957-960
    [46]Yi Zhao, Francis E.H. Tay, Guangya Zhou, et al. Fast and precise positioning of electrostatically actuated dual-axis micromirror by multi-loop digital control[J]. Sensors and Actuators A:Physical,2006,132 (2):421-428
    [47]Khalid L. Sorensen, William Singhose, Stephen Dickerson. A controller enabling precise positioning and sway reduction in bridge and gantry cranes[J]. Control Engineering Practice,2007,15(7):825-837
    [48]Ting-Yung Lin, Yih-Chieh Pan, Chen Hsieh. Precision-limit positioning of direct drive systems with the existence of friction[J]. Control Engineering Practice,2003,11(3):233-244
    [49]M.H. Perng, S.H. Wu. A fast control law for nano-positioning[J]. International Journal of Machine Tools and Manufacture,2006,46(14):1753-1763
    [50]Takashi Yamaguchi. Guest Editorial Special Issue:"Servo Control for Data Storage and Precision Systems",from 17th IFAC World Congress 2008[J]. Mechatronics,2010,20(1):1-5
    [51]David Naso, Francesco Cupertino, Biagio Turchiano. Precise position control of tubular linear motors with neural networks and composite learning[J]. Control Engineering Practice,2010,18(5):515-522
    [52]Ali Selk Ghafari, Mehdi Behzad. Investigation of the micro-step control positioning system performance affected by random input signals[J]. Mechatronics,2005,15(10):1175-1189
    [53]李义强,周惠兴,王先逵,等.直线电机伺服定位系统时间最优鲁棒控制[J].电机与控制学报,2011,3:13-18
    [54]胡连华,李新平,汤伟.纸张横向检测与控制的基础—QCS中的精确定位技术中[J].中华纸业,2011,6:59-61
    [55]张宇华,姜建国,郜登科.基于自适应反步法的干扰补偿挖泥船动力定位控制[J].东南大学学报(英文版),2011,1:36-39
    [56]张会.非线性系统最优控制的改进逐次逼近法研究[D].海洋舰艇学院博士论文,2007
    [57]Na jia,AL-Musabi. Design of Optimal Variable structure Controllers:Applications to Power System Dynamics.For the Degree of Master of Science,King Fahd University of Petroleum&Minerals,Dhahran,Saudi Arabia.June 2004
    [58]J.L.Leeper,R.J.Mulholland. Optimal control of nonlinear single-input systems[J]. IEEE Transactions onAutomatic Control,1972, AC-17(3):401-402
    [59]S.Ito.Numerical methods of nonlinear optimal control based on mathematical Programming[J]. NonlinearAnalysis, Theory, Methods and Applications,1997, 30(6):3843-3854
    [60]M.Abu-Khalaf,F.L.Lewis. Nearly optimal control laws for nonlinear systems with saturating actuatorsusing a neural network HJB approach[J]. Automatica, 2005,41(5):779-791
    [61]M.Diehl,H.G.Bock, J.P.Schloder. A real-time iteration scheme for nonlinear optimation in optimalfeedback control [J]. SI AM Journal on Control and Optimization,2005,43(5):1714-1736
    [62]T.Itami.Nonlinear optimal control as quantum mechanical eigenvalue problems[J]. Automatica,2005,41(9):1617-1622
    [63]FRIEDLAND B, PARK Y J. On adaptive friction comp ensation[J]. IEEE Transa-ctions on Automatic Control,1992,37 (10):1609-1612
    [64]AM IN J, FR IEDLAND B. Implem entation of a friction estimation and compensation technique[J]. IEEE Control Systems,1997,1:71-76
    [65]LIAO TehLu, CH IEN Tsun I. An exponentially stable adaptive friction compensator[J]. IEEE Trans Auto Contr,2000,45(5):977-980
    [66]ZHANG T, GUAY M. Comments on an exponentially stable adaptive friction compensator[J]. IEEE Trans Auto Contr,2001,46(11):1844-1845
    [67]BERTOLUZZO M, BUJAG S, STAMPACCHIA E. Perform an ceanalys is of a high-band width torqued is turbance compensator [J]. IEEE/ASME Trans Mechatronics,2004,9(4):653-660
    [68]YAO B. Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems[D]. Berkeley:University California,1996
    [69]YAO B, MOHAMMED A M, MASAYOSH I T. High-performance robust motion control of machine tools:anadaptive robustcontrol approach and comparative experiments[J]. IEEE Transactions on Mechatronics,1997,2:63-76
    [70]XU L, YAO B. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica,2001,37:1029-1039
    [71]YAO B, BU F, REEDY J, et al. Adapt ive robust control of single rod hydraulic actuators:theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000,5:79-91
    [72]YAO B, TOM IZUKA M. Adaptive robust control of mimonon linear systems in semi-strict feedback forms[J]. Automatica,2001,37:1305-1321
    [73]K IM J J, S INGH T. C ontroller design for flexible systems with friction:pulse amplitude control [J].ASME J Dyn SystM eas,2005,127(9):336-344
    [74]刘强.高性能机械伺服系统运动控制技术综述[J].电机与控制学报,2008,12(5):603-609
    [75]ABDEL-GHAFFAR H F, ABDEL-MAGIED M F, FIKRI M, et al. Plerformance analysis of Fieldbus in process control systems[C]//The 2003 American Control Conference, Janury 4-6,2003, Denver, Colorado USA.ACCC,2003:591-596.
    [76]王志成,于东,张晓辉,等.数控系统现场总线可靠通信机制的研究[J].机械工程学报,2011,47(3):152-158
    [77]CENA G,SENO L,VALENZANO A,et al. Performance analysis of Ethernet Powerlink networks for distributed control and automation systems[J]. Computer Standards & Interfaces,2009,31(3):566-572
    [78]LEE K C, LEE S. Performance evaluation of switched Ethernet for real-time industrial communications[J].Computer Standards and Interfaces,2002,24(5): 411-423
    [79]NEUMANN P. Communication in industrial automation-What is going on?[J]. Control Engineering Practice,2007,15(11):1332-1347
    [80]FELSER M. Real-time ethernet-industry prospective[J]. proceedings of the IEEE,2005,93(6):1118-1129
    [81]RAMESH R, MANNAN M A, POO A N. Tracking and contour error control in CNC servo systems[J].International Journal of Machine Tools and Manufacture 2005,45(3):301-326
    [82]LIU Dan,YU Haibin,WANG Zhongfeng,et al. A basic model of fieldbus communication protocols[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23,2006, Dalian, China. WCICA, 2006:4494-4498
    [83]Real-Time Ethernet:EPL (Ethernet Powerlink):Proposal for a Publicly Available Specification for Real-Time Ethernet, Doc. IEC65C/356a/NP,2004
    [84]YU Dong, HU Yi, XU Xun, et al. An open CNC system based on component technology[J]. IEEE Transactions on Automation Science and Engineering,2009, 6(2):302-310
    [85]周祖德,龙毅宏,刘泉.嵌入式网络数控技术与系统[J].机械工程学报,2007,43(5):1-7
    [86]刘海.2012年中国金刚石切割线研究报告http://wenku.baidu.com/view/ e4a8cbbala37f111f1855bcd.html,2011-10-18
    [87]Zames G. Feedback and optimal sensitivity. model reference transformations, multiplicative seminors, and approximate inversers. IEEE Transaction on Automatic Control,1981,26:301-320
    [88]Doyle J, Glover K, Khargonekar P, et al. State-space solution to standard H∞ and H2 control problem. IEEE Transaction on Automatic Control,1989,34(8): 831-842
    [89]Kimuta K. Conjugation, interpolation and model-matching in H∞, International Journal of Control,1989,49:269-307
    [90]Francis B A,Zames G.. On H∞ optimal feedback controllers for linear multivariable systems. IEEE Transaction on Automatic Control,1984,29:888-900.
    [91]Arvin Dehghania, Alexander Lanzona, Brian D.O. Anderson. H∞ design to generalize internal model control. Automatica,2006,42(11):1959-1968
    [92]Arvin Dehghania, Alexander Lanzona, Brian D.O. Anderson. A two-degree-of-freedom H∞ control design method for robust model matching. Int. J. Robust Nonlinear Control,2006,16:467-483
    [93]Guillaume Barrault,Dunant Halim, Colin Hansen. High frequency spatial vibration ontrol using H∞ method, Mechanical Systems and Signal Processing, 2007,21(4):1541-1560
    [94]D.Vaesa, K.Engelen, J.Anthonis. Multivariable feedback design to improve tracking performance on tractor vibration test rig. Mechanical Systems and Signal Processing,2007,21(2):1051-1075
    [95]E. Gershon, U. Shaked. H∞ output-feedback control of discrete-time systems with state-multiplicative noise. Automatica,2008,44(2):574-579
    [96]Eleni Aggelogiannaki, Haralambos Sarimveis. Robust nonlinear H∞ control of hyperbolic distributed parameter systems. Control Engineering Practice,2009, 17(6):723-732
    [97]J.F.Camino, J.R.F.Arruda. H2 and H∞ feedforward and feedback compensators for acoustic isolation. Mechanical Systems and Signal Processing,2009,23(8): 2538-2556
    [98]贾英民.鲁棒H∞控制[M].北京:科学出版社,2007
    [99]Zhang W, Chen, B.S. State feedback H∞ control for a class of nonlinear stochastic systems[J], SIAM Journal on Control Optimization,2006,44: 1973-1991
    [100]王天成,刘小梅,高荣.一类不确定时滞系统的非线性H∞控制[J].控制与决策,2009,24(6):945-948
    [101]吴凌尧,仝淑贞,郭雷.一类含中立项的非线性系统的复合抗干扰控制方法[J],2009,4(1):22-31
    [102]Pajchrowski T, Zawirski K. Robust speed controller of PMSM based on adaptive neuro-fuzzy inference system[J]. Przeglad Elektrote-chniczny,2009,85(8):12-17
    [103]Meroufel A, Massoum A, Belabes B. Fuzzy adaptive model following speed control for vector controlled permanent magnet synchronous motor[J]. Leonardo Electronic Journal of Practices and Technologies,2008,7(13):19-33
    [104]Karakaya A, Karakas E. Performance analysis of PM synchronous motors using fuzzy logic and self tuning fuzzy PI speed controls[J]. Arabian Journal for Scienceand Engineering,2008,13(1B):153-177
    [105]Prats M M, Carrasco J M, Galvan E, et al. A new fuzzy logic controller to improve the captured wind energy in a real 800 kW varalbe speed-variable pitch wind turbine[C]//Power Electronics Specialists Conference. Cairns, Australia: IEEE,2002:101-105
    [106]Abo-Khalil A G, Lee D C, Jul-Ki S. Variable speed wind power generation system based on fuzzy logic control for maximum output power tracking[C]// Power Electronics Specialists Conference, IEEE 35th Annual. Aachen, German: IEEE,2004:2039-2043
    [107]Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning [J]. Journal of Robotic Systems,1984,1(2):123-140
    [108]Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control[J]. IEEE Control Systems Magazine,2006,26(3):96-114
    [109]Ahn H S, Chen Y Q, Moore K L. Iterative learning control:brief survey and categorization[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part C: Applications and Reviews,2007,37(6):1099-1121
    [110]Meng De-Yuan, Jia Ying-Min, Du Jun-Ping, Yu Fa-Shan.Stability analysis of continuous-time iterative learning control systems with multiple state delays [J]. Acta Automatica Sinica,2010,36(5):696-703
    [111]Hou Zhong-Sheng, Xu Jian-Xin. A new feedback-feedforward conguration for the iterative learning control of a class of discrete-time system[J]. Acta Automatica Sinica,2007,33(3):323-326
    [112]Park K H, Bien Z. Intervalized iterative learning control for monotonic convergence in the sense of sup-norm[J]. International Journal of Control,2005, 78(15):1218-1227
    [113]Chien C J. A new adaptive fuzzy iterative learning control for nonlinear systems with repeatable control tasks [C]. Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain, 2005:7834-7839
    [114]Chien C J. A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks [J]. IEEE Transactions on Fuzzy Systems,2008,16(1):40-51
    [115]Sun M X, He X X, Yu L. Initial rectified attractors for perfect synchronization of chaotic systems [J].Physics Letters A,2005,348(1/2):28-36
    [116]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999.:265-271
    [117]曹伟,戴学丰.非线性系统在任意初态下的闭环迭代学习控制[J].系统仿真学报,2011,23(5):965-968
    [118]I. Kao, Technology and research of slurry wiresaw manufacturing systems in wafer slicing with free abrasive machining[J].International Journal of Advanced Manufacturing Systems,2004,7:7-20
    [119]C. Funke, H.J. Moeller, Microscopic mechanisms of multi-wire sawing[J]. Freiberger Forschungshefte,2004,327:206-228
    [120]H.J. Moeller, Basic mechanisms and models of multi-wire sawing[J].Advanced Engineering Materials,2004,6:501-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700