用户名: 密码: 验证码:
内蒙古毛盖吐铜钼矿床地质特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在前人地质资料的基础上,对内蒙古毛盖吐铜钼矿床进行了地质特征研究。通过矿床区域上成矿地质背景、矿床地质特征、矿体特征等的总结和研究,初步确定矿床的空间分布规律、控矿条件及成矿规律。在此基础之上又研究了矿区花岗闪长岩的岩石地球化学特征,进一步确定了矿床形成时所处的岩浆-构造环境。又利用矿石中的原生流体包裹体,测定和计算了矿床成矿物理化学条件。最后综合讨论了毛盖吐矿床的成矿流体性质、成矿地质条件、地球化学特征、成矿时代和成矿类型。
Maogaitu Copper-molybdenum Deposit is located in the metallogenic belt of southern GreaterHiggnanmountains.It is a new-found deposit that is of low study.
     Maogaitu Copper-molybdenum Deposit is focused on the Yanshanian granodio -rite,which putting up local mineralizing in this rock. The mineral veins and ore bodies is controlled by the fractures which are west-eastern in the mining site and distributed with right diagonal.Mineralization body alteration belts have been founded.and one of them has been checked by projects that there are 12 copper-molybdenum ore bodies in it.Copper-molybdenum ores major in the mineralized K-feldspar - quartz belt, granite- quartz belt.
     Showing the results of petrochemistry microelement geochemistry, the granodiorite which has genesis relationship with the deposit is of calc-alkalineseries.It belongs to M-type granite that is formed in island-arc circumstance which is between the ocean and the continent.
     Fluid inclusions research indicates that the deposit from the gas-liquid fluid inclusions composed of two-phase inclusions. The homogenization temperature is 178.9~236.1℃.The peak value is 170~200℃and 210~240℃.Liquid inclusions solinty is 1.05~40.8wt%(NaCl).The density is 0.82~0.89g/cm3.The estimating matallogentic pressure is 14.00~18.00MPa.The depth is 0.50~0.65km.
     To sum up,the formation of Maogaitu copper-molybdenum deposit relate to the subduction of Pacific Plate to the the Eurasian Plate.The hanging side of the Subduction zone is a extending circumstance of . island-arc or back-arc。In addition,the E-W Huolinghe River faulted zone coincides with the NNE Hundule River faulted zone in the granodiorite rock. Therefore the copper-molybdenum deposit of shallow-seated middle-low temperature hydrothermal origin is formed that relate to the granodiorite.
引文
[1]张治国,韩燕.Torgerson方法在某斑岩铜钼矿蚀变与矿化分析中的应用[J].世界地质,2002,21(4):401—405
    [2]白凤军,肖荣阁.嵩县钾长石英脉型钼矿地质特征及成矿预测[J].中国钼业,2009,33(2):19—23 [3号]刘德权,陈毓川,王登红等.土屋-延东铜钼矿田与成矿有关问题的讨论[J].矿床地质,2003,22(4):334—344
    [4]王荣全,宋雷鹰,曹书武等.乌奴格吐山斑岩铜-钼矿地球化学特征及评价标志[J].矿产与地质,2007,21(5):515—519
    [5]秦克章,李光明,赵俊兴等.西藏首例独立钼矿-冈底斯沙让大型斑岩钼的发现及其意义[J].中国地质,2008,35(6):1101—1111
    [6]张东阳,张招崇,艾羽等.西天山莱历斯高尔一带铜(钼)矿成矿斑岩体矿物学特征及其成岩成矿意义[J].岩石矿物学杂志,2009,28(1):3—16
    [7]邵帅,李景弘,邹方军.扎兰屯市鲍家沟钼矿地质特征及找矿前景分析[J].矿产与地质,2008,22(4):311—313
    [8]李永森,刘兰笙等.中国斑岩铜相矿的主要特征及分布规律[J].地质论评,1979,25(2):36—46
    [9]毛德宝,赵更新,席忠等.CuˉMoˉPbˉZnˉAgˉAu成矿系统的地质特征及其研究意义[J].地质调查与研究,2003,26(4):213—219
    [10]翟裕生,彭润民,王建平.成矿系列的结构模型研究[J].高校地质学报,2003,9(4):510—519
    [11]翟裕生,彭润民,邓军等.成矿系统分析与新类型矿床预测[J].地学前缘(中国地质大学,北京),2000,7(1):123—131
    [12]翟裕生,王建平,邓军等.成矿系统时空演化及其找矿意义[J].现代地质,2008,22(2):143—150
    [13]翟裕生.成矿系统研究与找矿[J].地质调查与研究,2003,26(3):129—135
    [14]王成,龚庆杰,席斌斌等.斑岩钼矿热液流体的地球化学演化—以美国亨德森斑岩钼矿为例[J].地质找矿论丛,2009,24(2):146—150
    [15]朱炳球,徐外生.斑岩铜(钼)矿成矿作用的地球化学特征[J].地球化学,1984,(2):107—116
    [16]王建业.斑岩铜矿与斑岩钥矿的地质特征及成因[J].冶金工业部地质研究所学报,1983,(3):75—82
    [17]苏捷,张宝林,孙大亥等.东秦岭东段新发现的沙坡岭细脉浸染型钼矿地质特征、Re-Os同位素年龄及其地质意义[J].地质学报,2009,83(10):1490—1496
    [18]王成辉,王登红,陈郑辉等.福建砺山钼矿的地质特征、成矿时代及区域找矿前景[J].矿物学报,2009,29(1):63—68
    [19]夏抱本,夏斌,王保弟等.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因[J].地质科技情报,2007,26(4):起19—25
    [20]丁义侠.钢屯—杨家杖子钼矿田花岗岩类演化与成矿探讨[J].辽宁地质,1985,(1):29—35
    [21]邱顺才.河南省母山钼矿地质特征及找矿方向[J].矿产与地质,2006,20(4-5):403—408 [22号]杨泽强.河南省商城县汤家坪钼矿围岩蚀变与成矿[J].地质与勘探,2007,43(5):17—22
    [23]韩振哲,赵海玲,李娟娟等.黑龙江铁力兴安一带斑岩型钼矿资源潜力预测[J].地质与勘探,2009,45(3):253—259
    [24]朱建华.化探在辽宁大杨树沟钼矿发现中的作用与意义[J].中国地质,2007,34(2):342码—346
    [25]孙冀凡,王会文,许振海.冀北小寺沟铜钼矿外围银金资源潜力浅析[J].地质找矿论丛,2004,19(1):20—23
    [26]林文蔚.辽西杨家杖子相矿田的交代系列[J].矿床地质,1987,6(1):23—34
    [27]任忠跃译,彭齐鸣校.美国蒙大拿卡尼湾干谷钼矿的流体包裹体和相平衡研究—CO2对辉钼矿一钼钙矿稳定性的影响[J].世界地质,1995,14(3):43—51
    [28]汤超,杨亮.内蒙古朝克温多尔金(铜钼)矿成矿地质特征[J].地质调查与研究,2009,32(4):284—290
    [29]卢欣祥,罗照华,黄凡等.秦岭—大别山花岗岩与钼矿的关系研究[J].矿物学报(增刊),445—446
    [30]任启江,郭国章,冯祖钓等.陕西金堆城斑岩相矿成矿过程中热及流体传输的计算模拟[J].矿床地质,1994,13(1):88—95
    [31]任启江,吴俞斌,武耀城等.陕西金堆城斑岩祖矿含矿裂隙分布规律与成因[J].矿床地质,1987,6(3):35—46
    [32]杜本臣,朱炳义.陕西金堆城铝矿田构造特征及与成矿关系的探讨[J].陕西地质,1984,2(1):15—24
    [33]徐士宏,李伯平,周依盘等.陕西金堆城钼矿田遥感数字图象模糊识别的实验研究[J].陕西地质,1984,2(2):86—94
    [34]熊兰生.试论虹螺山一杨家杖子中酸性岩浆演化及相矿成矿系列[J].辽宁质,1983,(1):43—51
    [35]温森坡,刘国印,乔保龙等.嵩县纸房钼矿地质特征与找矿方向[J].矿产与地质,2008,22(2):121—124
    [36]宋建潮,贾三石,王恩德等.万宝源斑岩型钼矿流体包裹体及成矿物质来源研究[J].地质与勘探,2009,45(5):539—548
    [37]吴翠华,戴雪灵,邓湘伟等.小寺沟铜钼矿成岩成矿系统浅析[J].华南地质与矿产,2009,(4):22—28
    [38]任耀武.大兴安岭中南段铜多金属矿床的重要矿源层[J].华北地质矿产杂志,1994,9(3):313—316
    [39]畅斌,温汉捷.贵州遵义黄家湾下寒武统牛蹄塘组镍-钼富集层电子探针研究[J].矿物学报,2008,28(4):439—446
    [40]朱柏松,王成良,张方.石英脉型辉钼矿矿床多建造地球化学异常特[J].物探与化探,2004,28(2):114—118
    [41]唐菊兴,王成辉,屈文俊等.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义[J].岩矿测试,2009,28(3):215—218
    [42]中国地球物理场特征及深部地质与成矿. http://bbs.hxland.com/,2005
    [43]於崇文,张德会等.成矿作用动力学[M].北京:中国地质出版社,1998
    [44]李红阳,杨秋荣,李英杰.现代成矿理论[M].北京:地质出版社,2006
    [45]侯德文.找矿勘探地质学[M].北京:地质出版社,1984
    [46]中国科学院矿床地球化学开放研究实验室著.矿床地球化学[M].北京:地质出版社,1997
    [47]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1985
    [48]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999
    [49]岳芳.福建龙岩学堂坑钼多金属矿岩石特征与成矿关系[D].长沙:中南大学地学与环境工程学院,2008
    [50]张克尧.福建浦城—宁德铜钼多金属成矿带成矿系统及预测研究[D].北京:中国地质大学,2009
    [51]艾国栋.福建省龙岩市堂坑钼矿地质特征及找矿预测研究[D].长沙:中南大学,2007 [52号]李明立.河南省大别山地区中生代酸性小岩体特征及钼多金属成矿系统[D].北京:中国地质大学,2009
    [53]杨泽强.河南省商城县汤家坪钼矿成矿模式研究[D].北京:中国地质大学,2007
    [54]刘志宏.黑龙江省翠宏山钨钼锌多金属矿地质特征及成因[D].长春:吉林大学,2009
    [55]郭嘉.黑龙江省霍吉河钼矿床地质特征及成因[D].长春:吉林大学,2009
    [56]陈雪.黑龙江省鸡东金畅沟铜钼矿控矿条件与成矿预测[D].长春:吉林大学,2007
    [57]徐积辉.江西城门山铜钼矿床成因探讨及找矿方向[D].长沙:中南大学,2007
    [58]王新.金堆城钼矿两类斑岩的识别[D].西安:西北大学,2001 [标引序号]薛静.蒙古国苏赫巴托尔省阿雷努尔钼矿地质特征[D].长沙:中南大学,2008
    [59]陈冬.延边天宝山铜—铅—锌—钼多金属矿床的成矿作用与成矿模式研究[D].长春:吉林大学,2009
    [60]李永峰.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D].北京:中国地质大学,2005
    [61]张娟.内蒙古鸭鸡山钼(铜)矿矿床成因及预测[D].长春:吉林大学,2008 [标引序号]王勇茗.陕西华县西沟地区钼矿控矿因素、成矿类型及成矿潜力[D].西安:长安大学,2006
    [62]唐菊兴.西藏玉龙斑岩铜(钼)矿成矿作用与矿床定位预测研究[D].成都:成都理工,2003
    [63]郝洁涟.金矿找矿矿物学[D].北京:中国地质大学出版社,1990
    [64]陈毓川,叶天竺,张洪涛.中国重要成矿带矿产资源远景评价[R].北京:中国地质科学院矿产资源研究所与成矿远景区域评价与规划研究室,2002– 2003.
    [65]Ai Y F and Feng R Z. Mo-bearing granitic material sources and genetic type of Yangjiazhangzi-Lanjiagou area[J]. Henan Geol.,1985(,Supp.): 198~204(in Chinese)
    [66]ARRIBAS A J, HEDENQUIST J W, ITAYA T, et al. Con-temporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines[J].Ge-ology, 1995, 23: 337-340.
    [67]ARRIBAS A Jr. Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid[J].Mineralogical Association of Canada Short Course Series, 1995, 23: 419-454.
    [68]ALL GRE C J, GIRARDEAU J, MARCOUX J,et al. Struc-ture and evolution of the Himalayan-Tibet orogenic belt[J].Na-ture, 1984, 307: 17-22.
    [69]BeusA, Grigorian S V. Gechemical Exploration Methods For Mineral Deposits(M). Moscow:Applied publishing LTD,1975:124~127.
    [6]Bell D R. Water in mantle minerals [J]. Nature,1992,357: 646—647.
    [70]Bondar B J. Revised equation and table for determining the freez-ing point depression of H2O_NaCl solutions. Geochemi Cosmochem Acta, 1993. 57: 683~684.
    [71]Boyle R W. The geochemistry of gold and its deposit (together with a chapter on geochemical prospectingforthe element) [M]. Geological Sur-vey, Bulletin 280, 1979.
    [72]BLLSNLUK P M, HACKER B, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J].Na-ture, 2001,412:628-632.
    [73]Ai Y F and Feng R Z. Mo-bearing granitic material sources and genetic type ofYangjiazhangzi-Australia and Papua New Guinea[C]. Australia :Australian Institute of Mining and Metallurgy, 1990. 1807-1816.
    [74]COLEMAN M, HODGES K. Evidence for Tibetan Plateau up-lift before 14 Ma ago from a new minimum age for east-west ex-tension[J].Nature, 1995, 374:49-52.
    [75]CHEN W J, LI Q, HAO J, et al. Post crystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication[J].Science in China, 1999, 4291(1): 37-44.
    [76]COULON C, MALUSKI H, BOLLINGER C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic sig-nificance[J].Earth Planet Sci Lett, 1986,79: 281-302.
    [77]CAMUS F, SILLTIOE R H, PETERSEN R. Andean copper deposits: New discoveries, mineralization style and metallogeny[J].Society of Economic Geologist, Special Publication5,1996, 5:198.
    [78]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J].Geology,2003.
    [79]DEWEY J F, SHACKELTON R M, CHANG C, et al. The tectonic evolution of the Tibetan plateau[J].Phil Trans RoySoc Lond,1988, A327:379-413.
    [80]DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Na-ture,1990, 347: 662-665.
    [81]DURR S B. Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous, south Tibet)[J].Geol Soc Am Bull, 1996, 108:669-684.
    [82]Defant M J, Drummond M S, Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc[J]. Geology,1993,21:547-550.
    [83]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Na-ture,1990,347:662-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700