用户名: 密码: 验证码:
铁路路基下伏多层大型采空区治理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着铁路工程建设的飞速发展,很多铁路项目在新建过程中无法绕避煤矿及其采空区,采空区对铁路建设的影响越来越大。路基下伏采空区在铁路附加荷载作用下的稳定性评价、铁路不同建筑物下采空区的整治方法及整治范围及深度、整治过程中的采空区应力应变、残余沉降变化及对铁路安全的影响、大型复杂采空区整治的质量及铁路安全评价都是铁路下伏采空区整治过程中需要迫切解决的技术问题。
     新建东都--平邑线铁路工程在DK1+360~DK3+700经沈村矿区,线路跨越长度达2.16km的地质情况较为复杂的多层大型采空区。该采空区开采时间早,其特征表现为开采规模大、开采无规律、地质条件复杂、开采资料不完善、多次重复开采、采空区层数多等。由于采空区变形,引起地面沉降乃至塌陷及房屋开裂变形等地质现象。该采空区一般具有大型沉陷盆地及小煤窑式古空区塌陷共同存在的特点,是我国铁路建设迄今为止一次性跨越规模最大的采空区,严重影响着东平线铁路的修建和正常运营,初步设计采用的全部处理方案造价高达1.8亿元之巨,约占全线静态投资的15%。
     论文以该采空区为研究对象,在准确获取采空区各项地质资料及覆岩物理力学参数的基础上,重点开展了以下三项关键技术研究:
     1)基于三维地质模型的采空区顶板围岩稳定性定量分析评价关键技术。根据本采空区上覆地层变形特征,分别对地表突然坍塌和地表移动盆地残余变形进行分析,计算出采空区各开采煤层采空安全临界埋藏深度及新建铁路线下各区段移动盆地残余变形量,并对铁路下伏采空区顶板进行稳定性评价。为减少采空区处理层数,减小采空区处理深度,根据沿线不同地段分布的采空区的工程地质特征,结合试验段建立4个代表性三维地质模型,分析模拟各层采空区注浆前后顶板围岩应力、应变特点及其稳定性,提出大型多层采空区沿线不同地段注浆加固的深度和层位,即以DK2+200为界,往小里程方向只注浆加固到13“煤采空区,往大里程方向则只注浆加固到15#煤采空区。
     2)采空区注浆材料配比关键参数的确定。为节约工程造价,对注浆材料大掺量粉煤灰水泥浆液配合比进行室内、外试验研究,分别进行水泥、粉煤灰不同固颗比、不同水灰比下的流动度、凝结时间试验及混合浆液凝结后不同龄期的抗压强度试验,在对试验结果进行分析的基础上,提出大掺量水泥粉煤灰浆液的最佳配合比。
     3)采空区试验段注浆处理效果检测方法关键技术研究。为确保注浆质量,在对采空区注浆前后场地地球物探特征认真分析的基础上,分别进行注浆前后采空区的直流电测深和浅层地震对比、及注浆前后跨孔电磁波CT和弹性波CT试验对比研究,并进行检测孔注浆量和周围注浆孔注浆量对比分析,在试验成果分析的基础上,提出大型多层采空区注浆质量检测方法应采用点(检查孔)与面(直流电测深)结合、区域(直流电测深)与局部(电磁波CT、弹性波CT)相结合,以及检查孔、注浆孔注浆量对比分析的综合注浆质量检测方法,以确保注浆质量检测的准确可靠。
In recent years, with the rapid development of railway engneeering construction, the problem of coal mine and its goaf could not be avoided in many newly-built projects, and the goaf has a more and more important influence on railway construction. Stability evaluation of the goaf beneath the roadbed under the railway additional loads, the remediation method, scope and depth under different loads, the stress and strain in the process of the remediation of the goaf, the residual settlement changes, the quality of the remediation of large and complex goafs and the safety evaluation of railway, all of which are technical issues needed to be urgently solved in the process of the remediation of the goaf beneath the railway.
     The newly-built railway named Dongdu-Pingyi line goes through the mine of Shen village in the section of DK1+360-DK3+700, acrossing a large complex multi-layer goaf. The mining goaf is about2.16km with a long history, presenting a characteristics of large-scale, multi-layered, mining without rules, complex conditions of hydrogeology and engineering geology, incomplete mining data and repeated exploitation. The goaf deformation causes the ground and the houses to deform, subside, even to sink. It has a characteristic of both large subsidence basin and small coal mines with ancient empty area collapse, which is the largest goaf once acrossed in the railway construction of our country. The existence of the goaf will affect the construction and the normal operation of the Dong-ping railway. The total cost of remediation measures in the preliminary design is up to180million RMB, accounting about15%of the static investment.
     Taking the such goaf as the research object, based on the geological data and physical and mechanical parameters of the overburden rock, this thesis focuses on the following three key technology:
     1) The roof rock stability of quantitative analysis and evaluation based on the three-dimensional geological model. According to the deformation characteristics of overlying strata of the goaf, the collapse on the surface and residual deformation of surface mobile basin are respectively analyzed, the critical burial depth for security of each mined coal and residual deformation of moving basin of each section under the newly-built railway line are also calculated and the roof stability beneath the railway is then evaluated. In order to reduce the processing layers and the depth, the four representative three-dimensional geological models are established in the test section, according to the different sections with different distribution of engineering geology characteristics along the railway. And then the stress and strain of the surrounding rock and stability on the roof of each mining layers before and after grouting are analyzed and simulated. So the grouting reinforcement depth and layers of the multilayer goaf along different sections are proposed, that is, taking DK2+200as an example, the grouting for reinforce in that point is only up to the13th layer to the small mileage, while to only up to the15th layer to the big mileage.
     2) The determination of the key parameters of the ratio of grouting material. To save the engneering cost, indoor and outdoor tests of grouting material mixed with fly ash cement grout ratio are performed, such as test of different water-cement respectively under different ratio of cement and fly ash and different ratio of solid particles, test of different ages and test of compressive strength after the mixed slurry condensation. On the basis of the analysis of the test results, the optimum mixture ratio of the ash cement-fly ash is proposed.
     3) The comprehensive detection method of grouting treatment in the test section. To ensure the grouting quality, the contrast of DC sounding and shallow seismic, cross-hole electromagnetic wave CT and elastic wave CT test and the grouting amount of checking holes and grouting holes before and after grouting are studied, based on the analysis on the earth geophysical characteristics before and after grouting in the goaf. On the basis of the test results, the comprehensive detection method of grouting treatment to large-scale multi-storey goaf is put forward, that is, it should combine point (check hole) with surface (electrical sounding), combine area (DC sounding) with local (electromagnetic CT、elastic wave CT), and study the contrast of grouting amount of checking holes and grouting holes, to ensure the detection accuracy and reliability of the grouting quality.
引文
[1]童立元,刘松玉,邱钰.高速公路下伏采空区危害性评价与处治技术[M],2006,1-2.
    [2]胡柄南,采空区地基稳定性研究及其技术对策[J],煤炭工程,2010,11,13-15
    [3]张绍强.我国煤炭资源、生产与环境概况[J].环境保护,2006,13(7):53-57.
    [4]余学义.采动区地表剩余变形对高等级公路影响预计分析[J],西安公路交通大学学报,2001.109-12
    [5]郭惟嘉,王勇义.采空区上方修建大型建筑物地基稳定性评价[J],岩土力学,2004,9,57-59
    [6]郭广礼.老采空区上方建筑地基变形机理及其控制[M].徐州:中国矿业大学出版社,2001.
    [7]R.E. Gray, R.W.普鲁恩报废矿上的地表下沉[C]第一届国际采矿议论文集,美国采矿工程师主办,檀香山,1982
    [8]. R.E.Gray, Coal Mine Subsidence and Structures. Mine Induced Subsidence, 1988 (5)
    [9]R.W., M., R.E. Gray.匹兹堡煤层中废弃采场的沉陷,1992
    [10]TB10002.5-2005铁路桥涵和地基基础设计规范[S],北京:中国铁道出版社,2005
    [11]赴波兰考察团.波兰采空区地面建筑[M].北京:中国科学技术出版社,1979.
    [12]李永树.地面沉陷灾害预防与防治方法[M].北京:中国铁道出版社,2001.
    [13]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].徐州:中国矿业大学出版社,2001.
    [14]何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社,2003.
    [15]杨帆,麻凤海.急倾斜煤层采动覆岩移动模式及其应用[M].北京:科学出版社,2007.
    [16]黄乐亭.开采沉陷力学的研究与发展[J].煤炭科学技术,2003,31(2):54-56.
    [17]Ramesh P.Singh, Ram N.Yadav.Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India[J].Engineering Geology,1995,39:103-111.
    [18]K.B.Singh, T.N.Singh.Ground movements over longwall workings in the Kamptee coalfield, India[J].Engineering Geology,1998,50:125-139.
    [19]P.R.Sheorey, J.P.Loui, K.B.Singh, et al.Ground subsidence observations and a modified influence function method for complete subsidence prediction[J].International Journal of Rock Mechanics and Mining Sciences,2000,37:801-818.
    [20]J.Torano, R.Rodriguez, P.Ramorez-Oyangurenb. Probabilistic analysis of subsidence-induced strains at the surface above steep seam mining [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37:1161-1167.
    [21]H.Yavuz.An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J].International Journal of Rock Mechanics and Mining Sciences,2004,41:193-205.
    [22]Brauner.Subsidence due to underground mining[M].Bureau of Mines, USA,1973.
    [23]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [24]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [25]何国清.威布尔分布在地表预计中的应用[D].中国矿业大学硕士学位论文,1981.
    [26]何国清,马伟民,王金庄.威布尔型影响函数在地表移动计算中的应用[J].中国矿业学院学报,1982,11(1):25-29.
    [27]周国铨,崔继宪.建筑物下采煤[M].北京:煤炭工业出版社,1983.
    [28]王金庄,邢安仕,吴立新.矿山开采沉陷及其防治[M].北京:煤炭工业出版社,1995.107
    [29]邹友峰.地表下沉函数计算方法研究[J].岩土工程学报,1997,19(3):109-112.
    [30]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].中国矿业大学(北京校区)博士学位论文,2000.
    [31]戴华阳,王金庄.岩层与地表移动的矢量预计方法[J].煤炭学报,2002,27(5):473-478.
    [32]郭增长,殷作如,王金庄.随机介质碎块体移动概率与地表下沉[J].煤炭学报,2000,25(3):302-305.
    [33]A.A.鲍里索夫,王庆康译.矿山压力原理与计算[M].北京:煤炭工业出版社,1986.
    [34]Fayol M.Surles movements deterrain provoques par L'eoplotitation des mines[J]. Bull.Soc.L'Industrie Minorale,1985,14 (2):818-823.
    [35]Salamon M D G.Elastic analysis of displacements and stresses induced by the mining of seam or roof deposis[J]J.S.Afr.Inst.Metall,1963,63 (3):423-426.
    [36]Salamon M D G地下工程的岩石力学[M].北京:冶金工业出版社,1982.
    [37]B.H.G布雷迪,E.T.布朗.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.
    [38]Coulthard M A.Applications of mumerical modeling in underground mining and construction[J].Geotechmical and Geological Engineering,1999,17:373-385.
    [39]Coulthard M A, Dight P M.Numerical analysis of failed cemented fill at ZC/NBHC Mine[C].Broken Hill in:Proceeding of 3rd Australia-New Zealand Geomecharics Conference, Wellington.1980,2:145-151.
    [40]Kay D.Report of the angus place subsidence modelling joint case study[R].NSW Department of Mineral Resources. Sydney,1990.
    [41]Coulthard M A.Distinct element modeling of mining induced subsidence-a case study [C].in:Proceedings of conference on Fractured and Jointed Rock Masses.Lake Tahoe L.Myeretal, Balkemn, Rotterdam,1995:725-732.
    [42]钱鸣高.采场矿山压力控制[M].北京:煤炭工业出版社,1983.
    [43]钱鸣高,缪协兴.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [44]缪协兴.砌体梁结构分析与应用[R].中国矿业大学博士后研究工作报告,1996.
    [45]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):92-106.
    [46]宋振琪.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [47]宋振琪,蒋金泉.煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2):128-134.
    [48]谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [49]谢和平.非线性大变形有限元分析及岩层移动中应用[J].中国矿业大学学报,1988,17(3):72-75.
    [50]刘天泉.矿山岩体采动影响控制工程学及其应用[J].煤炭学报,1995,20(1):1-5.
    [51]张玉卓.岩层移动的位错理论解及边界元法计算[J].煤炭学报,1997,22(2):34-38.
    [52]张玉卓.应用弹性薄板理论计算条带开采引起的岩层和地表移动[J].煤炭科研参考资料,1996,14(5):1-4.
    [53]吴立新,王金庄,赵七胜,等.托板控制下开采沉陷的滞缓与集中现象研究[J].中国矿业大学学报,1994,23(4):10-19.
    [54]吴立新,王金庄.连续大面积开采托板控制岩层变形模式的研究[J].煤炭学报,1994,19(3):233-241.
    [55]李增琪.用傅氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983,8(2):142-145.
    [56]李增琪.计算矿山压力和岩层移动的三维层状模型[J].煤炭学报,1994,19(2):216-219.
    [57]王泳嘉,麻凤海,范学理.岩层移动动态过程的离散单元法分析[J].煤炭学报,1996,21(4):388-392.
    [58]麻凤海.岩层移动及动力学过程的理论与实践[M].北京:煤炭工业出版社, 1997.
    [59]麻凤海,范学理,王泳嘉.巨系统复合介质岩层移动模型及工程应用[J].岩石力学与工程学报,1997,16(6):536-543.109
    [60]麻凤海,刘琪,王泳嘉.岩层与地表下沉的离散单元模型及应用[J].辽宁工程技术大学学报,1997,16(3):289-293.
    [61]麻凤海,王泳嘉.岩层沉降控制的可变形离散单元模拟[J].岩石力学与工程学,1999,18(2):176-179
    [62]麻凤海,施群德.地表沉陷变形的非线性研究[J].中国地质灾害与防治学报,2000,11(4):15-18
    [63]范学理,刘文生.中国东北煤矿区开采损害防护理论与实践[M].北京:煤炭工业出版社,1998.
    [64]杨伦,于广明.煤矿覆岩采动离层位置的计算[J].煤炭学报,1997,26(5):243-247.
    [65]赵德深,苏仲杰.覆岩离层充填减缓地表沉降实验模拟研究[J].煤炭学报,1997,26(6):203-206.
    [66]姜岩.覆岩离层注浆控制矿山开采沉陷研究[D].山东科技大学博士学位论文,2000.
    [67]何满潮.软岩工程力学[M].北京:科学出版社,2002.
    [68]刘书贤.急倾斜多煤层开采地表移动规律模拟研究[D].煤炭科学研究总院博士学位论文,2005.
    [69]于广明.分形及损伤力学在开采沉陷中的应用研究[D].中国矿业大学(北京)博士学位论文,1997.
    [70]刘文生.条带法开采采留宽度合理尺寸研究[D].阜新矿业学院硕士学位论文,1988.
    [71]Yang Fan, Ma Fenghai, Xiao Bo, et al. Research on dynamic process and visual simulation of strata movement in mined-out area. Proceedings of 2004 International Symp on Safety Science and Technology[C]. Beijing/New York:Science Press,2004.
    [72]Yang Fan, Ma Fenghai. Simulation on range of surface subsidence in worked-out section by discrete element method. Proceedings of Ⅻ International Congress of International Society for MineSurveying[C]. Beijing:Transactions of nonferrous metals society of China,2004.
    [73]杨硕.水平移动曲面的力学预测法[J].煤炭学报,1995,20(2):245-249.
    [74]杨硕.采动损害空间变形力学预测[M].北京:煤炭工业出版社,1994.
    [75]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [76]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学 报,2001,23(2):201-204.
    [77]刘红元,唐春安,芮勇勤.各煤层开采时垮落过程的数值模拟[J].岩石力学与工程学报,2001,20(2):190-196.
    [78]邓喀中.开采沉陷中的岩体结构效应研究[D].中国矿业大学博士学位论文,1993.
    [79]邓喀中,马伟民.开采沉陷中的层面滑移三维模型[J].岩土工程学报,1997,19(5):28-34.
    [80]张向东,范学理,赵德深.覆岩运动的时空过程[J].岩石力学与工程学报,2002,21(1):56-59.
    [81]汤建泉,孙晓明.覆岩组合运动规律的研究[J].山东矿业学院学报,1995,14(4):365-370.
    [82]P. R. Healy, J. M. Head. Construction over abandoned mine workins. Construction Industry Research and Information Association (CIRIA), London,1984.
    [83]C. Carnec, C. Delacourt. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France [J]. Journal of Applied Geophysics,2000,43: 43-54.
    [84]F. G. Bell, S. E. T. Bullock, T. F. J. Halbich, Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa[J]. International Journal of Coal Geology,2001,45:195-216.
    [85]R. W. Bruhm etc. Subsidence Over Abandoned Mines in the Pittsburgh Coalbed. Large Ground Movements and Structures Proceedings of the Conference held at the University of Wales Institute of Science and Technology, Cardiff,1977
    [86]Jonce C. J. F. P, Spengcer W. J. The Implication of Kining Subsidence for Modern Highway Structure[C]. Proceedings, Conference on Large Ground Movements and Stuctures, Halstead Press, New York,1977. pp.515-526
    [87]Jonce C J F P, O/Rourke T D. Mining Subsidence Effects on Transportation Facilities[C]. Geotechnical Special Publication,1988(No.19), pp.107-126, New
    York:ASCE Press 1988,215pp, Part of Mine Induced Subsidence:Effects on Engineered Structures.
    [88]Sargand Shad M, Hazen Glenn A. Highway Damage Due to Subsidence[C]. Geotechnical Special Publication,1988 (No.19), pp.18-32, New York:ASCE Press,1988,215pp, Part of Mine Induced Subsidence:Effects on Engineered Structures.
    [89]Drumm Eric C, Bennett Richard M, Kane William F. Mechanisms of Subsidence Induced Damage and Techniques for Analysis[C]. Geotechnical Special Publication,1988(No.19) pp.168-188,. New York:ASCE Press,1988,215pp, Part of Mine Induced Subsidence:Effects on Engineered Structures.
    [90]范洪冬,张宏贞,邓喀中 老采空区残余沉降预测参数研究[J]金属矿山,2009,1,391:30-32
    [91]郭广礼,邓喀中,谭志祥等.深部老采区残余沉降预计方法及其应用[J].辽宁工程技术大学学报(自然科学版),2002,21(1):1-3.
    [92]张宏贞,邓喀中,谭志祥.老采空区残余移动变形分区研究[J].采矿与安全工程学报,2005(2):32-34.
    [93]李仁民,刘松玉,方磊,高速公路下伏多层采空区地表沉陷的预计评价方法[J].东南大学学报(自然科学版),2002(4):648-652
    [94]吴盛才,贺跃光,徐鹏,陈长青概率积分法预计高速公路采空区地表变形[J]安全与环境工程2010.9,17(5)119-122
    [95]曾开华,张国锋,杨晓杰,门头沟多层采空区地基稳定性及变形预测研究[J]. 中国矿业,2010,10,19(10):87-90
    [96]苏仲杰,郭伟,关月洁 矿山沉陷区新建建筑物可行性分析[J]地质灾害与防治学报2008.3,19(1)54-58
    [97]颜荣贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995.
    [98]滕永海.老采空区地基稳定性分析[J].煤炭学报,1997,v22(5):504-508.
    [99]滕永海,唐志新,张长根,等.王庄煤矿老采空区地基稳定性评价[J].煤,2000,9(1):55-56.
    [100]高晓辉,彭建兵,杨天亮等.西合高速公路采空区稳定性评价及其治理方案[J].地球与环境,2005,v33(3):139-141.
    [101]周伟义,李军生,赵明华等.潭邵高速公路岩溶及采空区路基稳定性评价及治理对策[J].公路,2003(1):5-8
    [102]来兴平,蔡美峰,任奋华.河下开采扰动诱致采空区动态失稳定量预计与综合评价[J].岩土工程学报,2005,v27(12):1421-1424
    [103]常江.老采空区上方建筑物地基稳定性的研究[J].西安矿业学院学报,1995(1):29-33
    [104]马金荣等.煤矿采空区场地建筑适宜性工程地质研究方法[J],煤田地质与勘探.1996(6):44-46
    [105]余学义、黄庆享.公路下伏采空区影响的预计评价方法.矿山压力与顶板管理[J],1997(2):30-32
    [106]吴兆营,薄景山,杜国林等.采空区对地表稳定性的影响[J].自然灾害学报,2004,v13(2):140-144
    [107]郭广礼.老采空区上方建筑地基变形机理及其控制[M].徐州:中国矿业大学出 版社,2001.
    [108]郭广礼,何国清,崔曙光.部分开采老采空区覆岩稳定性分析[J].矿山压力与顶板管理,2003,3:70-73.
    [109]郭广礼,邓喀中,常江.采空区上方建大型建筑物的地基沉降研究[J].中国矿业大学学报,1996,25(2):54-57.
    [110]郭广礼,邓喀中,汪汉玉.采空区上方地基失稳机理和处理措施研究[J].矿山压力与顶板管理,2000,3:39-41.
    [111]郭广礼,张国信,刘丙方.地面荷载对地下采空区的临界扰动深度及其影响[J].矿山压力与顶板管理,2004,1:72-73.
    [112]张俊英.采空区地基评价与处理技术[J].矿山测量,2001,2:48-50.
    [113]张俊英,王金庄.采空区地表新建建筑地基稳定性评价技术研究[J].矿山测量,2003,3:28-30.
    [114]张永波 老采空区建筑地基稳定性及其变形破坏规律的研究[D].太原理工大学博士学位论文
    [115]张永波、李玉坤老采空区建筑地基稳定评价的数值模拟研究[C]第三届全国岩土与工程学术大会论文集.54-57
    [116]张俊英,蔡美峰,张青采空区地表新增荷载后地基应力的分布规律研究[J]岩土工程学报.2010.7,32(7),1096-1100
    [117]程爱宝,王新民,刘洪强,灰色层次分析法在地下采空区稳定性评价中的应用[J]金属矿山,2011,2,416,17-21
    [118]张凌云,刘鸿福灰色Vhult预测采空区地表沉降模型的改进[J],工程计算机应用,2008,4,52,33-41
    [119]张宏贞,邓喀中,人工神经网络在老采空区残余沉降的应用研究[J],金属矿山,2009,6,396,21-23
    [120]张安兵,高井祥,张兆江,刘新侠,老采空区地表沉陷混沌特征及时变规律研究[J],中国矿业大学报,2009,3,38(2),170-174
    [121]宫凤强,李夕兵,董陇军,刘希灵, 基于未确知测度理论的采空区危险性评价研究[J],岩土力学与工程学报,2008.2,27(2),324-330
    [122]张俊英,采空区地表建筑地基稳定性模糊综合评价方法[J],北京科技大学学报,2009.11,31(11),1368-1372
    [123]丁秀美,黄润秋,刘光士.FLAC3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68-73.
    [124]王生俊,贾学民,韩文峰,崔素敏高速公路下伏采空区剩余沉降量FLAC3D计算方法[J],岩土力学与工程学报,2005.10,24(19)3545-3550
    [125]王树仁,张海清,慎乃齐,曹海莹 下伏采空区桥隧工程变形及受力响应特征分析[J],岩土力学与工程学报,2009.6,28(6),1144-1151
    [126]汪吉林,丁陈建,张云,吴圣林 老采空区地基变形对地面建筑影响的数值分析[J],采矿安全工程学报,2008.12,25(4),476-480
    [127]穆满根,汪吉林,吴圣林 多层复杂采空区上建筑物稳定性数值模拟分析[J],煤炭科学技术,2009.4,37(4),98-102
    [128]汪吉林,吴圣林,丁陈建,张云,蔡光桃,复杂地貌多煤层采空区的稳定性评价[J],煤炭学报,2009.4,34(4)466-471
    [129]高磊,施斌,朱友群,王宝军,邵玉娴,张勇,多层采空区条件下的高速公路路堑边坡稳定性数值分析[J],防灾减灾工程学报,2009.8,29(4),387-391
    [130]童立元,潘石,邱钰,宣国良,刘松玉,大掺量粉煤灰注浆充填材料试验研究[J],东南大学学报,2002.7,32(4),643-647
    [131]童立元,叶海霞,刘松玉,建筑下老采空塌陷区地基注浆充填材料试验研究[J],建筑技术,2006.6,36(6),456-459
    [132]冯光明,孙春东,王成真,周振,超高水材料采空区充填方法研究[J],煤炭学报,2010.12,35(12),1963-1968
    [133]张宏贞,邓喀中,谭志祥,老采空区注浆充填理论研究[J],河南理工大学学报,2005.2,24(1),13-17
    [134]王万顺,耿玉玲,范运岭,三维渗流模型模拟采空区注浆治理过程的研究[J],中国煤田地质,2005.2,17(1),22-25
    [135]陈晓斌,张家生,杨果岳,安关峰, 高速公路采空区工程处理范围确定方法[J],岩石力学与工程学报,2007.1,26(1),162-168
    [136]童立元,刘松玉,方磊,邱钰,公路路基下伏煤矿采空区注浆处理设计计算方法探讨[J],岩土工程学报,2003.5,374-376
    [137]张志沛,张鑫,杨素文,煤矿采空区注浆参数的分析与研究[J],煤田地质与勘探,2005.8,33(增刊),117-119
    [138]郭广礼,邓喀中,何国清,岳建华,采动破裂岩体地基注浆加固及其检测技术[J],中国矿业大学学报,2000.5,29(3),293-296
    [139]张波,王万顺,范运岭,耿玉玲,高速公路下伏采空区治理工程质量检测方法研究[J],中国煤田地质,2004.10,16(5),53-57
    [140]胡海峰,郝兵元,康立勋,高等级公路下煤矿采空区注浆处治效果分析[J],西安科技大学学报,2008.6,28(2)
    [141]叶海霞,张登科,高速公路下伏采空区注浆治理效果的检测技术[J],土工基础,2009.6,23(3)
    [142]李响,楚涌池西北铁路工程地质特征及成就[J]铁道工程学报2005.12(增刊), 112-121
    [143]铁路工程地质实例西北及相邻地区分册[M]铁道第一勘察设计院编,中国铁道出版社(2007)
    [144]卿三惠西南铁路工程地质特征及成就[J]铁道工程学报2005.12(增刊),123-139
    [145]铁路工程地质实例(东北、华北地区分册)[M]铁道第三勘察设计院编,中国铁道出版社(1996)
    [146]石文慧,杜兴国中南华东华南地区铁路工程地质特征及成就[J] 铁道工程学报2005.12(增刊)
    [147]徐永明、张戎垦、李国和大型采空区铁路地基稳定性分析[J],铁道勘察,2004.2,75-77
    [148]王少斌柏树底铁路隧道地下采空区稳定性分析[J],铁道建筑,2005.12,30-32
    [149]刘汉高、张云鹏国春铁矿地下开采对大秦铁路稳定性影响分析[J],矿业工程,2008.4,6(2),26-23
    [150]王茂靖胶济线东营疏解线煤矿采空区地面塌陷机理及安全性评价[J],地质灾害与环境保护2004.6,15(2),17-22
    [151]陈则连煤矿采空区地表岩移对高速铁路的影响研究[J]铁道工程学报,2009.4,127(4),5-8
    [152]贾华强,顾湘生,张玉军铁路穿越盐矿采空区岩体稳定性有限元分析[J]岩土力学,2007.11,28(11),2391-2395
    [153]胡宁基于强夯法处理穿越煤矿采空区铁路路基[J]科技情报开发与经济2008.5,18(18),224-225
    [154]罗达胶济电化采空区注浆处理施工技术[J] 铁道标准化设计,2006.8,6-8
    [155]金鑫光,孙兴亮,贾仁政晋城市王坡煤矿铁路专运线柏树底隧道下伏采空区治理[J],地质灾害与环境保护,2003.3,14(1)
    [156]高志伟神朔线小煤窑采空区地基处理工程的设计与施工[J] 路基工程1999.5,49-60
    [157]侯军红朔黄线温岭隧道采空区处理探讨[J]现代隧道技术,2001.4,38(2),17-18
    [158]朔黄铁路(专题篇) 《朔黄铁路》编写领导小组中国铁道出版社(2008)
    [159]王玉森应用钻孔注浆工艺治理神延铁路路基下伏采空区[J]探矿工程,2002(增刊),36-37
    [160]高志伟应用土工格栅处理铁路路基小型采空区地基工程一例[J]铁道勘察,2007.3,102-104
    [161]铁道第一勘测设计院,铁路工程地质手册[M],北京,中国铁道出版社,1999, 387-402
    [162]《工程地质手册》编委会,工程地质手册[M],2007,中国建筑工业出版社,567-577
    [163]邹友峰,邓喀中,马伟民矿山开采沉陷工程[M].北京:中国矿业大学出版社,2005,18-21
    [164]刘波,韩彦辉,FLCA原理、实例与应用指南[M].北京:人民交通出版社,2005,18-21
    [165]高速公路采空区(空洞)勘察设计与施工治理手册[M].北京,人民交通出版社P220.,223
    [166]刘长武,陆士良,水泥注浆加固对工程岩体的作与影响[J],中国矿业大学学报,2000,29(5):454-458
    [167]童立元,刘松玉,方磊,高速公路下伏采空区治理质量监控技术试验研究[J],公路交通科技,2002(19):52-56.
    [168]张兴磊,夏建军,刘增强.地质雷达在探测浅部采空区指导注浆中的应用[J],煤炭科学技术,2001,29(8):13-16.
    [169]王文龙,孔中电磁波透视在煤窑采空区勘探中的应用实例[J],物探与化探,1999,23(4):314-316.
    [170]童立元,刘松玉,邱钰,方磊.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学,2004,23(7):1198-1202.
    [171]铁路工程地基处理技术规程(TB10106-2010,J1078-2010),中华人民共和国铁道部,2010-08-03 P170-174
    [172]彭永良,胡卸文等,复杂采空区注浆效果物探检测方法研究[J].水文地质与工程地质,2011,vo1.38,No.5,38-42
    [173]Peng yongliang, Hu xiewen, Zhanli, Zheng yongxiang, Application Test study of Grouting Quality Evaluation of Complicated Cavities Using Comprehensive Geophysical methods, [C].2011 International Coference on Fuzzy Systems and Neural Computing 464-469
    [174]张守恩,葛宝堂.水文及工程地球物理勘探[M].,北京:中国矿业大学出版社,1997:3-9:122-124
    [175]M.B.多布林,吴晖译.地球物理勘探概论[M].,北京:石油工业出版社,1983:52-57
    [176]周天福,工程物探[M].,北京:中国水利水电出版社,1992:8-10
    [177]吴以仁, 钻孔电磁波法[M].北京:地质出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700