用户名: 密码: 验证码:
ZnO薄膜的MOCVD制备及ZnO/Si发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于当前所制备ZnO材料的质量还达不到器件级水平,尤其是p型掺杂问题没有得到很好地解决,以及制作得到的ZnO基发光器件效率过低等问题,本论文围绕MOCVD技术制备ZnO薄膜及其薄膜的相关特性展开深入研究,目的是得到高质量的ZnO外延薄膜及其发光器件。实验结果表明:
     利用正交试验设计法辅助优化MOCVD制备ZnO薄膜的生长条件,不仅可以减少实验次数,降低实验成本,还能够较快速的得到薄膜的最佳生长条件。研究还发现,合适温度生长的ZnO缓冲层可以有效地改善薄膜的结晶和发光质量。
     在ZnO薄膜的沉积过程中引入光辅助可以有效的改善薄膜的表面形貌、结晶质量和发光质量。适当强度的光辐照条件下还可以制得高阻和弱p型ZnO薄膜。
     利用NH_3作为氮(N)掺杂源进行ZnO薄膜制备的过程中,首次发现适当强度的卤钨灯光辅助不仅可以改善薄膜的结晶质量,还有助于提高掺入到薄膜中的N相关受主的活性,实现了p型ZnO薄膜的制备。
     首次从实验角度分析得到通过热扩散法制备的磷(P)掺杂ZnO薄膜中,P_(Zn)-2V_(Zn)复合体缺陷是最主要的浅受主,其对ZnO薄膜的p型导电具有重要作用。
     首次在室温、电注入条件下测得了n-ZnO/p~+-Si异质结从近紫外、可见光到近红外光波段的电致发光光谱,简要分析了其发光机制。
As an importantⅡ-Ⅵgroup compound semiconductors,ZnO has attracted much attention for short-wavelength optoelectronic device applications due to its wide band gap(E_g =3.37 eV at room temperature) and relatively large exciton binding energy(60 meV).It has broad prospects in application to solid state lighting,full color display and optical information storage,etc.However,high performance ZnO-based optoelectronic devices have not been achieved yet.One key problem is the lack of device-quality ZnO films,especially the stable and reproducible p-type ZnO films.Even though several groups have successfully developed ZnO-based light emitting diodes(LEDs),all the reported LEDs have low light-emitting efficiency up to now.Therefore,it is necessary to prepare high-quality n-type and reproducible p-type ZnO films simultaneously.
     In order to solve the above-mentioned problem,our research has been focused on preparing high-quality undoped and doped ZnO films and fabricating ZnO-based heterojunctions by metal-organic chemical vapor deposition(MOCVD) and photo-assisted MOCVD(PA-MOCVD) techniques.
     The MOCVD growth conditions of ZnO films have been optimized by means of orthogonal design.The experimental results demonstrate that the optimized growth conditions of ZnO films are 630℃in growth temperature,-18℃in Zn source temperature,and 200 sccm in flow rate of oxygen.Employing orthogonal design in the MOCVD growth of ZnO films not only reduce the experimental numbers and costs,but also can obtain the optimized growth conditions quickly and scientifically.This method is a good assistant for the growth.
     The effects of the growth temperature of ZnO buffer layer on the ZnO epitaxial layers have been studied.Both samples with and without buffer layer have good c-axis preferential orientation.However,with the increasing of ZnO buffer layer growth temperature,the intensity of(002) diffraction peak is obviously strengthened in X-ray diffraction pattern,and the stress caused by the lattice and thermal mismatch between the films and the substrates is almost completely released when the growth temperature is beyond 350℃.Additionally,the samples with ZnO buffer layer have better optical quality according to the intensity ratio of near band emission and deep level emission in PL spectra.It indicates that proper growth temperature of ZnO buffer layer can significantly improve the crystalline and optical quality of ZnO epitaxial layers.The optimal growth temperature of ZnO buffer layer is 450℃.
     ZnO films are grown by PA-MOCVD using tungsten-halogen lamp as a light source. The effects of light irradiation on the structural,surface morphology and optical properties of the deposited ZnO films have been investigated.Compared with the samples without irradiation,several characteristics of ZnO films with irradiation are improved,including an improvement in the crystallinity of c-axis orientation,an increase in the grain size and an improvement in optical quality of ZnO films.These results indicate that photo irradiation plays an important role in improving the quality of ZnO films prepared by PA-MOCVD. Furthermore,with the increasing of photo irradiated intensity,the resistivity of ZnO films gradually decreases.It is noted that high resistivity and unintentional p-type ZnO films are obtained when the photo irradiated voltage is not higher than 65 V.These results establish the foundation for our further preparation of N-doped p-type ZnO films and indicate that PA-MOCVD is a good method for the growth of high-quality ZnO films.
     NH_3-doped ZnO films are grown by MOCVD and PA-MOCVD techniques,respectively. N is incorporated into ZnO films during the as-grown process and bonding with the unintentional introduction elements(such as H and C),which passivate or compensate the NO (N occupied O position) acceptors.However,when proper photo irradiation is introduced during the growth,NO acceptors are activated and p-type N-doped ZnO films are obtained. The electrical properties of N-doped p-type ZnO films show hole concentration of 3.61×10~(17) cm~(-3),mobility of 0.627 cm~2/V·s,and resistivity of 27.5Ω·cm.Compared with other methods used to improve the activity of NO acceptors,introducing photo irradiation during the film growth process is simple and it is worth spreading.
     p-type ZnO films have been prepared by P atoms thermal diffusion from InP substrates. The typical electrical properties of these films show hole concentration of 9.02×10~(17) cm~(-3), mobility of 1.05 cm~2/V·s,and resistivity of 6.6Ω·cm.Temperature-dependent PL spectra and X-ray photoelectron spectra are performed to verify the role of P in these films.The results give direct experimental evidence that P_(Zn)-2V_(Zn) shallow acceptor complex most likely contribute to the p-type conductivity,of P-doped ZnO films.The acceptor binding energy is estimated to be~123 meV.This indicates that P is one of the good p-type dopants of ZnO films.In addition,diffusion doping technique is easy and available to prepare P-doped p-type ZnO films.
     ZnO/Si heterojunction LEDs are fabricated on both high resistivity(p~--) and low resistivity(p~+-) Si substrates by MOCVD technique.Fairly good rectifications are observed from the current-voltage curves of the both heterojunctions.With increasing temperature,the turn-on voltage and reverse breakdown voltage of n-ZnO/p~+-Si heterojunction are reduced; the ideal factor n also decreases with increasing temperature,when the voltage increases to a certain degree,the ideal factor essentially unchanged.According to the basic parameters of two semiconductor materials,the ideal energy band diagram of n-ZnO/p~+-Si heterojunction has been described,and the calculated electronic potential barrier~1.046 eV approaches to the measured heterojunction turn-on voltage~1.25V.Ultraviolet(UV) and blue-white electroluminescence(EL) from ZnO layer are observed only from ZnO/p~+-Si heterojunction under forward bias at room temperature(RT).Simultaneously,strong infrared(IR) EL emissions are detected from both ZnO/p~--Si and ZnO/p~+-Si heterojunctions.The analytical results show that the blue-white EL is associated with ZnO deep-level related emissions and the IR EL comes from Si substrates related emissions.Among many ZnO-based heterojunctions,the n-ZnO/p-Si structure is especially attractive due to the well-known advantage of Si substrate(such as low cost,conductive and easy to cleave) and its potential application in Si-based optoelectronic integrated circuits(OEICs).Therefore,the realization of RT EL in UV-visible and IR region on Si substrates will greatly increase the potential application in Si-based OEICs.
引文
[1] WU T T, WANG W S, An experimental study on the ZnO/sapphire layered surface acoustic wave device [J]. J. Appl. Phys. 2004, 96(9): 5249-5251.
    [2] LIU D S, WU C Y, SHEU C S, et al. The preparation of piezoelectric ZnO films by RF magnetron sputtering for layered surface acoustic wave device applications [J]. Jpn. J. Appl. Phys. 2006, 45: 3531-3536.
    [3] GUPTA A A, COMPAAN, A D, All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide [J]. Appl. Phys. Lett. 2004, 85(4): 684-686.
    [4] MAJOR S, CHOPRA K L, Indium-doped zinc oxide films as transparent electrodes for solar cells [J]. Solar energy materials, 1988,17(5): 319-327.
    [5] KITTILSTVED K R, LIU W K, GAMELIN D R, Electronic structure origins of polarity-dependent high-Tc ferromagnetism in oxide-diluted magnetic semiconductors [J]. Nat. Mater. 2006, 5: 291-297.
    [6] NI H Q, LU Y F, LIU Z Y, et al. Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy [J]. Appl. Phys. Lett. 2001,79(8): 812-814.
    [7] DHANANJAY, NAGARAJU J, KRUPAN1DHI S B, Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation [J]. J. Appl. Phys. 2006,99(3): 034105.
    [8] JOHNSON J C, KNUTSEN K P, YAN H Q, et al. Ultrafast carrier dynamics in singleZnO nanowire and nanoribbon lasers [J]. Nano Lett. 2004, 4(2): 197-204.
    [9] PRASANTH R R, VAN VUGT L K, VANMAEKELBERGH D A M, et al. Resonance enhancement of optical second harmonic generation in a ZnO nanowire [J]. Appl. Phys. Lett. 2006, 88(18): 181501.
    [10]HUANG H B, YANG S G, GONG J F, et al. Controllable Assembly of Aligned ZnO Nanowires/Belts Arrays [J]. J. Phys. Chem. B, 2005,109(44): 20746-20750.
    [11]LEONG E S P, YU S F, ABIYASA A P, et al. Polarization characteristics of ZnO rib waveguide random lasers [J]. Appl. Phys. Lett. 2006, 88(9): 091116.
    [12]OZGUR 0, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys. 2005, 98(4): 041301.
    [13]HUSSAIN S, Investigation of structural and optical properties of nanocrystalline ZnO [D]. Sweden: The Department of Physics, Chemistry and Biology, Linkopings University, 2008.
    [14] KOCH M H, HARTMANN A J, LAMB R N, Self-texture in the initial stages of ZnO film growth [J]. J. Phys. Chem. B, 1997,101(41): 8231-8236.
    [15]马艳.ZnO薄膜的MOVPE法生长、掺杂及X光取向研究[D].长春:吉林大学电子科学与工程学院,2004.
    [16]KOHAN A F,CEDER G,MORGAN D,et al.First-principles study of native point defects in ZnO[J].Phys.Rev.B,2000,61(22):15019-15027.
    [17IVAN DE WALLE C G,Defect analysis and engineering in ZnO[J].Physica B,2001,308-310:899-903.
    [18]ZHANG S B,WEI S H,ZUNGER A,Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J].Phys.Rev.B,2001,63(7):075205.
    [19]PANKOVE J I,JOHNSON N M(Eds.),Hydrogen in Semiconductors,Semiconductors and Semimetals[M],vol.34,Boston:Academic Press,1991.
    [20]VAN DE WALLE C G,Hydrogen as a Cause of Doping in Zinc Oxide[J].Phys.Rev.Lett.2000,85(5):1012-1015.
    [21]LAVROV E V,Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J].Physica B,2003,340-342:195-200.
    [22]CHEN L Y,CHEN W H,WANG J J,et al.Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering[J].Appl.Phys.Lett.2004,85(23):5628-5630.
    [23]TAN S T,Sun X W,YU Z G,et al.p-type conduction in unintentional carbon-doped ZnO thin films[J].Appl.Phys.Lett.2007,91(7):072101.
    [24]YAMAMOTO Y,SAITO K,TAKAHASHI K,KNAGAI M,Preparation of boron-doped ZnO thin films by photo-atomic layer deposition[J].Solar Energy Materials & Solar Cells,2001,65:125-132.
    [25]KIM H,GILMORE C M,HORWITZ J S,et al.Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J].Appl.Phys.Lett.2000,76(3):259-261.
    [26]RAMAKRISHNA K T,GOPALASWAMY H,REDDY P J,Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis[J].J.Cryst,Growth,2000,210(4):516-520.
    [27]GIL B,KAVOKIN A V,Giant exciton-light coupling in ZnO quantum dots[J].Appl.Phys.Lett.2002,81(4):748-750.
    [28]MINAMI T,SATO H,NANTO H,TAKATA S,Highty Conductive and Transparent Silicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering[J].Jpn.J.Appl.Phys.1986,25:L776-L779.
    [29]ATAEV B M,BAGAMADOVA A M,MAMEDOV V V,et al.Highly conductive and transparera thin ZnO films prepared in situ in a low pressure system[J].J.Cryst.Growth,1999,198/199:1222-1225.
    [30]OLVERA M D L L,MALDONADO A,ASOMOZA R,et al.Characteristics of ZnO:F thin films obtained by chemical spray.Effect of the molarity and the doping concentration[J].Thin Solid Films,2001,394(1-2):242-249.
    [31]ZHANG S B,WEI S H,ZUNGER A,A phenomenological model for systematization and prediction of doping limits in Ⅱ、Ⅵ and Ⅰ、Ⅲ、Ⅵ compounds[J].J.Appl.Phys.,1998,83(6):3192-3196.
    [32]KOBAYASHI A,SANKEY O F,DOW J D,Deep energy levels of defects in the wurtzite semiconductors AIN,CdS,CdSe,ZnS,and ZnO[J].Phys.Rev.B,1983,28(2):946-956.
    [33]YAMAMOTO T,KATAYAMA YOSHIDA H,Unipolarity of ZnO with a wide-band gap and its solution using codoping method[J].J.Cryst.Growth,2000,214/215:552-555.
    [34]YAMAMOTO T,Codoping for the fabrication of p-type ZnO[J].Thin Solid Films,2002,420-421:100-106.
    [35]WANG L G,ZUNGER A,Cluster-doping approach for wide-gap semiconductors:The case of p-type ZnO[J].Phys.Rev.Lett.2003,90(25):256401.
    [36]LIMPIJUMNONG S,ZHANG S B,WEI S H,et al.Doping by Large-size-mismatched impurities:The microscopic origin of arsenic or antimony-doped p-type zinc oxide[J].Phys.Rev.Lett.2004,92(15):155504.
    [37]KASUGA M,OGAWA S,Electronic properties of vapor-grown heteroepitaxial ZnO film on sapphire[J].Jpn.J.Appl.Phys.1983,22:794-798.
    [38]MINEGISHI K,KOIWAI Y,KIKUCHI Y,et al.Growth of p-type zinc oxide films by chemical vapor deposition[J].Jpn.J.Appl.Phys.1997,36(11):L1453-L1455.
    [39]BUTKHUZI T V,BUREYEV A V,GEORGOBIANI A N,et al.Optical and electrical properties of radical beam gettering epitaxy grown n- and p-type ZnO single crystals[J].J.Cryst.Growth,1992,117(1-4):366-369.
    [40]HAZRA S K,BASU S,Stable p-type thin films by oxygen control using reverse spray dynamics[J].Solid State Communication,2005,133(4):245-248.
    [41]XIONG G,WILLKINSON J,MISCHUCK B,et al.Control of p- and n-type conductivity in sputter deposition of undoped ZnO[J].Appl.Phys.Lett.2002,80(7):1195-1197.
    [42]TUZEMEN S,XIONG G,WIKINSON J,et al.Production and properties of p-n junctions in reactively sputtered ZnO[J].Physica B,2001,308-310:1097-1120.
    [43]MA Y,DUG T,YANG S R,et al.Control of conductivity type in undoped ZnO films grown by metalorganic vapor phase epitaxy[J].J.Appl.Phys.2004,95(11):6268-6272.
    [44]YAN Z,SONG Z T,LIU W L,et al.Optical and electrical properties of p-type zinc oxide thin films synthesized by ion beam assisted deposition[J].Thin Solid Films.2005.492(1-2):203-206.
    [45]OH M S,KIM S H,SEONG T Y,Growth of nominally undoped p-typed ZnO on Si by pulsed- laser depositon[J].Appl.Phys.Lett.2005,87(12):122103.
    [46]LOOK D C,REYNOLDS D C,LITTON C W,et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Appl.Phys.Lett.2002,81(10):1830.
    [47]MOHAMED G A,MOIZ A B A E,RASHAD M,Li-doping effects on the electrical properties of ZnO films prepared by the chemical-bath deposition method[J].Physica B,2005,370(1-4):158-167.
    [48]WAHL U,RITA E,CORREIA J G,et al.Lattice sites of implanted Cu and Ag in ZnO[J].Superlattices and Microstructures,2006,39(1-4):229-237.
    [49]FONS P,YAMADA A,IWATA K,et al.An EXAFS and XANES study of MBE grown Cu-doped ZnO[J].Nuclear Instruments and Methods in Physics Research Section B,2003,199:90-194.
    [50]MOLLWO E,MEULLER G,WAGNER P,Energetische lage des Cu-akzeptomiveaus in ZnO-Einkristallen[J].Solid State Communications,1973,13(8):1283-1287.
    [51]KANAI Y,Admittance spectroscopy of ZnO crystals containing Ag[J].Jpn.J.Appl.Phys.1991,30:2021-2022.
    [52]WU J,YANG Y T,Deposition of K-doped p type ZnO thin films on(0001) Al_2O_3substrates[J].Materials Letters,2008,62(12-13):1899-1901.
    [53]LIN S S,LU J G,YE Z Z,et al.p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes[J].Solid State Communications,2008,148(1-2):25-28.
    [54]DU G T,MA Y,ZHANG Y T,YANG T P,Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy[J].Appl.Phys.Lett.2005,87(21):213103.
    [55]GUO X L,TABATA H,KAWAI T,Plused laser reactive deposition of p-type ZnO film enhanced by and electron cyclotron resonance source[J].J.Cryst.Growth,2002,223(1-2):135-139.
    [56]XU W Z,YE Z Z,ZHOU T,et al.Low-pressure MOCVD growth of p-type ZnO thin films[J].J.Vac.Sci.Technol.A,2003,21(3):1342-1346.
    [57]LIN C C,CHEN S Y,CHENG S Y,LEE H Y,Properties of nitrogen-implanted p-.type ZnO films grown on Si_3N_4/Si by radio-frequency magnetron sputtering[J].Appl.Phys.Lett.2004,84(24):5040-5042.
    [58]KAMINSKA E,PIOTROWSKA A,KOSSUT J,et al.Transparent p-type ZnO films obtained by oxidation of sputter deposited Zn_3N_4[J].Solid State Communications,2005,135(1-2):11-15.
    [59]KIM K K,KIM H S,HWANG D K,et al.Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J].Appl.Phys.Lett.2003,83(1): 63-65.
    [60]XIU F X,YANG Z,MANDALAPU L J,P-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy[J].Appl.Phys.Lett.2006,88(5):052106.
    [61]VAITHIANATHAN V,LEE B T,KIM S S,Pulsed-lased-deposited p-type ZnO films with phosphorus doping[J].J.Appl.Phys.2005,98(4):043519.
    [62]SO S J,PARK C B,Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of p-type ZnO thin films[J].J.Cryst.Growth,2005,285(4):606-612.
    [63]RYU Y R,ZHU S,LOOK D C,et al.Synthesis of p-type ZnO films[J].J.Cryst.Growth 2000,216(1-4):330-334.
    [64]RYU Y R,LEE T S,WHITE H W,Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition[J].Appl.Phys.Lett.2003,83(1):87-89.
    [65]XIU F X,YANG Z,MANDALAPU L J,et al.High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J].Appl.Phys.Lett.2005,87(15):152101.
    [66]MANDALAPU L J,YANG Z,CHU S,LIU J L,Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes[J].Appl.Phys.Lett.2008,92(12):122101.
    [67]JOSEPH M,TABATA H,SAEKI H,et al.Fabrication of the low-resistive p-type ZnO by codoping method[J].Physica B,2001,302-303:140-148.
    [68]LU J G,YE Z Z,ZHUGE F,et al.p-type conduction in N-Al co-doped ZnO thin films[J].Appl.Phys.Lett.,2004,85(15):3134-3135.
    [69]BIAN J M,LI X M,GAO X D,et al.Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J].Appl.Phys.Lett.2004,84(4):541-543.
    [70]吕建国.ZnO半导体光电材料的制备及其性能的研究[D].浙江:浙江大学材料与化学工程学院,2005.
    [71]ZU P,TANG Z K,WONG G K L,et al.Ultraviolet spontaneous and stimulated emissions from Zno microcrystallite thin films at room temperature[J].Solid State Communications,1997,103(8):459-463.
    [72]SERVICE R F,Materials Science:Will UV Lasers Beat the Blues?[J].Science,1997.276(5314):895.
    [73]TANG Z K,WONG G K L,YU P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films[J].Appl.Phys.Lett.1998,72(25):3270-3272.
    [74]AOKI T,HATANAKA Y,LOOK D C,ZnO diode fabricated by excimer-laser doping[J].Appl.Phys.Lett.2000,76(22):3257.
    [75]GUO X L,CHOI J H,TABATA H,KAWAI T,Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode[J].Jpn.J.Appl.Phys.2001,40:L177-L180.
    [76]HOSONO H,OHTA H,HAYASH1 K,et al.Near-UV emitting diodes based on a transparent p-n junction composed of heteroepitaxially grown p-SrCu_2O_2 and n-ZnO[J].J.Cryst.Growth,2002,237-239:496.
    [77]ALWOV Y I,KALININA E V,CHERENKOV A E,et al.Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates[J].Appl.Phys.Lett.2003,83(23):4719-4721.
    [78]TSUKAZAKI A,OHTOMO A,ONUMA T,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nature Materials,2005,4(1):42-46.
    [79]JIAO S J,ZHANG Z Z,LU Y M,et al.ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[3].Appl.Phys.Lett.2006,88(3):031911.
    [80]ROGERS D J,TEHERANI F H,YASAN A,et al.Electroluminescence at 375nm from a ZnO/GaN:Mg/c-Al_2O_3 heterojunction light emitting diode[3].Appl.Phys.Lett.2006,88(14):141918.
    [81]LIU W,GU S L,YE J D,et al.Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[3].Appl.Phys.Lett.2006,88(9):092101.
    [82]CHEN P L,MA X Y,YANG D R,Ultraviolet electroluminescence from ZnO/p-Si heterojunctions[J].J.Appl.Phys.2007,101(5):053103.
    [83]DU G T,CUI Y G,XIA X C,et al.Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition[J].Appl.Phys.Lett.2007,90(24):243504.
    [84]SUN J C,LIANG H W,ZHAO J Z,et al.Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N_2O plasma ambient[J].Chemical Physics Letters,2008,460(4-6):548-551.
    [85]LI X P,ZHANG B L,DONG X,et al.Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal-organic chemical vapor deposition[J].J.Luminescence,2009,129(1):86-89.
    [86]RYU Y R,LUBGUBAN J A,LEE T S,et al.Excitonic ultraviolet lasing in ZnO-based light emitting devices[J].Appl.Phys.Lett.2007,90(13):131115.
    [87]CHU S,OLMEDO M,YANG Z,et al.Electrically pumped ultraviolet ZnO diode lasers on Si[J].Appl.Phys.Lett.2008,93(18):181106.
    [88]DRAPAK I T,Alloyed ZnO-Cu_2O heterojunction[J].Russian Physics Journal,UDC 535.376,1969,933-934.
    [89]TSURKAN A E,FEDOTOVA N D,KICHERMAN L V,et al.Semicond.Semimetals 6,1975,1183.
    [90]SUN J C,ZHAO J Z,LIANG H W,et al.Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure[J].Appl.Phys.Lett.2007,90(12):121128.
    [91]RYU Y R,LEE T S,LUBGUBAN J A,et al.Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes[J].Appl.Phys.Lett.2006,88(24):241108.
    [92]RYU Y R,WHITE H,ZnO-based LEDs begin to show full-color potential[J].Compound Semiconductor,2006,12(7):16-18.
    [93]TRIBOULET R,PERRIERE J,Epitaxial growth of ZnO films[J].Progress in Crystal Growth and Characterization of Materials,2003,47(2-3):65-138.
    [94]彭新村.中红外InAsSb材料的MOCVD生长特性研究[D].长春:吉林大学电子科学与工程学院,2007.
    [95]KHAN O F Z,O'BRIEN P,On the use of zinc acetate as a novel precursor for the deposition of ZnO by low-pressure metal-organic chemical vapour deposition[J].Thin Solid Films,1989,173(1):95-97.
    [96]KASHIWABA Y,KATAHIRA F,HAGA K,et al.Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method[J].J.Cryst.Growth,2000,221(1-4):431-434.
    [97]SMITH F T J,Metalorganic chemical vapor deposition of oriented ZnO films over large areas[J].Appl.Phys.Lett.1983,43(12):1108-1110.
    [98]GHANDI S Z,FIELD R J,Highly oriented zinc oxide films grown by the oxidation of diethylzinc[J].Appl.Phys.Lett.1980,37(5):449.
    [99]PARK W I,YI G C,JANG H M,Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO(0≤x≤0.49) thin films[J].Appl.Phys.Lett.2001,79(13):2022.
    [100]YANG X T,DUG T,WANG X Q,et al.Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al_2O_3 by metal-organic chemical vapor deposition[J].J.Cryst.Growth,2003,252(1-3):275-278.
    [101]SHIOZAKI T,YAMAMOTO T,YAGI M,KAWABATA A,Plasma-enhanced metalorganic chemical vapor deposition of c-axis oriented and epitaxial films of ZnO at low substrate temperatures[J].Appl.Phys.Lett.1981,39(5):399-401.
    [102]MINAMI T,SATO H,SONOHARA H,et al.Preparation of milky transparent conducting ZnO films with textured surface by atmospheric chemical vapour deposition using Zn(C_5H_7O_2)_2[J].Thin Solid Films,1994,253(1-2):14-19.
    [103]SATO H,MINAMI T,MIYATA T,et al.Transparent conducting ZnO thin films prepared on low temperature substrates by chemical vapour deposition using Zn(C_5H_7O_2)_2[J-].Thin Solid Films,1994,246(1-2):65-70.
    [104]OGATA K I,MAEJIMA K,FUJITA S Z,et al.Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy[J].J.Cryst.Growth,2003,248:25-30.
    [105]OGATA K,KIM S W,FUJITA S Z,et al.ZnO growth on Si substrates by metalorganic vapor phase epitaxy[J].J.Cryst.Growth,2002,240(1-2):112-116.
    [106]LI X,YAN Y,GESSERT T A,et al.p-type ZnO thin films formed by CVD reaction of diethylzinc and NO gas[J].Electrochem.Solid-State Lett.2003,6(4):C56-C58.
    [107]WRIGHT P J,GRIFFITHS R J M,COKAYNE B,The use of heterocyclic compounds in the organometallic chemical vapour deposition of epitaxial ZnS,ZnSe and ZnO[J].J.Cryst.Growth,1984,66(1):26.
    [108]KIRCHNER C,GRUBER T H,REUSS F,et al.MOVPE growth of ZnO using various oxygen precursors[J].J.Cryst.Growth,2003,248:20-24.
    [109]AULD J,HOULTON D J,C JONES A,et al.Growth of ZnO by MOCVD using alkylzinc alkoxides as single-source precursors[J].J.Mater.Chem.1994,4:1249-1253.
    [110]LAU C K,TIKU S K,LAKIN K M,Growth of epitaxial ZnO thin films by organometallic chemical vapor deposition[J].J.Electrochem.Soc.1980,127(8):1843-1847.
    [111]ODA S,TOKUNAGA H,KITAJIMA N,et al.Highly oriented ZnO films prepared by MOCVD from diethylzinc and alcohols[J].Jpn.J.Appl.Phys.1985,24:1607-1610.
    [112]BANG K H,HWANG D K,LIM S W,MYOUNG J M,Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition[J].J.Cryst.Growth,2003,250(3-4):437-443.
    [113]SHIMIZU M,KAMEI H,TANIZAWA M,et al.Low temperature growth of ZnO film by photo-MOCVD[J].J.Cryst.Growth,1988,89(4):365-370.
    [114]SHIMIZU M,MONMA A,SHIOSAKI T,et al.Effects of UV light irradiation on the growth of ZnO films[J].J.Cryst.Growth,1989,94(4):895-900.
    [115]ZHONG Q,CHOU P C,LI Q L,et al.High-rate growth of purely a-axis oriented YBCO high-Tc thin films by photo-assisted MOCVD[J].Physica C,1995,246(3-4):288-296.
    [116]ARAI M,NISHIYAMA K,WATANABE N,Radiation Annealing of GaAs Implanted with Si[J].Jpn.J.Appl.Phys.1981,20:L124-L126.
    [117]LI G X,FANG X J,ZHAO L,et al.Precisely determined temperature window size for the growth of high quality c-axis oriented YBCO films by photo-assisted MOCVD[J].Physica C,2008,468(21):2213-2218.
    [118]RABEK J F,Experimental Methods in photochemistry and photophysics.[M].Part 1.New York:John Wiley and Sons,1982:21.
    [119]刘维峰.ZnO:Al透明导电薄膜和发光器件的制备及特性研究[D].大连:大连理工大学物理与光电工程学院,2006.
    [120]马金鑫,朱国凯.扫描电子显微镜入门[M].北京:科学出版社,1985.
    [121]许振嘉.半导体的检测与分析[M].北京:科学出版社,2007.
    [122]肖芝燕.氮掺杂p型ZnO薄膜材料的制备及光电性质研究[D].长春:长春光学精密机械与物理所,2006.
    [123]华中一,罗维昂.表面分析[M].上海:复旦大学出版社,1989.
    [124]王金忠.ZnO薄膜材料的MOCVD生长、退火及掺杂研究[D].长春:吉林大学,2002.
    [125]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [126]韩於羹.应用数理统计[M].北京:北京航空航天大学出版社,1989.
    [127]郭爱云,薛月渝,夏志林,等.电子束蒸发沉积ZAO薄膜正交试验[J].半导体技术,2005,30(7):56259.
    [128]PARK W I,YI G C,Photoluminescent properties of ZnO thin films grown on SiO 2/Si (100) by metal-organic chemical[J].J.Electron.Mater.2001,30(10):L32-L35.
    [129]VANHEUSDEN K,SEAGER C H,WARREN W L,et al.Correlation between photoluminescence and oxygen vacancies[J].Appl.Phys.Lett.,1996,68(3):403-405.
    [130]STUDENIKIN S A,GOLEGO N,COCIVERA M,Fabrication of green and orange photoluminescent,undoped ZnO films using spray pyrolysis[J].J.Appl.Phys.1998.84(4):2287-2294.
    [131]GUO L,YANG S H,YANG C L,et al.Synthesis and characterization of poly-modified zinc oxide nanoparticles[J].Chem.Mater.2000,12(8):2268-2274.
    [132]LIU M,KITAI A H,MASCHER P,Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese[J].J.Luminescence,1992,54(1):35-42.
    [133]GUO B,QIU Z R,WONG K S,Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on(001) silicon[J].Appl.Phys.Lett.2003,82(14):2290-2292.
    [134]BYLANDER E G,Surface effects on the low-energy cathodoluminescence of zinc oxide[J].J.Appl.Phys.1978,49(3):1188-1190.
    [135]LIN B X,FU Z X,JIA Y B,Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J].Appl.Phys.Lett.2001,79(7):943-945.
    [136]DINGLE R,Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide[J].Phys.Rev.Lett.1969,23(11): 579-581.
    [137]LIN Y J,TSAI C L,LU Y M,LIU C J,Optical and electrical properties of undoped ZnO films[J].J.Appl.Phys.2006,99(9):093501.
    [138]KAWAMOTO N,FUJITA M,TASUMI T,et al.Growth of ZnO on Si Substrate by Plasma-Assisted Molecular Beam Epitaxy[J].Jpn.J.Appl.Phys.2003,42(1):7209-7212.
    [139]LIM W T,LEE C H,Highly oriented ZnO thin films deposited on Ru/Si substrates[J].Thin Solid Films,1999,353(1-2):12-15.
    [140]ZHENG K F,GUO Q L,WANG E G,A buffer layer for ZnO film growth on sapphire [J].Surface Science,2008,602(14):2600-2603.
    [141]LIU W R,LI Y H,HSIEH W F,et al.Domain Matching Epitaxial Growth of High-Quality ZnO Film Using a Y_2O_3 Buffer Layer on Si(111)[J-J.Cryst.Growth Des.2009,9(1):239-242.
    [142]CHENA S J,LIUAB Y C,MAB J G,et al.Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates[J].J.Cryst.Growth,2003,254(1-2):86-91.
    [143]FUJITA M,KAWAMOTO N,SASAJIMA M,HORIKOSHI Y,Molecular beam epitaxy growth of ZnO using initial Zn layer and MgO buffer layer on Si(111) substrates [J].J.Vac.Sci.Technol.B,2004,22(3):1141-1143.
    [144]PARK S H,CHOI C H,KIM K B,KIM S H,Influences of ZnO buffer layers on the quality of ZnO films synthesized by the metal-organic chemical vapor deposition process [J].J.Electronic Materials,2003,22(11):1148-1154.
    [145]DONG W W,ZHU X B,TAO R H,FANG X D,Effect of homo-buffer layers on the optical properties of ZnO thin films grown by pulsed laser deposition on Si(100)[J].J.Materials Science:Materials in Electronics,2007,19(6):538-542.
    [146]IWATA K,FONS P,NIKI S,YAMADA A,ZnO growth on Si by radical source MBE [J].J.Cryst.Growth,2000,214/215:50-54.
    [147]OLEYNIK N,DADGAR A,BLASING J,et al.Metal organic vapor phase epitaxy of ZnO on GaN/Si(111) using tertiary-butanol as O-precursor[J].Jpn.J.Appl.Phys.2003,42(1):7474- 7477.
    [148]YI M S,CHO T S,JEUNG J W,et al.Effects of Strain and Interface Roughness Between an AlN Buffer Layer and a ZnO Film Grown by Using Radio-Frequency Magnetron Sputtering[J].J.Korean Physical Society,2006,48(6):1302-1306.
    [149]JIANG F Y,ZHENG C D,WANG L,et al.The growth and properties of ZnO film on Si(111) substrate with an AlN buffer by AP-MOCVD[J].J.Luminescence,2007.122-123:905-907.
    [150]ONUMA T,CHICHIBU S F,UEDONO A,Reduced defect densities in the ZnO epilayer grown on Si substrates by laser-assisted molecular beam epitaxy using a ZnS epitaxial buffer layer[J].Appl.Phys.Lett.2004,85(23):5586-5588.
    [151]ZHU J J,LIN B X,SUN X K,et al.Heteroepitaxy of ZnO film on Si(111) substrate using a 3C-SiC buffer layer[J].Thin Solid Films,2005,478(1-2):218-222.
    [152]SINGH R,RADPOUR F,CHOU P,Comparative study of dielectric formation by furnace and rapid isothermal processing[J].J.Vac.Sci.Technol.A,1989,7(3):1456-1460.
    [153]SINGH R,CHOU P,RADPOUR F,et al.Oxidation of tin on silicon substrate by rapid isothermal processing[J].J.Appl.Phys.1989,66(6):2381-2387.
    [154]李代宗,余金中,王启明,激光增进的半导体异质结外延生长[J].半导体光电,1999,20(1):1-6.
    [155]FUJITA S,KAWAKAMI Y,FUJITA S,MO(GS)MBE and photo-MO(GS)MBE of Ⅱ-Ⅵ semiconductors[J].J.Cryst.Growth,1994,164(1-4):196-201.
    [156]ICHIMURA M,WADA T,FUJITA S,FUJITA S,A defect model for photoirratiated semiconductors Suppression of the self-compensation in Ⅱ-Ⅵ materials[J].Jpn.J.Appl.Phys.1991,30:3475-3481.
    [157]FUJITA Y,TERADA T,FUJII S,Growth of N-doped ZnSe by photoassisted MOCVD [J].Jpn.J.Appl.Phys.1996,35(7B):L923-L925.
    [158]SHIMIZU M,KATAYAMA T,SHIUSAKI T,et al.Photo-MOCVD of ZnO epitaxial films[J].J.Cryst.Growth,1990,99(1-4):399-402.
    [159]YAMADA A,WENAS W W,YOSHINO M,et al.Mobility enhancement of textured ZnO films by ultraviolet light irradiation[J].Jpn.J.Appl.Phys.1991,30:L1152-L1154.
    [160]WENAS W W,YOSHINO M,TABUCHI K,et al.Large-area ZnO films grown by photo-MOCVD and their application to a-Si solar cells[J].IEEE,1993,935-940.
    [161]MYONG S Y,BAIK S J,LEE C H,et al.Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted mtealorganic chemical vapor deposition (photo-MOCVD) using AlCl_3(6H_2O) as new doping material[J].Jpn.J.Appl.Phys.1997,36(8B):L1078-L1081.
    [162]YATSUI T,LIM J,NAKAMATA T,et al.Low-temperature(~270℃) growth of vertically aligned ZnO nanorods using photoinduced metal organic vapor phase epitaxy [J].Nanotechnology,2007,18(7):065606.
    [163]HO E,CORONADO C A,KOLODZIEJSKI L A,Elimination of surface site blockage due to ethyl species in MOMBE of ZnSe[J].J.Electron.Mater.1993,22(5):473-478.
    [164]SOMGH R,Rapid isothermal processing[J].J.Appl.Phys.1988,63(8):R59-R114.
    [165]TAKAHASHI Y,KANAMORI M,KONDOH A,et al.Photoconductivity of Ultrathin Zinc Oxide Films[J].Jpn.J.Appl.Phys.1994,33:6611-6615.
    [166]PARK C H,ZHANG S B,WEI S H,Origin of p-type doping difficulty in ZnO:the impurities perspective[J].Phys.Rev.B,2002,66(7):073202-073207.
    [167]LOOK D C,JONES R L,SIZELOVE J R,et al.The path to ZnO devices:donor and acceptor dynamics[J].Phys.Stat.Soli.:A,2003,95(1):171-176.
    [168]JUNG E S,KIM H S,CHO H K,et al.The effects of thermal annealing in NH_3-ambient on the p-type ZnO films[J].Superlattices and Mierostructures,2007,42(1-6):62-67.
    [169]LEE C M,LIM J M,Effects of the annealing temperature on the electrical properties of p-type ZnO films grown on(0001) sapphire substrates by using atomic layer epitaxy[J].J.Korean Physical Society,2006,49(3):913-917.
    [170]JANG S,CHEN J J,KANG B S,et al.Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn_3P_2 source[J].Appl.Phys.Lett.2005,87(22):222113.
    [171]WANG P,CHEN N F,YIN Z G,P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering[J].Appl.Phys.Lett.2006,88(15):152102.
    [172]HUG X,GONG H,CHORE F,WU P,Properties of p-type and n-type ZnO influenced by P concentration[J].Appl.Phys.Lett.2006,89(25):251102.
    [173]PAN X H,JIANG J,ZENG Y J,et al.Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition[J]J.Appl.Phys.2008,103(2):023708.
    [174]LEE W J,KANG J,CHANG K J,Defect properties and p-type doping efficiency in phosphorus-doped ZnO[J].Phys.Rev.B,2006,73(2):024117.
    [175]KAMATA A,MITSU HASHI H,FUJ ITA H,Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition[J].Appl.Phys.Lett.1993,63(24):3353-3355.
    [176]曾昱嘉,叶志镇,袁国栋,等,ZnO薄膜p型转变的难点及解决的新方法[J].材料导报,2004,18(1):69-71.
    [177]MINEGISHI K,KOIWAI Y,KIKUCHI Y,et al.Growth of p-type zinc oxide films by chemical vapor deposition[J].Jpn.J.Appl.Phys.1997,36(11):1453-1455.
    [178]WANG J Z,DUG T,ZHAO B J,et al.Epitaxial growth of NH_3-doped ZnO thin films on <02(?)4> oriented sapphire substrates[J].J.Cryst.Growth,2003,255(3-4):293-297.
    [179]YE Z Z,LU J G,CHEN H H,et al.Preparation and characteristics of p-type ZnO films by DC magnetron sputtering[J].J.Cryst.Growth,2003,253(1-4):258-264.
    [180]LU J,ZHANG Y,YE Z,et al.p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations[J].Mater.Lett.2003,57(22):3311-3314.
    [181]YE J D,GU S L,ZHU S M,et al.Production of high quality ZnO films by the two step annealing method[J].J.Appl.Phys.2004,96(9):5308-5310.
    [182] LEE J Y, KIM H S, CHANG J H, et al. Structural and luminescence characteristics of post- annealed ZnO films on Si(111) in H_2O Ambient [J]. Jpn. J. Appl. Phys. 2005, 44(1-7): L205-L207.
    [183] DAI J N, JIANG F Y, PU Y, et al. NH_3-assisted growth approach for ZnO films by atmospheric pressure metal-organic chemical vapor deposition [J]. Appl. Phys. A, 2007, 89: 645-650.
    [184] OGATA K I, KAWAGUCHI D, KERA T, Effects of annealing atmosphere and temperature on acceptor activation in ZnSe:N grown by photoassisted MOVPE [J]. J. Cryst. Growth, 1996, 159(1-4): 312-316.
    [185]CEBULLA R, WERNDT R, ELLMER K, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties [J]. J. Appl. Phys. 1998, 83(2): 1087-1095.
    [186]SZORENYI T, LAUDE L D, BERTOTI I, et al. Excimer laser processing of indium-tin-oxide films: An optical investigation [J]. J. Appl. Phys. 1995, 78(10): 6211-6219.
    [187] RAO L K, VINNI V, Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis [J]. Appl. Phys. Lett. 1993, 63(5): 608-610.
    [188] ISLAM M N, GHOSH T B, CHOPRA K L, et al. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films [J]. Thin Solid Films, 1996, 280(1-2): 20-25.
    [189] FAN J C C, GOODENOUGH J B, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films [J]. J. Appl. Phys. 1977,48(8): 3524-3531.
    [190] CHEN M, PEI Z L, SUN C, et al. Formation of Al-doped ZnO films by dc magnetron reactive sputtering [J]. Mater. Lett. 2001,48(3-4): 194-198.
    [191] ZHANG J P, ZHANG L D, ZHU L Q, et al. Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures [J]. J. Appl. Phys. 2007, 102(11):114903.
    [192] XIAO Z Y, LIU Y C, ZHANG J Y, et al. Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition [J]. Semicond. Sci. Technol. 2005, 20(8): 796-800.
    [193] JOSEPH M, TABATA H, KAWAI T, p-Type electrical conduction in ZnO thin Films by Ga and N codoping [J]. Jpn. J. Appl. Phys. 1999, 38: L1025-L1207.
    [194] LI X N, KEYES B, ASHER S, et al. Hydrogen passivation effect in nitrogen2doped ZnO thin films [J]. Appl. Phys. Lett. 2005, 86(12):122107.
    [195]陈琨,范广涵,章勇,丁少峰,N掺杂p型ZnO的第一性原理计算[J].物理化学学报,2008,24:61-66.
    [196]LIMPIJUMNONG S,LI X N,WEI S H,et al.Substitutional diatomic molecules NO,NC,CO,N_2,and O_2:their vibrational frequencies and effects on p doping of ZnO[J].Appl.Phys.Lett.2005,86(12):211910.
    [197]NAKANO Y,MORIKAWA T,OHWAKI T,et al.Electrical characterization of p-type N-doped ZnO films prepared by thermal oxidation of sputtered Zn_3N_2 films[J].Appl.Phys.Lett.2006,88(17):172103.
    [198]WANG Y G,LAU S P,ZHANG X H,et al.Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films[J].J.Cryst.Growth,2003,252(1-3):265-269.
    [199]KASCHNER A,HABOECK U,STRASSBURG M,Nitrogen-related local vibrational modes in ZnO:N[JJ.Appl.Phys.Lett.,2002,80(11):1909-1911.
    [200]TU M L,SU Y K,MA C Y,Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering[J].J.Appl.Phys.2007,100(5):053705.
    [201]MA J G,LIU Y C,MU R,et al.Method of control of nitrogen content in ZnO films:Structural and photoluminescence properties[J].J.Vac.Sci.Technol.B,2004,22(1):94-98.
    [202]RIESZ F,DOBOS L,BIGNALI C,PELOSI C,Thermal decomposition of InP surfaces:volatile component loss,morphological changes,and pattern formation[J].Materials Science and Engineering B,2001,80(1-3):54-59.
    [203]TMAR M,GABRIEL A,CHATILLON C,et al.Critical analysis and optimization of the thermodynamic properties and phase diagrams in the Ⅲ-Ⅴ compounds:The In-P and Ga-P systems[J].J.Cryst.Growth,1984,68(2):557-580.
    [204]BAYLISS C R,KIRK D L,The compositional and structural changes that accompany the thermal annealing of(100) surfaces of GaAs,InP and GaP in vacuum[J].J.Phys.D:Appl.Phys.1976,9:233-244.
    [205]HWANG D K,KIM H S,LIM J H,et al.Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering [J].Appl.Phys.Lett.2005,86(15):151917.
    [206]TEKE A,(O|¨)ZG(U|¨)R(U|¨),DOGAN S,et al.Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J].Phys.Rev.B,2004,70(19):195207.
    [207]MEYER B K,ALVES H,HOFMANN D M,et al._Bound exciton and donor-acceptor pair recombinations in ZnO[J].Phys.Stat.Sol.(b),2004,241(2):231-260.
    [208]PRZEZDZIECKA E,KAMINSKA E,PASTEMAK I,et al.Photoluminescence study of p-type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material[J].Phys.Rev.B,2007,76(19):193303.
    [209]SCHIRRA M,SCHEIDER R,REISER A,et al.Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide[J].Phys.Rev.B,2008,77(12):125215.
    [210]LI C F,HUANG Y S,MALIKOVA L,et al.Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN[J].Phys.Rev.B,1997,55(15):9251-9254.
    [211]ZHANG B P,BINH N T,SEGAWA Y,et al.Photoluminescence study of ZnO nanorods epitaxially grown on sapphire(11(?)0) substrates[J].Appl.Phys.Lett.2004,84(4):586-588.
    [212]SHEN W Z,SHEN S C,Photoluminescence studies of strained CdTe/Cd_(0.633)Mn_(0.367)Te single quantum wells[J].J.Appl.Phys.1996,80(10):5941-5945.
    [213]HALSTED R E,AVEN M,Photoluminescence of defect-exciton complexes in Ⅱ-Ⅵcompounds[J].Phys.Rev.Lett.1965,14(3):64-65.
    [214]YE J D,GU S L,LI F,et al.Correlation between cartier recombination and p-type doping in P monodoped and In-P codoped ZnO epilayers[J].Appl..Phys.Lett.,2007,90(15):152108.
    [215]LOOK D C,CLAFLIN B,P-type doping and devices based on ZnO[J].Phys.Stat.Sol.(b),2004,241(3):624-630.
    [216]LU J G,LIANG Q,ZHANG Y,et al.Improved p-type conductivity and acceptor states in N-doped ZnO thin films[J].J.Phys.D:Appl.Phys.,2007,40(10):3177-3181.
    [217]黄慧忠等著,论表面分析及其在材料研究中地应用[M].北京:科学技术文献出版社,2002.
    [218]FRANKE R,CHASSE T,STREUBEL P,et al.Auger parameters and relaxation energies of phosphorus in solid compounds[J].J.Electron Spectrosc.Relat.Phenom.1991,56(4):381-388.
    [219]GRESCH R,WARMUTH W M,DUTZ H,X-ray photoelectron spectroscopy of sodium phosphate glasses[J].J.Non-Cryst.Solids,1970,34(1):127-136.
    [220]YAO B,XIE Y P,CONG C X,et al.Mechanism of p-type conductivity for phosphorus-doped ZnO thin film[J].J.Phys.D:Appl.Phys.2009,42(1):015407.
    [221]施敏著,黄振岗译,魏策军校,半导体器件物理[M].北京:电子工业出版社,1987.
    [222]刘恩科,朱秉升,罗晋生等,半导体物理学[M].北京:国防工业出版社,1994.
    [223]R(O|¨)SSLER U,Energy bands of Hexagonal Ⅱ-Ⅵ semiconductor[J].Phys.Rev.1969,184(3):733-738.
    [224]PEARTON S J,NORTON D P,IP K,et al.Recent advances in processing of ZnO[J].J.Vac.Sci.Technol.B,2004,22(3):932-948.
    [225]SUN H,ZHANG Q F,WU J L,Eleetroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure[J].Nanotechnology,2006,17(9):2271-2274.
    [226]LIN C F,LIU C W,CHEN M J,et al.Electroluminescence at Si band gap energy based on metal-oxide-silicon structures[J].J.Appl.Phys.2000,87(12):8793-8795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700