用户名: 密码: 验证码:
碳纳米管/聚乙烯复合材料结构与性质的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用计算机模拟对碳纳米管/聚合物复合材料体系进行研究可以更深入的了解碳纳米管/聚合物复合材料的形成机理,并可根据模拟结果推测材料可能具有的物理化学性质,这将对新材料的设计有很大的帮助。本论文利用分子动力学模拟方法从微观的角度对该类体系进行了详细深入地研究。
     利用经典的分子动力学模拟在不同温度下对聚合度不同的聚乙烯分子在金属型的CNT(5,5)侧壁表面上的吸附和扩散行为进行了系统地研究。通过计算证明了体系是热力学稳定的,并通过计算表征了PE链的构象以及在碳纳米管外的分布。发现PE链可以在CNTs上很好的吸附,并呈壳状分布;在300K时,PE链可以形成较规整的具有诱导取向的构象。
     利用经典的分子动力学模拟对聚合度不同的聚乙烯分子在半金属型的CNT(9,0)和半导体型的CNT(10,0)侧壁表面吸附和扩散行为进行了研究。考量了体系的稳定度,并通过计算表征了PE链的构象以及在碳纳米管外侧的分布情况。发现PE链的构象和吸附位置主要跟温度和CNTs的半径有关、与管的形式关系不大。
     采用5-7缺陷对形成的异质结将半径相近的CNT(5,5)和CNT(10,0)相连接,构建了5个不同的碳纳米管。利用经典的分子动力学模拟对低聚聚乙烯在构建的CNT外吸附、扩散乃至复合进行了直观的观察。通过计算证明了体系是热力学稳定的;并表征了PE链在碳纳米管表面的吸附构象。发现PE链在CNT侧壁吸附所形成的构象与它和CNT各个部分的尺寸匹配度有很大关系,当尺寸相匹配时,能在纳米尺度上形成规整的图案化构象。可以通过在CNT上适当的位置制造出异质结,设计出具有图案化构象的复合材料。
Since it was discovered in 1991,the Carbon nanotubes(CNTs)have attracted the much attention as nanoscaled materials. In fact, they have been applied widely in materials field because of their unique structural, mechanical, electronic, and luminescent properties. Moreover, the CNT/polymer composites have been an important research direction of the application of composites. In these composites, the CNT could not only improve the mechanic properties, but also prepare the function composite materials using their electronic properties and other properties.
     The studies of the CNT/polymer composites are difficult than that of the simple polymer matrix because of the complexity of the structure. Not only the polymer and the CNT should be investigated separately, but also the interface of them. The interface between polymer and CNT effects the structure and properties of the composite much.
     In fact, the CNTs could be considered as a bent surface, and the polymers are restrained on this surface. It could be come down to the adsorption and diffusion process of the polymer on the surface. The morphology could be investigated intuitionisticly through computer simulations. And they are also needed to investigate the formation mechanism of the CNT/polymer composites. Subsequently, the physical and chemical properties are suggested by the simulation results. The results could be helpful for the design of the CNT/polymer composites material.
     The various CNT/PE composites have been investigated by the classical molecular dynamics(MD) simulation at microcosmic level.
     (1)Classical MD simulations were carried out to investigate the absorption and diffusion process of the PE chains on the side-wall of the CNT(5,5) whose length was limited at different temperature systematically.
     First, the systems containing only one PE chain are investigated. Different degrees of polymerization from 50 to 80 at separate temperatures of 300K, 400K, 500K and 600K are considered to find out the best condition for pattern adsoption. The stability of the systems had been investigated by the diffusion coefficient of the PE chains and the interaction of the PE chain and CNT(5,5); the conformations and the distribution of the PE chains are characterized by the bond-orientation order parameter along z-direction, the mean radius of gyration Rg and The torsion angle distribution for the backbone of the PE chain. In particular, the PE chains keep approximately linear conformation, and extend along the axis of the CNT at the room temperature. It is also found that the most probable distance between the CNT and the C atoms in backbone of PE molecules only attribute to the temperature, and at T =300K, this distance is about 3.8?.
     Sequently, the systems containing more PE70 chains are investigated to pertain to the vapor deposition with dilute vapor density. Through the simulation, it is examined that the PE chains are absorbed on the surface of CNT and form stable composites with the nanotube as capsules.
     Our result may be helpful for finding a new pattern composite, moreover, an oriented electric or photoelectric behavior composite.
     (2)Classical MD simulations were carried out to investigate the absorption and diffusion process of the PE chains on the side-wall of the CNT(10,0) and CNT(9,0) whose length was unlimited at different temperature systematically. Also Different degrees of polymerization from 50 to 80 at separate temperatures of 300K and 600K are considered. As the CNT(9,0) is the semimetallic tube and the CNT(10,0) is the semiconducting tube, we focus on the effection of the helicity of the CNT to the structure and the properties of the composites.
     In the same way, the stability of the systems had been investigated by the diffusion coefficient of the PE chains and the interaction of the PE chain and CNTs; and the conformations and the distribution of the PE chains are characterized by the bond-orientation order parameter along z-direction and the torsion angle distribution for the backbone of the PE chain. It is found that the conformation of PE chains and the adsorption site depend on temperature and the radius of the CNTs mostly, had little relation to the style of the CNTs. The last, the most probable distance between the CNT and the C atoms in backbone of PE molecules are obtained from radial distribution function. The results show that the significance of the dimensional matching for the configuration of PE chains adsorbed on the sidewall of CNTs.
     (3)The adsorption of the polyethylene oligomers (PE) on the side-wall of the single wall carbon nanotubes (SWCNTs) which composed of SWCNT(5,5), SWCNT(10,0) and heterojunction was researched using by the classic molecular dynamic simulation. The PE chains could be adsorbed on the surface of SWCNTs we constructed easily and form composites with the SWCNTs. The results show that the configuration of the PE chains on the side-wall of the SWCNTs depends on the dimensional matching of PE and SWCNT. The patterned assembly was presented when the PE and SWCNTs matched in dimension. As the researches in this field almost focus on the electronic of the heterojunction, the study of the composites composed of CNT containing heterojunction and polymers by the computer simulations in atomic scale has actual meaning.
     Also, the interaction of the PE chain and CNTs was caculated to characterize the stability of the systems. The morphology of the PE chains adsorbed on the CNTs is investigated intuitionisticly. The conformations and the distribution of the PE chains are characterized by the bond-orientation order parameter along z-direction and the torsion angle distribution for the backbone of the PE chain.
     The results showed that the conformantions and the distribution of the PE chains on the side-wall CNTs containing the heterjunctions were depended on the lengths of CNTs which were divided by heterjunctions. The dimensional matching of lengths between PEs and CNTs was relatived with the conformations of the PE chains on the side-wall CNTs. When the lengths between PEs and CNTs,PEs on the side-wall CNTs could form the patterned assembly. Thus, the control of the patterned assembly can be obtained by heterjunctions in the CNTs.
引文
[1]陈舜麟.计算科学材料.北京:化学工业出版社,2005.
    [2] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Process, 1987.
    [3] FRENKEL D, SMIT B. Understanding Molecular Simulation: From Algorithms to Applications[M]. San Diego: Academic Press, 1996
    [4] LEACH A R. Molecular Modeling Principles and Applications[M]. Longman, Essex, U.K., 1996.
    [5]杨小震.高分子的计算机模拟——高分子科学的今天与明天.北京:化学工业出版社,1994,182-193.
    [6] WILSON S. Chemistry by Computer [M]. New York: Plenum Press, 1986.
    [7] SLATER J C. Quantum Theory of Molecular and Solids [M]. New York: McGraw-Hill, 1974.
    [8] CLEMENTI E, CORONGIU G, BHATTACHARYA D,ET AL. Selected topics in ab initio computational chemistry in both very small and very large chemical systems [J].Chem. Rev., 1991, 91, 679-699.
    [9] LIU T W. Flexible polymer chain dynamics and rheological properties in steady flows [J]. J. Chem. Phys., 1989, 90: 5826-5842
    [10] ZYLKA W, ?TTINGER H C. A comparison between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction [J]. J. Chem. Phys., 1989, 90: 474-480.
    [11] GRASSIA P, HINCH E J F. Computer simulations of polymer chain relaxation via Brownian motion [J]. J. Fluid Mech., 1996, 308: 255-288.
    [12] DOYLE P S, SHAQFEH ES, GAST A P. Dynamic Simulation of Freely Draining Flexible Polymers in Steady Linear Flows [J]. J. Fluid Mech., 1997, 334: 251-291.
    [13] HOOGERBRUGGE P J, KOELMAN, J M V A. Simulating microscopichydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19:155-160.
    [14] ESPA?OL P, WARREN P B. Statistical Mechanics of Dissipative Particle Dynamics [J] Europhys. Lett., 1995, 30: 191-196
    [15] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [16] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annu. Rev. Fluid Mech., 1998, 30: 329-362.
    [17] FRAAIJE J G E M, VAN VLIMMEREN B A C, MAURITS N M, et al. The Dynamic Mean-Field Density Functional Method and its Application to the Mesoscopic Dynamics of Quenched Block Copolymer Melts [J]. J. Chem. Phys., 1997, 106: 4260-4269.
    [18] VAN VLIMMEREN B A C, MAURITS N M, ZVELINDOVSKY A V, et al. Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33 (Propylene Oxide)19. Application of Dynamic Mean-Field Density Functional Theory [J]. Macromolecules 1999, 32: 646-656.
    [19] FREDRICKSON G H, GANESAN V, DROLET F. Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids [J]. Macromolecules, 2002, 35: 16-39.
    [20] JOHN D, ANDERSON J R. Computational Fluid Dynamics: The Basics with Applications [M]. McGraw-Hill Companies, Inc., 2002.
    [21] ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere system [J]. J. Chem. Phys., 1957, 27:1208-1209.
    [22] GIBSON J B, GOLAND A N,MILGRAM M et al. Dynamics of Radiation Damage [J]. Phys. Rev. , 1960, 120: 1229-1253.
    [23] RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon [J].Phys. Rev. , 1963, A136:405-411
    [24] VERLET L. Computer experiments on classical fluids. I. Thermodynamical properties of. Lennard-Jones molecules [J]. Phys. Rev. 1967, 159:98-103.
    [25] RAHMAN A, STILLINGER F H. Molecular dynamics study of liquid water [J]. J. Chem. Phys., 1971, 55: 3336-3359.
    [26] ANDERSEN H C J. Molecular dynamics simulations at constant pressure and/or temperature [J]. Chem. Phys., 1980, 72: 2384-2393.
    [27] HOOVER W G,DENIS J EVANS, et al. Fluctuation Expressions for Nonequilibrium Distribution Functions in Adiabatic Flows[J]. Phys. Rev., 1980, 45: 124-125.
    [28] PARRINELLO M,RAHMAN A.Polyrnorphic transitions in single crystals:A newrnolecular dynamics method [J]. J. Appl. Phys., 1981, 52: 7182-7190.
    [29] NOSéS. A molecular dynamics method for simulations in the canonical ensemble [J]. Molecular Physics, 1984, 52: 255-256.
    [30] NOSéS. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984,81: 511-519.
    [31] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory [J] Phys. Rev. Lett., 1985, 55: 2471—2474.
    [32] FRISH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the Navier-stokes equation [J]. Phys. Rev. Lett., 1986, 56:1505-1508.
    [33] NYLAND L, PRINS J, HUAI R Y, ET AL. J. Paral. Distrib. Comp. 1997, 47, 125-138.
    [34] BROWN D, CLARKE J H R, OKUDA M, et al. A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines [J] Comput. Phys. Comm., 1993, 74: 67-80.
    [35] ESSELINK K, SMIT B, HILBERS P A J. Efficient parallel implementation of molecular dynamics on a toroidal network. part i. parallelizing strategy [J]. Comput. Phys. Comm., 1993, 106: 101-107.
    [36] ESSELINK K, HILBERS P A J. Efficient parallel implementation of molecular dynamics in a toroidal network: II. Multi‐particle potentials [J]. Journal of Computational Physics, 1993, 106: 108-114.
    [37] BROWN D, MINOUX H, MAIGRET B. A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems of arbitrary connectivity [J]. Comput. Phys. Comm., 1997, 103: 170-186.
    [38] KAVASSALIS T A, SUNDARARAJAN P R.. A molecular-dynamics study of polyethylene crystallization [J]. Macromolecules, 1993, 26: 4144-4150.
    [39] LIAO Q, JIN X G. Formation of segmental clusters during relaxation of a fully extended polyethylene chain at 300 K: A molecular dynamics simulation [J]. J. Chem. Phys., 1999, 110: 8835-8841.
    [40] GUO H X, YANG X Z, LI T. Molecular dynamics study of the behavior of a single long chain poly- ethylene on a solid surface [J]. Phys. Rev. E, 2000, 61: 4185-4193.
    [41] SHIMIZU T, YAMAMOTO T. Melting and crystallization in thin film of n-alkanes: A molecular dynamics simulation [J]. J. Chem. Phys., 2000, 113, 3351-3359.
    [42] WELCH P, MUTHUKUMAR M. Molecular mechanisms of polymer crystallization from solution [J]. Phys. Rev. Lett., 2001, 87: 218302.
    [43] FUJIWARA S, SATO T. Structure formation of a single polymer chain. I: Growth of trans domains [J]. J. Chem. Phys., 2001, 114, 6455-6463.
    [44] ABU-SHARKH B F, HUSSEIN I A. MD Simulation of the Influence of Branch Content on Collapse and Conformation of LLDPE Chains Crystallizing from highly Dilute Solutions [J]. Polymer, 2002, 43: 6333-6340.
    [45] ZHANG X B, LI Z S, LU Z Y, et al. The reorgnization of the lamellar structure of a single polyethylene chain during heating: Molecular dynamics simulation [J]. J. Chem. Phys., 2001, 115: 10001-10006.
    [46] ZHANG X B, LI Z S, LU Z Y, et al. Roles of Branch Content and BranchLength in Copolyethylene Crystallization: Molecular Dynamics Simulations [J]. Macromolecules, 2002, 35: 106-111.
    [47] CHOI P, BLOM H P, KAVASSALIS T A, et al. Immiscibility of poly(ethylene) and poly(propylene): A molecular dynamics study [J]. Macromolecules, 1995, 28: 8247-8250.
    [48] LEE S, LEE J G., LEE H, et al. Molecular dynamics simulations of the enthalpy of mixing of poly(vinyl chloride) and aliphatic polyester blends [J]. Polymer, 1999, 40: 5137-5145.
    [49] DOXASTAKIS M, KITSIOU M, FYTAS G., et al . N. Hadjichristidis, G. Meier, B. Frick, Component segmental mobilities in an athermal polymer blend: Quasielastic incoherent neutron scattering versus simulation [J]. J. Chem. Phys., 2000, 112: 8687-8694.
    [50] GEE R H, FRIED L E, COOK R C. Structure of Chlorotrifluoroethylene /Vinylidene Fluoride Random Copolymers and Homopolymers by Molecular Dynamics Simulations [J]. Macromolecules, 2001, 34: 3050-3059.
    [51] SPYRIOUNI T, VERGELATI C.A molecular modeling study of binary blend compatibility of polyamide6 and poly(vinyl acetate) with different degrees of hydrolysis: An atomistic and mesoscopic approach [J]. Macromolecules, 2001, 34: 5306-5316.
    [52] HEINE D, WU D T, CURRO J G., et al. Role of Intramolecular energy on Polyolefin Miscibility: Isotactic Polypropylene/Polyethylene Blend [J]. J. Chem. Phys. 2003, 118: 914-924.
    [53] GESTOSO P, BRISSON J. Towards the simulation of poly(vinyl phenol)/poly(vinyl methyl ether) blends by Atomistic Molecular Modelling [J]. Polymer, 2003, 44: 2321-2329
    [54] RIGBY D, ROE R J. Molecular Dynamics Simulation of Polymer Liquid and Glass. II. Short Range Order and Orientation Correlation [J]. J. Chem. Phys., 1988, 89: 5280-5290.
    [55] TAKEUCHI H, ROE R J. Molecular dynamics simulation of local chain motion in bulk amorphous polymers. II dynamics at glass transition [J]. J. Chem. Phys. 1991, 94: 7458-7465.
    [56] MANIKA V N, CHENG J, JIN Y, et al. Thermal properties of polysilylenes [J]. Macromolecules, 1991, 24: 5442-5450.
    [57] PANT P V K, HAN J, SMITH G D, et al. A Molecular Dynamics Study of Polyethylene [J]. J. Chem. Phys., 1993, 99: 597-604.
    [58] HAN J, GEE R H, BOYD R H. Glass Transition Temperatures of Polymers from Molecular Dynamics Simulations [J]. Macromolecules, 1994, 27: 7781-7784.
    [59] BOYD R H, GEE R H, HAN J, et a.. Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study [J]. J. Chem. Phys. 1994, 101: 788-797.
    [60] GEE R H, ROYD R H. Conformational dynamics and relaxation in bulk polybutadienes: A molecular dynamics simulation study [J]. J. Chem. Phys. 1994, 101: 8028-8038.
    [61] DEAZLE A S, HEALD C R, HAMERTON I, et al. Molecular modelling of high performance polymers [J]. Polymer International, 1996 ,41: 151-158.
    [62] KOTELYANSKII M, WAGNER N J, PAULAITIS M E. Building Large Amorphous Polymer Structures: Atomistic Simulation of Glassy Polystyrene [J]. Macromolecules, 1996, 29 : 8497-8506.
    [63] FAN C F, CAGIN T, SHI W, et al. Local chain dynamics of a model polycarbonate near glass transition temperature: A molecular dynamics simulation [J]. Macromol. Theory. Simul., 1997, 6: 83-102.
    [64] SOLDERA A. Comparison Between the Glass Transition Temperatures of the Two PMMA Tacticities: a Molecular Dynamics Simulation Point of View [J]. Macromol. Symp., 1998, 133: 21-32.
    [65] CUTHBERT T R, WAGNER N J, PAULAITIS M E,et al. Molecular Dynamics Simulation of Penetrant Diffusion in Amorphous Polypropylene:Diffusion Mechanisms and Simulation Size Effects [J]. Macromolecules, 1999, 32: 5017-5028.
    [66] FRIED J R, REN P R. The atomistic simulation of the gas permeability of poly(organophosphazenes). Part 1. Poly(dibutoxyphosphazenes) [J]. Comput. Theory. Polym. Sci., 2000, 10: 447-463.
    [67] NEYERTZ S, BROWN D, COLOMBINI D, et al. The Volume Dependence of Molecular Flexibility in Poly(ethylene oxide) under Negative Pressure [J]. Macromolecules, 2000, 33: 1361-1369.
    [68] YU K Q, LI Z S, SUN J Z. Polymer structures and glass transition: a molecular dynamics simulation study [J]. Macromol. Theory. Simul., 2001, 10: 624-633.
    [69] BUCHHOLZ J, PAUL W, VARNIK F, et al. Cooling rate dependence of the glass transition temperature of polymer melts : A molecular dynamics study [J]. J. Chem. Phys., 2002, 117: 7364-7372
    [70] LYULIN A V, BALABAEV N K, MICHELS M A J. Molecular-weight and cooling-rate dependence of simulated Tg for amorphous polystyrene [J]. Macromolecules, 2003, 36: 8574-8575.
    [71] CAVALLO A, MüLLER M, BINDER K. Unmixing of Polymer Blends Confined in Ultrathin Films: Crossover between Two-Dimensional and Three-Dimensional Behavior [J]. J. Phys. Chem. B, 2005, 109: 6544-6552.
    [72] MILCHEV A, BINDER K. Static and Dynamic Properties of Adsorbed Chains at urfaces: Monte Carlo Simulation of a Bead-Spring Model [J]. Macromolecules, 1996, 29: 343-354.
    [73] WANG Y, MATTICE W L. Adsorption of homopolymers on a solid surface: A comparison between Monte Carlo simulation and the Scheutjens-Fleer mean-field lattice theory [J]. Langmuir, 1994, 10: 2281-2288.
    [74] SUKHISHVILI S A, CHEN Y, MüLLER J D, ET AL, Diffusion of a Polymer‘Pancake’[J]. Nature, 2000, 406 : 146-146.
    [75] WANG X L, LU Z Y, LI Z S, ET AL. Molecular Dynamics SimulationStudy on Adsorption and Diffusion Processes of a Hydrophilic Chain on a Hydrophobic Surface [J]. J. Phys. Chem. B, 2005, 109 : 17644-17648.
    [76] WANG X L, LU Z Y, LI Z S, ET AL, Molecular Dynamics Simulation Study on Controlling the Adsorption Behavior of Polyethylene by Fine Tuning the Surface Nanodecoration of Graphite [J]. Langmuir, 2007, 23: 802-808.
    [77] JIA LIU, XIAO-LIN WANG, LI ZHAO, GANG ZHANG, ZHONG-YUAN LU, ZE-SHENG LI.“The Absorption and Diffusion of Polyethylene Chains on the Carbon Nanotube: The Molecular Dynamics Study”Journal of Polymer Science: Part B: Polymer Physics, 2008, 46: 272-280.
    [78]刘佳,赵莉,吕中元,李泽生。“聚乙烯链在碳纳米管侧壁吸附的动力学模拟研究”高等学校化学学报2008 29:2389-2392
    [79] FISHER S Z, MAUPIN C M, BUDAYOVA-SPANO M, et al. Atomic Crystal and Molecular Dynamics Simulation Structure of Human Carbonic AnhydraseⅡ: Insights into the Proton Transfer Mechanism [J]. Biochemistry, 2007, 46: 2930-2937.
    [80] MICHAEL E BUDIMAN, MICHAEL H KNAGGS, JACQUELYN S FETROW, et al. Using Molecular Dynamics to Map Interaction Networks in an Aminoacyl-tRNA Synthetase [J]. Proteins, 2007, 68: 670-689.
    [81] LEYLA CELIK, JULIE DAVEY DALSGAARD LUND, BRIGIT SCHIOTT. Conformational Dynamics of the Estrogen Receptorα: Molecular Dynamics Simulations of the Influence of Binding Site Structure on Protein Dynamics [J]. Biochemistry, 2007,46:1743-1758.
    [82] JIAN PING HU, XIN QI GONG, JI GUO SU, et al. Study on the Molecular Mechanism of Inhibiting HIV-1 Integrase by EBR28 Peptide via Molecular Modeling Approach [J]. Biophysical Chemistry, 2008,132:69-80.
    [83] GUILLERMINA ESITU, KENNETH M MERZ JR. Catalyzed Decompositon of Urea. Molecular Dynamics Simulations of the Binding of Urea to Urease. [J] Biochemistry, 2006,45:4429-4443.
    [84] ALESSANDRO BRIGO, KEUN WOO LEE, GABRIELA IURCU MUSTATA, et al. Comparison of Multiple Molecular Dynamics Trajectories Calculated for the Drug-Resistant HIV-1 Integrase T661/M1541 Catalytic Domain [J]. 2005, 88:3072-3082.
    [85] NATALIA DíAZ, DIMAS SUáREZ, TOMáS L SORDO. Molecular Dynamics Simulations of Class Cβ-Lactamase from Citrobacter freundii: Insights into the Base Catalyst for Acylation [J]. 2006,45:439-451
    [86]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2005.
    [87] ROE R J. Computer Simulation of Polymers [M]. New Jersey; Prentice Hall Inc., 1991.
    [88]漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料[M].北京:化学工业出版社,2002.
    [89] AJAYAN P M, SCHADLER L S, BRAUN P V. Nanocomposites Science and Technology [M]. John Wiley&Sons Ltd., 2003.
    [90] OKADA A, KAWASUMI M, KURAUCHI T, et al. Synthesis and characterization of Nylon6–clay hybrid [J].Polym Prepr., 1987, 28: 447-452.
    [91] Bins & Associates. Plastics, Additives & Compounding, 2002, 1: 30.
    [92] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [93]钱学森.现代力学[J].力学与实践,1979,1(1):4-9.
    [94] FLORY P J. Molecular size distribution in linear condensation polymers [J]. J. Am. Chem. Soc., 1936, 58: 1877-1885.
    [95] FLORY P J. Principles of Polymer Chemistry [C]. Cornell Univ. Press, New York, 1953.
    [96] FLORY P J. Molecular size distribution in three dimensional polymers [J]. J. Am. Chem. Soc., 1941, 63: 3083-3090.
    [97] STOCKMAYER W H. Molecular distribution in condensationpolmerization [J]. J. Polym. Sci., 1952, 9: 69-71.
    [98] STOCKMAYER W H. Theory of molecular size distribution and gel fraction in branched-chain polymers [J]. J. Chem. Phys., 1943, 11: 45-55.
    [99] MACOSKO C W, MILLER D R. A new derivation of average molecular weights of nonlinear polymers [J]. Macromolecules, 1976, 9: 199-206.
    [100] NAKANISHI H, STANLEY H E. Scaling studies of percolation phenomena in systems of dimensionality two to seven: I. Cluster numbers [J]. Phys. Rev., 1980, B22: 2466-2488.
    [101] FELLER W. An Introduction to Probability Theory and its Applications [C], New York: John Wiley & Sons, 1957.
    [102]潘正伟,常保和,等。超长、开口定向碳纳米管列阵的制备[J].中国科学(A辑), 1999, 29 (8):743-749.
    [103] DRESSELHAUS M.S,:DRESSELHAUS G, EKLUND R C. Science of Fullerenes and Carbon Nanotubes[C]. Sam Diego USA: Academic Press 1996.
    [104] SINNOTT S B,SHENDEROUS O A,WHITE C T, et al. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations [J]. Carbon, 1998, 36(1-2): 1-2.
    [105] LU J P. Elastic properties of carbon nanotubes and nanoropes [J].Phys Rev Lett, 1997, 79(7): 1297-1300.
    [106] KELLY B T. Physics of graphite[M]. London: Applied Science, 1981.
    [107] OVERNEY G, ZHONG W, TOMANEK D.Z. Structural rigidity and low frequency vibrational modes of long carbon tubules [J]. Phus. D., 1993,27: 93-95.
    [108] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678-680..
    [109] PONCHARAL P, WANG Z L, UGARTE D. Electrostatic deflections and electromechanical resonances of carbon nanotubes [J]. Science, 1999, 283:1513-1516.
    [110] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: Elesticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1971-1975.
    [111] DRESSELHAUS M S, DRESSELHAUS G, AVOURIS P. Carbon Nanotubes Synthesis Structure[M]. Properties, and Application, Berlin: Springer, 2001.
    [112] WEI B Q,VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes[J]. Appl. Phys. Lett., 2001,79: 1172-1174.
    [113] KIM B M, FUHRER A M S. Properties and applications of high-mobility semiconducting nanotubes [J]. J Phys: Condens. Matter. 2004, 16:553-572.
    [114] TANG Z K, ZHANG L Y, WANG N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes [J]. Science, 2001, 292: 2462-2465
    [115] BERBER S, KWON Y, TOM?NEK D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613-4616.
    [116] HONE J, LLAGUNO M C, BIERCUK M J, et al. Thermal properties of carbon nanotubes and nanotube-based materials [J]. Appl. Phys A: Mater Sci Process., 2002, 74: 339-343.
    [117]刘治,陈晓红,宋怀河.碳纳米管及其研究进展[J].化工新型材料,2002,30(4):1一4.
    [118]苏志强,刘云芳,魏强,等.碳纳米管改性酚醛树脂的研究[J].炭素技术,2002 (l):8一11.
    [119] AJAYAN P, ASTEPHAN O, COLLIEX C ET AL. Science, 1995, 264: 1212-1214.
    [120]王彪,王贤保,胡平安,等.碳纳米管/聚合物纳米复合材料研究进展[J].高分子通报, 2002, 12: 8-14.
    [121] SAINZ R, SMALL W R, YOUNG N A, et al. Synthesis and properties ofoptically active polyaniline carbon nanotube composites [J]. Macromolecules, 2006, 39: 7324-7332.
    [122] BAUGHMAN R H, ZAKHIDOV A A, de HEER W A. Carbon nanotubes—the route toward applications[J]. Science, 2002, 297: 787-792.
    [123] ALLAOUI A, BAI S, CHENG H M, et al. Mechanical and electrical properties of a MWNT/epoxy composite [J]. Composites Science and Technology, 2002, 62: 1993~1998
    [124] SUN X, YU R Q, XU G Q, et al.Broadband optical limiting with multiwalled carbon nanotubes. [J]. Applied Physics Letter, 1998, 73(25): 3632-3634.
    [125] CURRAN S, DAVEY A P, COLEMAN J, et al. Evolution and evaluation of the polymer nanotube composite . [J]. Synthetic Metals, 1999, 103(1-3):2559-2562.
    [126] HONE J, BATLOGG B, BENES Z, et al.Quantized phonon spectrum of single-wall carbon nanotubes[J]. Science, 2000, 289:1730-1733.
    [127] BIERCUK M J, LLAGUNO M C, RADOSAVLJEVIC M, et al.Carbon nanotube composites for thermal management [J]. Appl. Phys. Lett., 2002, 80:2767-2769.
    [128] CHOI E S, BROOKS J S, EATON D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J]. J. Appl. Phys., 2003, 94: 6034-6039.
    [129] COLEMAN J N, BLAU W J, DALTON A B, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives [J]. Appl. Phys. Lett., 2003, 82(11):1682-1685.
    [130] YANG M, KOUTSOS V, ZAISER M. Interactions between Polymers and Carbon Nanotubes: A Molecular Dynamics Study [J]. J. Phys. Chem. B., 2005, 109: 10009-10014.
    [131] PANHUIS M I H, MAITI A, DALTON A B, et al. Selective Interaction in aPolymer-Single-Wall Carbon Nanotube Composite [J]. J. Phys. Chem. B., 2003, 107: 478-482.
    [132] STEUERMAN D W, STAR A, NARIZZANO R, et al. Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B., 2002, 106: 3124-3130.
    [133] WEI C . Radius and Chirality Dependent Conformation of Polymer Molecule at Nanotube Interface [J]. Nano Letters., 2006, 6: 1627-1631.
    [134] WEI C, SRIVASTAVA D. Structural Ordering in Nanotube Polymer Composites [J]. Nano Letters., 2004, 4: 1949-1952.
    [135] WEI C.Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites [J]. Nano Letters, 2002, 2:647-650.
    [136] ZHANG L, CHEN J. Elastic behavior of adsorbed single compact chains [J]. Polymer, 2005, 46: 6208–6215.
    [137]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    [138] MSI manual, Forcefield-Based Simulations General Theory& Methodology [M]. 1997.
    [139] YOUNG D C.Computational Chemistry [C]. New York: John Wiley&Sons, 2001.
    [140] BINDER K, HORBACH J, KOB W, et al. Molecular Dynamics Simulations [J], J.Phys.:Condens. Matter. 2004, 16: S429-S453..
    [141] Allinger N L. Molecular Mechanics In:Theoretical and Computational Methods for Organic Chemistry(Ed by S.J.Formosinho,I.G.Csizmadia, and L.G.Arnaut) [M]. Dordrecht Kluwer Academic Publishers , 1991.
    [142]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [143]王志中.现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    [144] MAYO S L, OLAFSON B D, GODDARD III W A, A generic force field for molecular simulations [J]. J. Phys. Chem., 1990, 94: 8897-8909.
    [145] RAPPéA K, CASEWIT C J, COLWELL K S, et al. a full periodic table field for molecular mechanics and molecular dynamics simulations [J] . J.Am. Chem. Soc., 1992, 114: 10024-10035.
    [146] DINUR U, HAGLER A T. New Approaches to Empirical Force fields in Reviews of Computational Chemistry [M]. Chapter 4, 1991.
    [147] SUN H, MUMBY S J, MAPLE J R, et al. An Ab Initio All-atom Force Field for Polycarbonates [J]. J. Am. Chem. Soc., 1994, 116: 2978-2987.
    [148] SUN H, MUMBY S J, MAPLE J R, et al. Ab Initio Calculations on Small Molecule Analogues of Polycarbonates [J]. J. Phys. Chem., 1995, 99: 5873-5882.
    [149] SUN H. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes [J]. Macromolecules ,1995, 28: 701-712.
    [150] SUN H. Ab Initio Characterization of Molecular Structures, Conformation Energies, and Hydrogen-Bonding Properties for Polyurethane Hard Segments [J].
    [151] SUN H. Force Field for Computation of Conformational Energies, Structures, and Vibrational Frequencies of Aromatic Polyesters [J]. J. Comp. Chem., 1994, 15: 752-768.
    [152] SUN H, RIGBY D. Polysiloxanes: Ab Initio Force Field And Structural, Conformational And Thermophysical Properties [J]. Spectrochimica. Acta. (A), 1997, 53: 1301-1323.
    [153] RIGBY D, SUN H, EICHINGER B E. Computer Simulations of Poly(ethylene oxide): Force Field, PVT Diagram and Cyclization Behaviour [J]. Polym. Int., 1997, 44: 311-330.
    [154] SUN H, REN P,FRIED J R. The COMPASS Forcefield: Parameterization and Validation for Phosphazenes [J]. Comput. Theor. Polym. Sci., 1998, 8: 229-246.
    [155] SUN H. COMPASS:an ab Initio forcefield optimized for condensed-phase…with details on alkane and benzene compounds [J]. J. Phys. Chem. B, 1998, 102: 7338-7364.
    [156] GEAR C W. Numerical Initial Value Problems in Ordinary DifferentialEquations, Prentice-Hall [C], Englewood Cliffs, NJ,1971.
    [157] HOCKNEY R W, The potential calculations and some applications [J]. Methods. Comput. Phys., 1970, 9: 136-211.
    [158] POTTER D. Computational Physics [C], New York: Wiley, 1972.
    [159] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters [J]. J.Chem.Phys., 1982, 76: 637-649.
    [160]刘光恒,戴树珊.化学应用统计力学[M].北京:科学出版社,2001.
    [161]李如生.平衡和非平衡统计力学[M].北京:清华大学出版社,1995.
    [162]陈良恒.热力学与统计物理学[M].长春:吉林大学出版社,1999.
    [163] AJAYAN P M. Nanotubes from carbon [J], Chem. Rev., 1999, 99: 1787–1799.
    [164] YAKABSON B I, BRABEC C J, BERNHOLC, J. Nanomechanics of carbon nanotubes: Instabilities beyond linear response [J]. Phys. Rev. Lett., 1996, 76: 2511–2514.
    [165] OVERNEY G, ZHONG W, TOMANEK D Z. Structural rigidity and low frequency vibrational modes of long carbon tubules [J]. Phys. D, 1993, 27: 93–96.
    [166] WHITE C T, TODOROV T N. Carbon nanotubes as long ballistic conductors [J]. Nature, 1998, 393: 240–242.
    [167] EBBESEN T W, LEZEC H, HIURA H, et al. Electrical conductivity of individual carbon [J]. Nature, 1996, 382: 54–60.
    [168] CAO L, CHEN H Z, WANG M, et al. Photoconductivity study of modified carbon nanotube/ oxotitanium phthalocyanine composites [J]. J. Phys. Chem. B, 2002, 106: 8971–8975.
    [169] WANG J, DAI J H, YARLAGADDA T. Carbon nanotube-conducting-polymer composite nanowires [J]. Langmuir, 2005, 21: 9–12.
    [170] STEUERMAN D W, STAR A, NARIZZANO R, et al. Interactions Between Conjugated Polymers and Sing-Walled Carbon Nanotubes[J]. J. Phys. Chem. B, 2002, 106: 3124–3130.
    [171] MYLVAGANNAM K, ZHANG L C. Chemical bonding in polyethylene- nanotube composites: a quantum mechanics prediction [J] . J. Phys. Chem. B, 2004, 108: 5217–5220.
    [172] BAHR J L, TOUR J M. Covalent chemistry of single-wall carbon nanotubes [J]. J. Mater. Chem., 2002, 12:1952–1958.
    [173] BANERJEE S, WONG S S. Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson's. Catalyst[J]. J. Am. Chem. Soc. ,2002,124: 8940–8948.
    [174] DALTON A B, COLLINS S, MUNOZ E, et al. Super-tough carbon-nanotube fibres [J]. Nature, 2003, 423: 703-703.
    [175] YANG M J, KOUTSOS V, ZAISER M. Interactions between Polymers and Carbon Nanotubes: A Molecular Dynamics Study [J]. J. Phys. Chem. B, 2005, 109: 10009–10014.
    [176] GUO H N, SREEKUMAR T V, LIU T, et al. Structure and properties of polyacrylonitrile /single wall carbon Nanotube composite films[J]. Polymer 2005, 46: 3001–3005.
    [177] KEOGH S M, HEDDERMAN T G, GREGAN E, ET AL. Spectroscopic Analysis of Single-Walled Carbon Nanotubes and Semiconjugated Polymer Composites [J]. J. Phys. Chem. B, 2004, 108: 6233–6241.
    [178] SREEKUMAR T V, LIU T, MIN B G, ET AL. Polyacrylonitrile Single-Walled Carbon Nanotube Composite Fibers [J]. Adv. Mater., 2004: 16: 58–61.
    [179] LIU T, SREEKUMAR T V, KUMAR S, ET AL. SWNT/PAN composite film-based supercapacitors [J]. Carbon 2003, 41: 2440–2442.
    [180] LEE S M, LEE Y H. Hydrogen storage in single-walled carbon nanotubes [J]. Appl. Phys. Lett., 2000, 76: 2877–2879.
    [181] LEE S M, AN K H, LEE Y H, et al. A Hydrogen Storage Mechanism in Single-walled Nanotubes [J]. J. Am. Chem. Soc., 2001, 123: 5059– 5063.
    [182] LIU J Y, TIAN S J, KNOLL W. Properties of Polyaniline/Carbon Nanotube Multilayer Films in Neutral Solution and Their Application for Stable Low-Potential Detection of Reducedβ-Nicotinamide Adenine Dinucleotide [J]. Langmuir 2005, 21: 5596–5599.
    [183] SATAKE A, MIYAJIMA Y, KOBUKE Y. Porphyrin-Carbon Nanotube Composites Formed by Noncovalent Polymer [J]. Chem. Mater., 2005, 17: 716–724.
    [184] KEREN K, BERMAN R S, BUCHSTAB E, et al. DNA-Templated Carbon Nanotube Field-Effect Transistor [J]. Science, 2003, 302: 1380–1382.
    [185] MCNALLY T, POTSCHKE P, HALLEY P, et al. Polyethylene multiwalled carbon nanotube composites [J]. Polymer, 2005, 46: 8222–8232.
    [186] WEI C Y. Radius and Chirality Dependent Conformation of Polymer Molecule at Nanotube Interface [J].Nano Lett., 2006, 6: 1627–1631.
    [187] SUN H. Ab initio calculations and force field development for computer simulation of polysilanes [J]. Macromolecules,1995,28:701-702.
    [188] YANG H, LIU Y, ZHANG H, et al. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation [J]. Polymer, 2006, 47: 7607–7610.
    [189] NOSéS. A molecular dynamics method for simulation in the canonical ensemble[J]. Mol. Phys.,1984,52:255-268.
    [190] HOOVER W G. Canonical dynamics:Equilibrium phase-space distribution[J]. Pyhs. Rev. A, 1985,31:1695-1697
    [191] HOOVER W G. Constant pressure equation of motion[J]. Phys. Rev. A, 1986, 34:2499-2500.
    [192] WEI C Y, SRIVASTAVA D. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels [J]. Phys. Rev. Lett., 2003, 91: 235901.
    [193] WEI C Y, SRIVASTAVA D, CHO K. Structural Ordering in Nanotube Polymer Composites [J]. Nano Lett., 2004, 4: 1949–1952.
    [194] LI L Y, YANG Y, YANG G L, et al. Patterning Polyethylene oligomers on Carbon Nanotubes Using Physical Vapor Deposition [J]. Nano Lett., 2006, 6: 1007–1012.
    [195] AJAYAN P M, EBBESEN T W. Nanometre-size tubes of carbon [J]. Rep. Prog. Phys., 1997, 60: 1025-1062.
    [196] DRESSLHAUS M S, DRESSELHAUS G, SAITO R. Physics of Carbon nanotubes [J]. Carbon, 1995,33: 883-891.
    [197] LANGER L, BAYOT V, GRIVEI E, et al. Quantum transport in a multiwalled carbon nanotube [J]. Phys. Rev. Lett., 1996, 76: 479-482.
    [198] EBBESEN T W, LEZEC H, HIURA H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54-56.
    [199] MINTMIRE J W, DUNLAP B I , WHITE C T. Are fullerene tubules metallic? [J]. Phys . Rev. Lett., 1992 68: 631-634.
    [200] HAMADA N , SAWADA S , ATSUSHI O. New one-dimensional conductors: graphite microtubules[J]. Phys . Rev. Lett., 1992, 68: 1579-1581.
    [201] SAITO R, FUJITA M, DRESSELHAUS G, et al. Electronic structure of chiral graphene tubules [J]. Appl. Phys. Lett., 1992, 60: 2204-2206.
    [202] ODOM, T. W., HUANG, J., KIM, P. et al., Atomic structures and electronic properties of single-walled carbon nanotubes [J].Nature, 1998, 391: 62—64.
    [203] TANS S J , VERSCHUEREN A R M, DEKKER C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393: 49-52.
    [204] MARTEL R , SCHMIDT T , SHEA H R, et al. Single and Multi-walled Carbon Nanotube Field-. Effect Transistors [J]. Appl .Phys . Lett., 1998, 73: 2447-2249.
    [205] MCNALLY T, POTSCHKE P, HALLEY P,et al. Polyethylene Multiwalled Carbon Nanotube Composites[J]. Polymer, 2005, 46:8222-8232.
    [206] SHAFFER M S P, WINDLE A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites[J]. Advanced Materials, 1999, 11: 937-941.
    [207] AGO H, PETRITSCH K, SHAFFER M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J] Advanced Materials, 1999, 11: 15 1281-1285.
    [208] MONIRUZZAMAN M, WINEY K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39: 5194-5205.
    [209] CADEK M, COLEMAN J N, BARRON V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites[J]. Applied Physics Letters, 2002, 81: 5123-5125.
    [210] YOSHIYUKI M, ANGEL R, SAVAS B, et al. Spectroscopic characterization of Stone-Wales defects in nanotubes[J]. Physical Review B, 2004,69:121413-121414.
    [211] MEUNIER V, LAMBIN P H. Scanning tunneling microscopy and spectroscopy of topological defects in carbon natotubes [J]. Carbon, 2000, 38:1729-1733.
    [212] BUONGIORNO NARDELLI M, FATTEBERT J -L, ORLIKOWSKI D, et al. Mechanical properties, defects and electronic behavior of carbon nanotube [J]. Carbon, 2000, 23: 1703-1711.
    [213] STONE A J, WALES D J. Theoretical studies of icosahedral C60 and some related species[J]. Chem.Phys.Lett., 1986, 128: 501-503.
    [214] TROYA D, MIELKE S L,SCHATZ G C. Carbon nanotube fracture– differences between quantum mechanical mechanisms and those of empirical potentials[J]. Chem. Phys. Lett., 2003, 382: 133-141.
    [215] ORLIKOWSKI D, NARDELLI M B, BERNHOLC J, et al. Theoratical STM signatures and transpore properties of native defects in carbonnanotube[J]. Phys. Rev. B, 2000, 61: 14194-14203
    [216] MACHON M, REICH S, THOMSEN D, et al. Ab initio calculations of the optical properties of 4-?-diameter single-walled nanotubes[J]. Phy. Rev. B., 2002, 66: 155410-1 - 155410-5.
    [217] FREITAG M, MARTIN Y, MISEWICH J A, et al. Photoconductivity of Single Carbon Nanotubes[J]. Nano Lett., 2003, 3(8): 1067–1071.
    [218] SUENAGA K, WAKABAYASHI H, KOSHINO M, et al. Imaging active topological defects in carbon nanotubes[J]. Nature Nanotechnololgy, 2007, 2:358-360.
    [219] CHICO L, CRESPI V H, BENEDICT L X, et al. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions[J]. Physical Review Letters, 1996, 76:971-974.
    [220] CHICO L, BENEDICT L X. Quantum conductance of carbon nanotubes with defects[J]. Phys. Rev. B, 1996, 54:2600-2606.
    [221] SAITO R, FUJITA M. Electronic structure of chiral graphene tubules[J]. Appl. Phys. Lett, 1992 ,60:2204-2209.
    [222] MAYO S L, OLAFSON B D, GODDARD W A. Dreiding: a generic force-field for molecular simulations[J] J. Phys. Chem., 1990, 94: 8897-8909.
    [223]吉青,杨小震.分子力场发展的新趋势[J]化学通报2005年第2期,111-116。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700