用户名: 密码: 验证码:
SiGe HBT器件及其在LNA电路中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低噪声放大器(Low Noise Amplifier,LNA)作为接收机前端的重要组成部分,其增益、噪声系数和线性度等指标直接影响着接收机的接收性能和灵敏度。随着现代无线通信技术的发展,对数据传输速率和频带的要求也越来越高,因此对超宽带低噪声放大器的性能指标提出更高的要求。
     锗硅异质结双极型晶体管(Silicongermanium Heterojunction bipolar transistor, SiGe HBT)作为一种新型射频器件,具有与GaAs器件可媲美的噪声、增益和频率特性,并且与现有的Si工艺兼容,兼有高频、低功耗和低成本的优点,因此成为近年来的研究热点。
     本文对SiGe HBT电学性能和结构工艺参数、SiGe HBT噪声模型和SiGe HBT LNA电路进行了较为深入的研究。其主要的创新性成果有:
     (1)对SiGe HBT进行理论研究。分析讨论了半导体异质结的基本原理、SiGe HBT的直流特性和频率特性以及SiGe HBT的各种结构参数对晶体管性能的影响。分析结果表明异质结在噪声和频率特性等方面优于同质结,通过合理优化晶体管的结构参数能使晶体管得到最大电流密度和击穿电压,并具有足够高的电流增益和特征频率。建立了SiGe HBT结构和工艺参数与晶体管的增益、噪声和特征频率之间的关系,据此实现了晶体管的噪声、增益和特征频率的优化。
     (2)对双极型晶体管的Ebers-Moll模型、Gummel-Poon模型、SPICE模型以及噪声模型进行分析研究。研究结果表明,为使SiGe HBT电路噪声系数降低,应该基区高掺杂,发射区低掺杂,减小基区宽度,从而减少基区渡越时间以提高晶体管截止频率。建立了SiGe HBT简化SPICE噪声模型,得到了晶体管最小噪声系数与工作频率和集电极电流之间的关系,为电路设计提供参考依据。用ADS软件仿真出SiGe HBT的最小噪声系数与工作频率之间的关系。结果表明,双极型晶体管最小噪声系数随工作频率增大而呈现非线性增长。
     (3)讨论了低噪声放大器电路的各种指标参数以及常用的超宽带放大器的电路拓扑结构,并对低噪声放大器的偏置电路以及匹配理论进行理论分析。低噪声放大器的指标参数是设计的依据和目标。设计电路前首先要确定电路的拓扑结构,差分式放大器的噪声系数和成本比较高,平衡式放大器稳定性和线性度好,但是噪声不理想,负反馈式放大器稳定性高,牺牲增益换取更优异的增益平坦度。而偏置电路为晶体管提供合适的偏置电压和偏置电流。电感偏置电路噪声性能和线性度好,但其面积较大且带有损耗。电阻偏置电路相比电感偏置电路可以减少电路面积,但是在噪声和线性等参数方面不如电感偏置电路。双偏置电路在噪声、功率损耗、线性度等各方面参数表现最为出色。
     (4)基于JAZZ0.35μm SiGe工艺,采用ADS软件设计并仿真一个工作在3.1-10.6GHz的低噪声放大器。该低噪声放大器电路的输入极采用共发射极结构,利用发射极反馈电感来进行输入匹配,第二级采用达林顿结构对信号提供合适的增益。使用ADS2006软件进行设计、优化和仿真。仿真结果显示,在3.1-10.6GHz带宽内,放大器的电源电压在5V时,噪声系数低于3.3dB,增益大于25.1dB,输入输出回波损耗低于-10dB,输入输出驻波比小于1.9,功率损耗为32mW。
     整体电路的性能指标受器件的增益、噪声等特性和电路的设计影响。对器件而言,影响因素包括结构和工艺等因素;对电路而言,影响因素包括电路拓扑结构、偏置电路、匹配电路等。本文首先对SiGe HBT模型和噪声理论进行分析研究,为电路设计提供理论指导。然后对SiGe HBT LNA电路进行理论分析,并仿真了一款应用在UWB频段内的LNA电路。本文为SiGe HBT LNA电路设计提供重要的理论指导和设计思路。
As an important component of receiver front-end, low noise amplifier plays an critical role in the whole system while the performance of its gain, noise figure and linearity is closely related to the receiver's performance and sensitivity. The fast development of modern wireless communication technology, demands faster data transmission rate and larger band-width, and the performance of Ultra-wide band LNA need to be improved constantly.
     As a new category of radio-frequency device, the SiGe Hetero junction bipolar transistors are gradually used in the circuit design of LNA, which is with almost the same performance as a GaAs one in gain, noise feature and frequency performance. The SiGe device is compatible with current Si processes, and has excellent characteristics of larger band-width, lower power consumption and cost.
     Both the electrical properties and noise feature of SiGe HBT and the Low Noise amplifier of SiGe HBT circuit are analyzed and discussed in this thesis. The main job includes:
     (1) A theoretical analysis of SiGe HBT device is studied. With a review into the fundamental principles of hetero-j unction, the DC-performance and frequency performance, the relationship between multiple SiGe HBT device structure parameters and the transistor performance are analyzed and discussed. The results indicate that HBT has uniquely excellent noise and frequency performance in comparison with traditional bi-polar junction transistor. In this case, the frequency performance and the noise feature of transistor could be significantly improved with a reasonable optimized design of transistor structure parameters. Meanwhile, and the device has maximized current density and breakdown voltage, as well as enough current gain and characteristic frequency.
     (2) A deep research into the multiple HBT models is carried out in the second chapter, such as the Ebers-Moll model, the Grammel-Poon model, the SPICE model and the noise model. The results reveal that higher dopant concentration in the base-area and lower dopant concentration in the emitter-area lead to lower noise figure of the SiGe HBT circuit. Meanwhile, smaller base-area width which means shorter transit time could improve the transistor's cut-off frequency and parasitic resistance.The following simulation of SiGe HBT device based on ADS software reveals that the minimum noise figure is non-linearly increasing with the increasing input working frequency.
     (3) An introduction is made including the multiple parameters of Low Noise amplifier circuit, and a theoretical analysis into the bias circuit and matching problem. The indicator parameter is both the foundation and goal of Low Noise amplifier circuit design, of which the first step is to choose topological structure. Balanced amplifier enjoys good stationary and linearity, yet ideal noise figure; negative feedback amplifier enjoys high stationary and more excellent gain flatness in cost of gain itself. The bias circuit provides both suitable biased-voltage and biased-current for transistor. Inductance bias circuit is characterized by good noise performance and linearity yet large circuit area and additional waste of power; resistance bias circuit out-performs the former in circuit area, but loses in noise feature and linearity. The mixed bias circuit bears the most excellent performance in noise feature, power consumption and linearity.
     (4) A Low Noise amplifier is designed based on JAZZ0.35um SiGe processing technology and simulated based on ADS software with the working frequency spanning between3.1-10.6GHz. The common-emitter structure is used in input stage design, with emitter series feedback inductance for input matching. The Darling structure is used in secondary stage design to provide suitable gain for input signal. Finally, a series of task including designing, optimizing and simulating is carried out based on the software of ADS2006. Results show noise figure of the amplifier is below3.3dB with working voltage of5V in3.1-10.6GHz, gain greater than25.1dB, Noise figure below3.3dB, S11and S22below-lOdB, VSWRin and VSWRout below1.9, and power consumptions32mW.
     The performance of overall circuit is affected by the gain of the device performance, noise characteristics and the design of circuit. For the device, the influencing factors include the structure and process and other factors. For the circuit, the impact of factors include the circuit topology, the bias circuit, and the matching circuit. SiGe HBT model and noise theory analysis are studied in this thesis to provide theoretical guidance for the circuit design. Then analysis and simulation of an application in the UWB frequency band LNA circuit by the theoretical of SiGe HBT LNA circuit are carried out. This thesis may provide theoretic guide for the design of SiGe HBT LNA circuit.
引文
[1.1]陈其津.低噪声电路.重庆:重庆大学出版社.1988.
    [1.2]陈天麒.微波低噪声晶体管放大器.北京:人民邮电出版社.1983.
    [1.3]Zhang H, Fan X, Sinencio E S. A low-power linearized ultra-wideband LNA design technique. IEEE Journal of Solid-State Circuits,2009,44(2):320-330.
    [1.4]Di B, Maria G, Understanding Ultra Wide Band Radio Fundamentals, London: Prentice Hall PTR,2004.
    [1.5]Ghassemzadeh S S, Jana R, Rice C W, et al. A statistical path loss model for in-home UWB channels. IEEE Conference on Ultra Wideband Systems and Technologies,2004:107-110.
    [1.6]Ghorashi S A, Allen B, Ghavami M, et al. An overview of mb-uwb ofdm. IEE Seminar on Ultra Wideband Communications Technologies and System Design, 2004:107-110.
    [1.7]Balakrishnan J, Batra A, Dabak A. A multi-band OFDM system for UWB communication. IEEE Conference on Ultra Wideband Systems and Technologies,2003:354-358.
    [1.8]李效白.砷化镓微波功率场效应晶体管及其集成电路.北京:科学出版社,1998.
    [1.9]Cressler J D. SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications. IEEE Transactions on Microwave Theory and Techniques,1998,46(5):572-589.
    [1.10]Ojefors E, Heinemann B, Pfeiffer U R. Active 220-and 325-GHz frequency multiplier chains in an SiGe HBT technology. IEEE Transactions on Microwave Theory and Techniques,2011,59(5):1311-1318.
    [1.11]Heinemann B, Barth R, Bolze D, et al. SiGe HBT technology with fr/fmax of 300GHz/500GHz and 2.0 ps CML gate delay. Electron Devices Meeting (IEDM),2010:688-691.
    [1.12]Ojefors E, Heinemann B, Pfeiffer U R. A 325 GHz frequency multiplier chain in a SiGe HBT technology. Radio Frequency Integrated Circuits Symposium (RFIC),2010:91-94.
    [1.13]Laskin E, Nicolson S T, Chevalier P, et al. Low-power, low-phase noise SiGe HBT static frequency divider topologies up to 100GHz. Bipolar/BiCMOS Circuits and Technology Meeting,2006:1-4.
    [1.14]Sokolich M, Docter D P, Brown Y K, et al. A low power 52.9 GHz static divider implemented in a manufacturable 180 GHz AlInAs/InGaAs HBT IC technology, Gallium Arsenide Integrated Circuit (GaAs IC) Symposium,1998:117-120.
    [1.15]Lee C I, Lin W C, Lin J M. Low-power and high-linearity SiGe HBT low-noise amplifier using IM3 cancellation technique. Microelectronic Engineering,2012, 91:59-63.
    [1.16]谭树杰,“百年诺贝尔奖”(物理卷).上海:上海科技出版社,2001
    [1.17]Kasper E, Herzog H J, Kibbel H. A one-dimensional SiGe superlattice grown by UHV epitaxy. Applied physics,1975,8(3):199-205.
    [1.18]Patton G L, Iyer S S, Delage S L, et al. Oxidation of Strained Si-Ge Layers Grown by MBE. Mat. Res. Soc. Symp. Proc.1988,102:295-299.
    [1.19]Iyer S S, Patton G L, Stork J M C, et al. Heterojunction bipolar transistors using Si-Ge alloys. IEEE Transactions on Electron Devices,1989,36(10):2043-2064.
    [1.20]Jorke H, Herzog H J. Mobility enhancement in modulation doped Si-Si1-xGex superlattice grown by molecular beam epitaxy. Proc.1st Int. Symp. on Silicon Molecular Beam Epitaxy,1985:325-335.
    [1.21]Kasper E. Growth and properties of Si/SiGe superlattices. Surface Science,1986, 174(1):630-639.
    [1.22]Patton G L, Iyer S S, Delage S L, et al. Silicon-germanium base heteroj unction bipolar transistors by molecular beam epitaxy. Electron Device Letters,1988, 9(4):165-167.
    [1.23]Tiwari S. A new effect at high currents in heterostructure bipolar transistors. Electron Device Letters,1988,9(3):142-144.
    [1.24]Gotzfried R, Beiwanger F, Gerlach S, et al. RFIC's for mobile communication systems using SiGe bipolar technology. IEEE Transactions on Microwave Theory and Techniques,1998,46(5):661-668.
    [1.25]Konig U. SiGe and GaAs as competitive technologies for RF-applications. Bipolar/BiCMOS Circuits and Technology Meeting,1998:87-92.
    [1.26]Rieh J S, Jagannathan B, Chen H, et al. Performance and design considerations for high speed SiGe HBTs of fT/fmax=375GHz/210GHz. International Conference on Indium Phosphide and Related Materials,2003:374-377.
    [1.27]Cooke M. Silicon transistor hits 500GHz performance. III-Vs Review,2006, 19(5):30-31.
    [1.28]Greenberg D R, Ahlgren D, Freeman G, et al.HBT low-noise performance in a 0.18μm SiGe BiCMOS technology. Radio Frequency Integrated Circuits (RFIC) Symposium,2000:201-204.
    [1.29]顾忠良.新型微波器件.半导体情报,1999,50:7-12.
    [1.30]戴显英,金国强,董洁琼等.锗硅/硅异质结材料的化学气相淀积生长动力学模型.物理学报,2011,60(6):440-446.
    [1.31]张滨,杨银堂,李跃进等.SiGe HBT超宽带低噪声放大器设计.微波学报,2012,28(4):76-80.
    [1.32]胡辉勇,张鹤鸣,贾新章等.Si-SiGe材料三维CMOS集成电路技术研究.半导体学报,2007,28(5):681-685.
    [1.33]林大松,张鹤鸣,戴显英等.SiGe HBT基区渡越时间模型.西安电子科技大学学报(自然科学版),2001,28(4):456-461.
    [1.34]戴显英,胡辉勇,张鹤鸣等.UVCVD/UHVCVD技术制备SiGe HBT材料.西安电子科技大学学报(自然科学版),2003,30(3):306-308,325.
    [1.35]徐小波,张鹤鸣,胡辉勇等.薄膜SOI上SiGe HBT集电结耗尽电荷和电容改进模型.物理学报,2011,60(11):730-734.
    [1.36]胡辉勇,张鹤鸣,戴显英等.SiGe HBT传输电流模型研究.半导体学报,2006,27(6):1059-1063.
    [1.37]舒斌,张鹤鸣,胡辉勇等.SiGe电荷注入晶体管的直流特性模型.物理学报,2007,56(2):1105-1109.
    [1.38]张滨,杨银堂,李跃进等.SOI SiGe HBT电学性能研究.物理学报,2012,61(23):535-543.
    [1.39]Xu X B, Zhang H M, Hu H Y, et al. Early effect of SiGe heterojunction bipolar transistors. Solid-State Electronics,2012,72:1-3.
    [1.40]Hu H Y, Zhang H M, Dai X Y, et al.Model of transit time for SiGe HBT collector junction depletion-layer. Chinese physics,2005,14(7):1439-1443.
    [1.41]Hu H Y. Lei S. Zhang H M. et al. Electron mobility model of strained Si1-xGex. Diffusion and Defect Data. Part B, Solid State Phenomena,2012,181/182: 378-382.
    [1.42]Xu X B, Zhang H B, Hu H Y, et al. Negative substrate bias effects on collector resistance in SiGe HBTs on thin film SOI.2011 International Conference on Electric Information and Control Engineering.2011:2380-2382.
    [1.43]Hu H Y, Rui C, Zhang H M, et al. Collector Junction Depletion-Layer Transit Time Model of SiGe HBT with Space SiGe Layer.2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC 2009).2009: 368-371.
    [1.44]黄文韬,刘志农,罗光礼等.有弛豫缓冲层的SiGe HMOSFET材料.第十二 届全国半导体集成电路硅材料学术会议论文集.2001:343-347.
    [1.45]周正良,付军,王玉东等.微波低噪声锗硅功率HBT的性能优化和良率提升.第十七届全国半导体集成电路、硅材料学术会议论文集.2011:244-248.
    [1.46]王玉东,吴正立,刘志弘等.锗硅HBT的低温直流特性研究.第十七届全国半导体集成电路、硅材料学术会议论文集.2011:271-273.
    [1.47]Ferre-Pikal E S. Reduction of phase noise in linear HBT amplifiers using low-frequency active feedback. IEEE Transactions on Circuits and Systems I: Regular Papers,2004,51(8):1417-1421.
    [1.48]彭京湘.无线用SiGe:C低噪声放大器.电子产品世界,2002(11B):66-67.
    [1.49]亢树军,马云霞,刘伦才等.一种高线性SiGe HBT宽带低噪声放大器.微电子学,2006,36(5):565-568.
    [1.50]宋睿丰,廖怀林,黄如等.3.1-10.6GHz超宽带低噪声放大器设计.北京大学学报(自然科学版),2007,43(1).
    [1.51]张蔚,张万荣,谢红云等.基于SiGe HBT的超宽带低噪声放大器的设计.微电子学,2008,38(2):271-274.
    [1.52]沈佩,张万荣,金冬月等.SiGe HBT低噪声放大器的设计与制造.电子与信息学报,2010,32(8):2028-2032.
    [2.1]Shockley W, Sparks M, Teal G K. PN junction transistors. Physical Review, 1951,83(1):151.
    [2.2]Coleman J J, Hitchens W R, Holonyak N, et al.Liquid phase epitaxial In1-xGaxP1-zAsz/GaAs1-yPy quaternary(LPE)-ternary(VPE) heterojunction lasers. Applied Physics Letters,1974,25(12):725-727.
    [2.3]Hitchens W R, Holonyak N, Wright P D, et al. Low-threshold LPE In1-xGax'P1-zAsz'/In1-xGaxP1-zAsz/In1-x'Gax'P1-z'Asz'yellow double-heterojunction laser diodes. Applied Physics Letters,1975,27(4):245-247.
    [2.4]Voinigescu S P, Dickson T O, Beerkens R, et al. A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs. Silicon Monolithic Integrated Circuits in RF Systems,2004:111-114.
    [2.5]Ahlgren D C, Freeman G, Subbanna S, et al. A SiGe HBT BiCMOS technology for mixed signal RF applications. Bipolar/BiCMOS Circuits and Technology Meeting,1997:195-197.
    [2.6]Islam S M M, Arafat Y, Chowdhury I B, et al. Base transit time of a Heteroj unction Bipolar Transistor with Gaussian doped base. International Conference on Electrical and Computer Engineering (ICECE),2010:127-130.
    [2.7]Yuan J, Moen K A, Cressler J D, et al. SiGe HBT CML Ring Oscillator With 2.3-ps Gate Delay at Cryogenic Temperatures. IEEE Transactions on Electron Devices,2010,57(5):1183-1187.
    [2.8]曾树荣.半导体器件物理基础.北京:北京大学出版社,2007.
    [2.9]尼曼.半导体器件基础.北京:清华大学出版社,2006.
    [2.10]谢君堂,曲秀杰,陈禾等.微电子技术应用基础.北京:北京理工大学出版社,2006.
    [2.11]徐世六SiGe微电子技术.北京:国防工业出版社,2007.
    [2.12]舒钰.高性能SiGe HBT结构设计与制造技术研究.硕士论文,西安电子科技大学,2011.
    [2.13]Chang C A, Ludeke R, Chang L L, et al. Molecular-beam epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy. Applied Physics Letters,1977,31(11):759-761.
    [2.14]Cho A Y. Impurity profiles of GaAs epitaxial layers doped with Sn, Si, and Ge grown with molecular beam epitaxy. Journal of Applied Physics,1975,46(4): 1733-1735.
    [2.15]Becker G E, Bean J C. Acceptor dopants in silicon molecular-beam epitaxy. Journal of Applied Physics,1977,48(8):3395-3399.
    [2.16]Hitchman, Michael L. Chemical Vapor Deposition:Principles and Applications. London:Academic Press,1993.
    [2.17]Boer W B, Meyer D J. Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers at atmospheric pressure. Applied physics letters,1991, 58(12):1286-1288.
    [2.18]Ning B M H, Crowell J E. Investigation on the growth rate enhancement by Ge during SiGe alloy deposition by chemical vapor deposition. Applied physics letters,1992,60(23):2914-2916.
    [2.19]Chow P P. Molecular beam epitaxy. Thin Film Processes Ⅱ,1991:133-175.
    [2.20]Patton G L, Iyer S S, Delage S L, et al. Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy. Electron Device Letters,1988, 9(4):165-167.
    [2.21]Hampden-Smith M J, Kodas T T. Chemical vapor deposition of metals:Part 1. An overview of CVD processes. Chemical Vapor Deposition,1995,1(1):8-23.
    [2.22]Kim M E, Oki A K, Gorman G M, et al. GaAs heterojunction bipolar transistor device and IC technology for high-performance analog and microwave applications. IEEE Transactions on Microwave Theory and Techniques,1989, 37(9):1286-1303.
    [2.23]John D, Cressler, Niu G F. Silicon-germanium Heterojunction Bipolar Transistors. Boston:Artech House,2003.
    [2.24]Ashburn P, SiGe Heteroj unction Bipolar Transistors, Wiley,2004.
    [2.25]Schmidt D M, Wu A, Schrimpf R D, et al. Modeling ionizing radiation induced gain degradation of the lateral PNP bipolar junction transistor. IEEE Transactions on Nuclear Science,1996,43(6):3032-3039.
    [2.26]Chapman S, Heinz U. HBT correlators-current formalism vs. Wigner function formulation. Physics Letters B,1994,340(4):250-253.
    [2.27]Oda K, Ohue E, Tanabe M, et al.130GHz fT SiGe HBT technology. Electron Devices Meeting,1997:791-794.
    [2.28]沈珮.SiGe HBT超宽带低噪声放大器的研究.博士论文.北京:北京工业大学,2012.
    [2.29]Cressler J D. SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications. IEEE Transactions on Microwave Theory and Techniques,1998,46(5):572-589.
    [2.30]张鹤鸣,戴显英,吕懿等.SiGe异质结双极晶体管频率特性分析.西安电子科技大学学报(自然科学版),2003,30(3):293-297.
    [2.31]孔德义.超高频SGe基区异质结双极晶体管的理论研究和优化设计.硕士论文,东南大学,1999.
    [3.1]Ebers J J. Four-terminal pnpn transistors. Proceedings of the IRE,1952,40(11): 1361-1364.
    [3.2]Ebers J J, Moll J L. Large-signal behavior of junction transistors. Proceedings of the IRE,1954,42(12):1761-1772.
    [3.3]Gummel H, Poon H. A compact bipolar transistor model. Solid-State Circuits Conference,1970,13:78-79.
    [3.4]de Graaff H C, Klaassen F M. Compact transistor modelling for circuit design. New York:Springer-Verlag,1990.
    [3.5]Kuntman H. Modified ebers-moll model. Electronics Letters,1982,18(7): 293-294.
    [3.6]Fabian J, Zutic I. The Ebers-Moll model for magnetic bipolar transistors. Applied Physics Letters,2005,86(13):133506-133506-3.
    [3.7]Grundmann M. Transistors:The Physics of Semiconductors. Berlin:Springer Berlin Heidelberg,2010.
    [3.8]Rangaraju N, Peters J A, Wessels B W. Magneto amplification in a Bipolar Magnetic Junction Transistor. Physical review letters,2010,105(11):117202.
    [3.9]Weijian Z, Zhiqun C, Jun L. Scalable Gummel-Poon model for high-speed SiGe HBTs.2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia),2010:316-320.
    [3.10]Feng J J X, Pulfrey D L, Sitch J, et al. A physics-based HBT SPICE model for large-signal applications. IEEE Transactions on Electron Devices,1995,42(1): 8-14.
    [3.11]Krozer V, Ruppert M, Lee W Y, et al. A physics-based temperature-dependent SPICE model for the simulation of high temperature microwave performance of HBT's and experimental results. Microwave Symposium Digest,1994: 1261-1264.
    [3.12]陈其津.低噪声电路.重庆:重庆大学出版社.1988.
    [3.13]王志刚,现代电子线路.北京:清华大学出版社,2003.
    [3.14]何元金,马兴坤近代物理实验.北京:清华大学出版社,2003.
    [3.15]李建民,模拟电子技术基础.北京:清华大学出版社,2006.
    [3.16]Nyquist H. Certain factors affecting telegraph speed. American Institute of Electrical Engineers,1924,43:412-422.
    [3.17]Walter K M, Ebersman B, Sunderland D A, et al. A scaleable, statistical SPICE Gummel-Poon model for SiGe HBTs. IEEE Journal of Solid-State Circuits, 1998,33(9):1439-1444.
    [3.18]戴广豪.SiGe HBT噪声模型和BiCMOS LNA研究.硕士论文,电子科技大学,2007.
    [3.19]Niu G.Noise in SiGe HBT RF technology:Physics, modeling, and circuit implications. Proceedings of the IEEE,2005,93(9):1583-1597.
    [3.20]张滨,杨银堂,李跃进等.SiGe HBT超宽带低噪声放大器设计.微波学报,2012,28(4):76-80.
    [3.21]钮维.SiGe HBT高频噪声精确建模方法的研究.硕士论文,西南科技大学,2011.
    [4.1]Ludwig R, Bretchko P.射频电路设计理论及应用.北京:科学出版社,2002.
    [4.2]Blaakmeer S C, Klumperink E A M, Leenaerts D M W, et al. Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits,2008,43(6): 1341-1350.
    [4.3]Jargon J, Gupta K C, Cidronali A, et al. Expanding definitions of gain by taking harmonic content into account. International Journal of RF and Microwave Computer-Aided Engineering,2003,13(5):357-369.
    [4.4]Sahoolizadeh H, Kordalivand A M, Heidari Z. Design and Simulation of Low Noise Amplifier Circuit for 5 GHz to 6GHz. World Academy of Science, Engineering and Technology,2009,51:99-102.
    [4.5]Lai I C H, Fujishima M. RF Amplifier. Design and Modeling of Millimeter-Wave CMOS Circuits for Wireless Transceivers. Berlin:Springer Netherlands,2008.
    [4.6]Xia Q, Tang Z, Zhang B. Design of a 17.4GHz push-push dielectric resonator oscillator. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT),2010:532-535.
    [4.7]Horowitz P, Hill W, Hayes T C. The art of electronics. Cambridge:Cambridge university press,1989.
    [4.8]Shao K, Dai F, Su D. Method of power amplifier protection based on the theory of VSWR predicting on large power. IEEE 4th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE),2011:198-201.
    [4.9]Perlin V E, Winful H G.Optimal design of flat-gain wide-band fiber Raman amplifiers. Journal of lightwave technology,2002,20(2):250.
    [4.10]Fong K L. Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications. Solid-State Circuits Conference,1999:224-225.
    [4.11]Fan Q. General design for test guidelines for RF IC. Journal of Electronic Testing,2010,26(1):7-12.
    [4.12]Borremans J, Mandal G, Debaillie B, et al. A sub-3dB NF voltage-sampling front-end with 18dBm IIP3 and 2dBm blocker compression point. ESSCIRC, 2010:402-405.
    [4.13]Mallet-Guy B, Dueme P, Mancuso Y, et al. A new LNA wide band structure for MMIC applications. Microwave Conference (EuMC),2010:533-536.
    [4.14]Lin J Y, Chiou H K. Power-constrained third-order active notch filter applied in IR-LNA for UWB standards. IEEE Transactions on Circuits and Systems II: Express Briefs,2011,58(1):11-15.
    [4.15]Mohammadi A, Ghannouchi F M.RF Power Amplifier and Linearization Techniques. RF Transceiver Design for MIMO Wireless Communications,2012: 77-128.
    [4.16]Kumar T B, Ma K, Yeo K S, et al. A DC to 4 GHz fully differential wideband digitally controlled variable gain amplifier.2010 Asia-Pacific Microwave Conference,2010:2295-2298.
    [4.17]Chouard F R, Werner C, Schmitt-Landsiedel D, et al. A test concept for circuit level aging demonstrated by a differential amplifier. Reliability Physics Symposium (IRPS),2010:826-829.
    [4.18]Langst J, Diebold S, Massler H, et al. A balanced 150-240 GHz amplifier MMIC using airbridge transmission lines.2012 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC),2012:1-3.
    [4.19]Blaakmeer S C, Klumperink E A M, Leenaerts D M W, et al. Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits,2008,43(6): 1341-1350.
    [4.20]张东晖.基于SiGe工艺的采用双有源偏置技术的高线性低噪声放大器研究.硕士论文,北京工业大学,2012.
    [4.21]Li W, Tan Y.2.4 GHz power amplifier with adaptive bias circuit.2012 International Conference on Systems and Informatics (ICSAI),2012: 1402-1406.
    [4.22]李俊.射频接收技术的研究—低噪声放大器的研究.硕士论文,河海大学,2007.
    [5.1]Pei S, Wan-rong Z, Dong-yue J, et al. A monolithic SiGe HBT low noise amplifier using a novel resistive feedback configuration.2011 International Conference on Electric Information and Control Engineering (ICEICE),2011: 56-59.
    [5.2]Kim J, Buckwalter J F. A DC-102GHz broadband amplifier in 0.12μm SiGe BiCMOS. Radio Frequency Integrated Circuits Symposium,2009:53-56.
    [5.3]Cassan D J, Long J R. A 1V transformer-feedback low-noise amplifier for 5GHz wireless LAN in 0.18μm CMOS. IEEE Journal of Solid-State Circuits,2003, 38(3):427-435.
    [5.4]Lee J, Cressler J D. A 3-10 GHz SiGe resistive feedback low noise amplifier for UWB applications. Radio Frequency integrated Circuits (RFIC) Symposium, 2005:545-548.
    [5.5]Shi B, Chia Y W. Design of a SiGe low-noise amplifier for 3.1-10.6GHz ultra-wideband radio.2004 International Symposium on Circuits and Systems, 2004,1:101-104.
    [5.6]Dederer J, Chattier S, Feger T, et al. Highly compact 3.1-10.6GHz UWB LNA in SiGe HBT technology.2007 European Conference on Wireless Technologies, 2007:327-330.
    [5.7]周进.2.4GHz ISM频段无线接收机前端SiGe BiCMOS工艺LNA设计.硕士论文,华东师范大学,2010.
    [5.8]张滨,杨银堂,李跃进.SiGe HBT超宽带低噪声放大器设计.微波学报,2012,28(4):76-80.
    [5.9]Li K, Liu C, Yang X F, et al. A 3.1-10.6Ghz Ultra-Wideband SiGe Low Noise Amplifier with Current-Reused Technique. Applied Mechanics and Materials, 2012,130:3251-3254.
    [5.10]Lei C, Chunqi S, Runxi Z, et al. An ultra-wide-band 3.1-10.6GHz LNA design in 0.18μm SiGe BiCMOS. AEU-International Journal of Electronics and Communications,2012,66(2):157-161.
    [5.11]Ismail A, Abidi A. A 3 to 10GHz LNA Using a Wideband LC-Ladder Matching Network. Proceeding of IEEE International Solid-State Circuits Conference, 2004:385-386.
    [5.12]Datta P K, Fischer G, Krishnan S. A Ultra-wideband Transceiver Front-end in SiGe:C BiCMOS Technology for Ultra-wideband Applications. Proceeding of IEEE International Conference on Ultra-Wideband,2007:167-172.
    [5.13]Lee J S, Cressler J D. Analysis and Design of an Ultra-Wideband Low-Noise Amplifier Using Resistive Feedback in SiGe HBT Technology. IEEE Transactions on Microwave Theory and Techniques,2006,54(3):1262-1268.
    [5.14]Park Y, Lee C H, Cressler J D, et al. The Analysis of UWB SiGe HBT LNA for Its Noise, Linearity, and Minimum Group Delay Variation. IEEE Transactions on Microwave Theoryand Techniques,2006,54(4):1687-1697.
    [5.15]Chen S C, Wang R L, Tsai C L, et al. A Low Power, Good Gain Flatness SiGe Low NoiseAmplifier for 3.1-10.6GHz Ultra-wide Band Radio. Proceeding of Midwest Symposiumon Circuits and Systems,2007:750-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700