用户名: 密码: 验证码:
斜拉桥异形截面预应力混凝土索塔锚固区受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥主塔索塔锚固区是斜拉桥的关键部位,斜拉桥索塔锚固区受力性能的分析一直以来都是桥梁研究领域的热点。虽然近几年来,国内外针对斜拉桥索塔锚固区积累了不少的研究成果,这些研究成果对斜拉桥的设计、建造都具有一定的参考价值。但我们也注意到目前针对斜拉桥索塔锚固区的研究还存在一些不足和亟待解决的问题,例如:针对异形截面索塔的研究成果很少;计算机分析通常采用基于线弹性理论的有限元方法;未考虑收缩、徐变等混凝土的长期效应因素;索塔锚固区设计与优化方法的研究资料很少,等等。因此,探讨和揭示具有复杂形状截面的索塔锚固区的受力性能和优化设计方法就显得尤为必要,具有重要的实践指导意义。
     本文以马岭河特大桥为工程背景,以索塔锚固区足尺模型试验为基础,结合空间有限元仿真分析、STM(拉-压杆模型)分析方法以及数学规划法等结构力学与优化分析方法,对索塔截面形式采用非双轴对称六边形的这一类预应力混凝土异形截面索塔锚固区,展开相关问题研究。研究内容分为:索塔锚固区足尺模型试验研究、索塔锚固区整体分析研究、异形截面索塔锚固区优化设计研究和索塔锚固区日照温度场及应力分析研究四个部分,共6章。主要研究成果如下:
     (1)索塔锚固区足尺模型试验与有限元计算分析均表明:马岭河特大桥异形截面索塔的“连接部位外侧”以及“折线型长边内侧转角”两个区域是索塔结构的易裂区域,应注意加强该两区域的配筋构造;折线型长边的抗裂能力要低于直线型长边,折线型长边由于截面的局部削弱,使得外侧压应力分布发生变化,在中部受压显著;在混凝土未开裂前,测点荷载与应力保持较好的线性关系,实测应力值和有限元计算值基本吻合,说明所建有限元模型具有较好的准确性;索塔模型的抗裂安全系数不低于1.3,破坏安全系数不低于1.6,结构有足够的安全储备。
     (2)整体模型与节段模型的有限元对比分析表明:在设计索力作用下,整体模型与节段模型在相应节段位置的应力分布大体一致,说明节段模型的理论分析是正确的,节段模型的选取以及边界条件的处理是可行的;在预应力钢筋锚固端靠近长边外侧附近存在“预应力盲区”,在索力作用下,该区域形成较大的附加拉应力区,因此,建议将此区域的水平箍筋适当加密,以抵抗较大的附加拉应力,抑制裂缝的开展;在整体模型的基准节段上单独施加预应力及设计索力时,整体模型内产生的应力效应沿高度及厚度扩散衰减很快,模型短边的应力效应沿高度方向的衰减要明显显著于长边,说明短边的应力效应传递范围小,应力效应主要集中在索力加载面附近,因此,应尽量将U形预应力钢筋布置在斜拉索锚固点附近,以取得良好的受力效果。
     (3)拉-压杆模型分析方法(STM)是一种准确、可靠的斜拉桥索塔锚固区预应力设计与优化方法,STM分析结果依据索塔锚固区内部实际“力流”的分布,反映了索塔锚固区实际受力的需要,更符合结构受力合理性的要求;STM分析结果不仅优化了索塔锚固区预应力筋的用量,而且优化了预应力筋的平面布置,预应力筋在索塔截面短边处靠外侧布置,在长边处靠内侧布置更有利于受力;索塔截面形式对索塔锚固区的预应力配置和受力性能有较显著的影响,采用STM方法优化索塔截面后,预应力筋数量可以比原设计降低26.3%,而抗裂安全系数不低于1.6。
     (4)综合考虑外界气温及太阳辐射对混凝土索塔的影响时,可将太阳辐射的影响等效为索塔结构周围空气温度的升高,来建立马岭河特大桥索塔锚固区节段热分析的第三类边界条件;在得到索塔锚固区节段夏季和冬季太阳辐射条件下各方向塔壁的最不利温度场分布后,通过对日照温度场和斜拉索索力共同作用下的应力分析,得知无论是在夏季,还是在冬季,马岭河特大桥索塔锚固区节段在日照荷载与索力荷载共同作用下,索塔截面不会开裂。
     本文对马岭河特大桥预应力混凝土索塔锚固区的受力性能进行了相关研究,为索塔截面形式采用非双轴对称六边形的这一类预应力混凝土异形截面索塔锚固区的受力分析与优化设计提供了一定的参考,但受条件所限,本文在一些问题上,比如:基于STM方法的预应力混凝土索塔锚固区实用分析工具开发、综合考虑截面尺寸、预应力筋线形等多方面因素的综合优化分析、预应力混凝土索塔锚固区的非线性极限分析以及考虑徐变等长期作用影响分析等,还有待进一步深入研究。
Anchorage zone is the key area of cable-stayed bridge pylon. The analysis of the mechanical performance of the anchorage zone is widely studied in the cable-stayed bridge, and the anchorage zone is the technological difficulty in the design and construction of cable-stayed bridge. Although many research of the anchorage zone of cable-stayed bridge pylon has been conducted in recent years, and those achievements provide valuable references for the design and construction of cable-stayed bridge, some problems still exist and need to be solved, such as:many researches focused on the pylons with rectangular section, whereas the researches regarding the abnormal shaped section are scarce; finite element analysis is usually based on the linear elastic theory and ignores the long-term effects of concrete; and the design and optimization methods for the anchorage zone of cable-stayed bridge pylon are very rare, etc. Therefore, studies on the mechanical performance and optimization method for the abnormal shaped anchorage zone of cable-stayed bridge pylon are necessary and significant in practical engineering.
     Based on the full-scale segment model test on the abnormal shaped anchorage zone of Maling River cable-stayed bridge pylon, the abnormal shaped anchorage zone of cable-stayed bridge pylon are studied by using finite element method (FEM), strut-and-tie method (STM) and mathematics programming method, etc. The studies are focused on four parts:full-scale segment model test on the abnormal shaped anchorage zone of Maling River cable-stayed bridge pylon, overall analysis of the anchorage zone of Maling River cable-stayed bridge pylon, optimization analysis of anchorage zone and thermal analysis of the anchorage zone of Maling River cable-stayed bridge pylon. These studies are concluded as:
     (1) The full-scale segment model test on the abnormal shaped anchorage zone of Maling River cable-stayed bridge pylon and its FEM analysis indicate that the outside of the joints between the polyline long side and short side, and the inside of polyline long side are the most dangerous zones, which require being strengthened. Cracking resistance of the polyline long side is weaker than that of the linear long side. The inside corner of linear long side cracks at load level 1.6 F0, whereas the inside corner of polyline long side cracks at load level 1.4 F0. Stress redistribution occurs in the outside of polyline long side. Before cracking, the stress was linear with load and its value was close to the theoretical one, which validate the finite element model. Cracking resistance coefficient of the full-scale segment model is no less than 1.3 and the destruction coefficient is no less than 1.6, which means the structure has an adequate safety capacity.
     (2) The comparison of the theoretical result of the segment model and the whole pylon model indicates that the stress distribution of the segment model and the whole pylon model is generally similar and the conclusions are the same, which mean the theoretical analysis of the segment model is correct, and the segment model and its boundary condition are viable in the FEM analysis. There exists prestress blind zone in the outside of the long side around the tendons anchorage zone, and great additional tensile stress occurs in the blind zone under the cable force. In consequence, the horizontal hoop reinforcement is suggested to be strengthened in the blind zone to withstand the great additional tensile stress. The decay of the stress effect of prestressed tendons and that of the cable force along the pylon in the whole pylon model are analyzed. The stress decay effect in short side is remarkable than the long side's, which indicates that the stress effect transfers in a small area in the short side and concentrates in the cable anchorage. As a result, the hoop prestressed tendons should be disposed around the cable anchorage to achieve good stress capacity.
     (3) Strut-and-tie method (STM) is an accurate and reliable design and optimization method for the anchorage zone of cable-stayed bridge pylon. Based on the internal flows of forces in the anchorage zone, the STM analysis reflects the real stress field in the anchorage zone which accords with the actual need of a structure. The STM analysis not only saves the quantity of the prestressed tendons, but also optimizes the layout of the tendons. For example, the quantity is reduced by 21%, the tendons is preferable to lay near the outside of the short side and lay near the inside of the long side. The section shape of the anchorage remarkably influences the layout of the prestressed tendons and the mechanical performance of the pylon structure, optimal section obtained by STM not only reduces the tendons' quantity by 26.3%, but also enhances the cracking resistance coefficient to 1.6. It means that the optimal pylon section could not only saves the prestressed tendons but also strengthens the cracking resistance.
     (4) Considering the influence of sun radiation, the sun radiation can be regarded as the rising of the air temperature, and thus the third kind boundary condition can be achieved to take thermal analysis of the anchorage zone. When the worst temperature distribution of the anchorage zone in summer or winter is obtained, the stress distribution of the anchorage zone under the temperature load and the cable load can be analyzed. Regardless in summer or in winter, the anchorage zone of Maling River cable-stayed bridge pylon will not crack.
     The paper focuses on the mechanical performance and the optimization design of the abnormal shaped anchorage zone of Maling River cable-stayed bridge pylon. It provides references for such abnormal shaped anchorage zone as nonaxisymmetrical sexangle section. Due to the limitation of testing conditions, in this paper, we study relevant problems based on Maling River cable-stayed bridge pylon, some problems such as the development of design tools based on STM, multi-factors optimization considering section shape, dimension and line shape of the tendons, nonlinear ultimate analysis of the anchorage zone and long term effect analysis considering creep, etc. deserves further research.
引文
[1]林元培.斜拉桥[M].北京:人民交通出版社,2004:1-4,125-134.
    [2]刘士林,梁智涛,侯金龙,孟凡超.斜拉桥[M].北京:人民交通出版社,2002:1-4,50-52.
    [3]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996:1-7.
    [4]顾安邦.桥梁工程[M].北京:人民交通出版社,1999:1-7,25-27.
    [5]陈务军,关富玲.我国斜拉桥的发展[J].华东公路,1996,(4):51-54.
    [6]王伯惠.斜拉桥结构发展和中国经验[M].北京:人民交通出版社,2004:3-7.
    [7]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报,2000,33(3):1-6.
    [8]张俊,王秀丽,杨佳新等.斜拉桥现状资料汇集[J].黑龙江水利科技,2000,(3):100-103.
    [9]Zhang Zhe, Yan Juan, Huang Cai-liang. The Special Cable-Stayed Bridge Jinma Bridge[J]. Civil Engineering Journal,2002, (3):125-129.
    [10]李铁强,李兵.长江上的几座新建特大桥[J].辽宁省交通高等专科学校学报,2002,4(1):1-4.
    [11]裴崛山,徐利平,朱斌等.苏通大桥主航道桥桥型方案及上部结构设计研究-2003年全国桥梁学术会议论文集[M].成都,2003.北京:人民交通出版社,2003:53-63.
    [12]刘钊.浅谈斜拉桥的发展及其施工技术(上)[J].铁道建设,1995,37(4):1-8.
    [13]刘钊.浅谈斜拉桥的发展及其施工技术(下)[J].铁道建设,1996,39(2):1-12.
    [14]周明,施耀忠.大跨径悬索桥、斜拉桥的发展趋势[J].中南公路工程,2000,25(3):32-34.
    [15]蔡国宏.国外桥梁建设与发展的新动态[J].国外桥梁,1998,18(2):9-15.
    [16]楼庄鸿.多孔斜拉桥[J].公路交通科技,2002,19(2):79-83.
    [17]何林兴.特大跨径桥梁新设想[J].国外公路,2000,20(3):18-20.
    [18]蔡国宏.斜拉桥的发展经验与展望[J].国外公路,1997,17(4):79-84.
    [19]经柏林.斜拉桥的现状与展望[J].中国市政工程,2002,(1):21-23.
    [20]Karomui Raid. Some Modeling Aspects in the Nonlinear Finite Element Analysis of Cable Supported Bridges[J]. Computers & Structures,1999,71(4):397-412.
    [21]Khalifa Magdi A., Hodhod Osma A., Zaki Mohammed A. Analysis and Design Methodology for an FRP Cable-stayed Pedestrian Bridge [J]. Composites Part B: Engineering,1996,27(34):307-317.
    [22]Pao-Haii Wang, Chiung-Guei Yang. Parametric Sutdies on Cable-Stayed Bridges[J]. Computers & Structures,1996,60(3):243-260.
    [23]桌卫东,房贞正.预应力混凝土桥塔斜索锚固区空间应力分析[J].同济大学学报,1999,27(2):203-206.
    [24]项贻强,易绍平,杜晓庆等.南京长江二桥南汉桥斜拉索塔节段足尺模型的研究[J].土木工程学报,2000,33(1):15-22.
    [25]刘钊,孟少平,刘智等.润扬大桥北汉斜拉桥索塔节段足尺模型试验研究[J].土木工程学报,2004,37(6):35-40.
    [26]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究[J].桥梁建设,2001,(2):8-11.
    [27]张望喜,易伟建,陈建阳等.武汉军山长江公路大桥索塔锚固区带锚块足尺节段模型试验研究[J].中南公路工程,2001,26(4):33-35.
    [28]Casas J.R. Full-Scale Dynamic Testing of the Almaillo Cable-Stayed Bridge in Sevilla (Spain) [J]. Earthquake Engineering & Structural Dynamics,1995, 24(1):35-51.
    [29]王锋君.杭州良山门立交桥斜拉索塔锚固区节段的分析研究[J].华东公路,2000,(6):19-23.
    [30]李雄晖.军山长江大桥索塔锚固区足尺节段模型试验研究[J].交通科技,2001,(2):24-27.
    [31]李兴华,安群慧,王戒躁.芜湖长江大桥索塔锚固区模型试验研究[J].中国铁 道科学,2001,22(5):103-106.
    [32]Clemente Paolo, Marulo Francesco, Lecce Leonardo. Experimental Model Analysis of the Garigliano Cable-Stayed Bridge[J]. Soil Dynamics and Earthquake Engineering,1998,17(7):485-493
    [33]李立峰,邵旭东,曾田胜.斜拉桥小尺寸预应力索塔的布束设计及试验研究[J].公路,2000,(10):1-3.
    [34]严少波,裴志勇.斜拉桥索塔拉索锚固区空间应力分析模型[J].国外公路,2000,20(3):22-24.
    [35]李新平,梁敏.斜拉索塔索锚固区局部应力分析[J].工程设计CAD与智能建筑,2001,(10):11-14.
    [36]韩富庆,杨成斌,娄建等.安庆长江公路大桥索塔锚固区受力分析[J].合肥工业大学学报,2002,25(6):1167-1170.
    [37]颜海.大跨度斜拉桥索塔环向预应力的有限元分析[J].上海公路,2003,(4):24-27.
    [38]《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)[S].北京:人民交通出版社,2004.
    [39]《公路桥涵施工技术规范》(JTJ041-2000)[S].北京:人民交通出版社,2000.
    [40]蔡陶,何裕仁,李洪乾.大吨位小曲率半径U形索伸长值的控制[A].中国公路学会桥梁和结构工程分会2003年全国桥梁学术会议论文集[C].北京:人民交通出版社,2003:326-330.
    [41]Tensioning of tendons:force-elongation relationship[R]. London:Published by Thomas Telford Ltd. Telford House,1986:1-17.
    [42]杨耀铨,朱玉.U形预应力束在斜拉桥索塔中的应用[J].国外公路,2001,21(3):24-27.
    [43]刘四田.桥梁结构的预应力盲区及相关布束规则探讨[J].中外公路,2004,24(2):30-34.
    [44]邵旭东,曾田胜,李立峰等.斜拉桥预应力索塔优化布束方式研究[J].中国公 路学报,2001,14(2):40-44.
    [45]Vecchio. F. Nonlinear Analysis of Reinforced Concrete Frames Subjected to Thermal and Mechanical Loads[J]. Journal of ACI Structure,1987,84(6):492-501.
    [46]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].中国公路学报,1996,9(2):76-83.
    [47]韩先科.斜拉桥索塔温度场的有限元分析及其影响评价[D].哈尔滨工业大学工学硕士学位论文,2002.
    [48]曾晓文.日照作用下混凝土结构的平面温度场计算研究[D].华中科技大学硕士学位论文,2003.
    [49]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究[J].西南交通大学学报,1989,74(4):90-97.
    [50]Suusbkewicb. K.W. Design of Segmental Bridges for Thermal Gradients[J]. PCI Journal,1998,43(4):120-137.
    [51]Rajan Sen, Antoine N. Gergess, Camille Issa. Finite-Element Modeling of Heat-Curved Ⅰ-Girders[J]. Journal of Bridge Engineering,2003, (3):153-161.
    [52]Carin L, Roberts-Wollman, John E. Measurements of Thermal Gradients and their Effects on Segmental Concrete Bridge [J]. Journal of Bridge Engineering, 2002,(3):166-174.
    [53]C.Q. Li, R.E. Melchers. Reliability analysis of creep and shrinkage effects[J], Journal of Structure Engineering. ASCE,1992,118(9):2323-2337.
    [54]Byung Hwan Oh, In Hivan Yang. Sensitivity analysis of time-dependent behavior in PSC box girder bridges [J]. Journal of Structural Engineering,2000, 126(2):41-45.
    [55]Jun Zhang, Victor C. Li, Cynthia Wu. Influence of reinforcing bars on shrinkage stresses in concrete slabs[J]. Journal of Engineering Mechanics,2000, (12):1297-1300.
    [56]Z.P. Bazant, S. Baweja. Justification and refinement of Model B3 for concrete creep and shrinkage-1 Statistics and sensitivity[J]. Materials and Structures.1995, 181(28):415-430.
    [57]Z.P. Bazant, S. Baweja. Creep and shrinkage model for analysis and design of concrete structures [J]. Materials and Structures,1995,181(28):357-365.
    [58]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [59]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996.
    [60]戴公连,李德建.桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
    [61]刘腾喜,罗松南.斜拉桥拉索锚区箱梁的空间应力分析[J].湖南大学学报,1996,(4):42-45.
    [62]周立平.斜拉桥索塔锚固区应力仿真分析[J].广东公路交通,2007,(1):31-37.
    [63]金文成,张晓飞,简方梁等.斜拉桥索塔锚固区空间应力分析[J].公路交通科技,2007,24(9):69-73.
    [64]方志,夏浸.上海长江大桥索塔锚固区整体空间分析[J].中原工学院学报,2009,20(3):36-41.
    [65]熊刚,谢斌,黄思勇等.天津保定桥索塔锚固区钢锚箱空间分析[J].华中科技大学学报(城市科学版),2009,26(4):80-83.
    [66]王存国,刘兆丰,赵人达.甬江斜拉桥索塔锚固区应力分析[J].公路工程,2009,34(6):135-139.
    [67]狄谨,周绪红,游金兰等.钢箱梁斜拉桥索塔锚固区的受力性能[J].中国公路学报,2007,20(4):48-52.
    [68]韦华,李小刚,蒋鹰冲等.黄墩大桥索塔锚固区传力途径和受力分析[J].城市道桥与防洪,2009,(12):59-64.
    [69]刘兆丰,赵人达,杨永清.广珠线西江特大桥主桥索塔锚固区局部应力分析[J].中外公路,2008,28(4):122-125.
    [70]董明,李新乐,李睿等.景洪澜沧江斜张桥索塔顶端空心段的测试分析[J].昆明理工大学学报,2000,25(4):59-62.
    [71]刘效尧.铜陵长江公路大桥简介[J].华东公路,1996,(2):3-8.
    [72]沈桂平,顾萍.斜拉桥索梁锚固区空间应力分析[J].上海铁道大学学报(自然科学版),1996,17(4):9-16.
    [73]项贻强,陈国强.鄱阳湖口大桥节段足尺模型试验与分析研究[J].中国公路学报,2000,(4):74-78.
    [74]彭苗,陈升平,余天庆等.巴东长江大桥索塔锚固区节段模型试验与空间应力分析[J].武汉理工大学学报(交通科学与工程版),2004,28(5):759-762.
    [75]徐威.斜拉桥索塔锚固区节段足尺模型试验及有限元分析[D].成都:西南交通大学硕士学位论文,2007.
    [76]张奇志,李明俊.斜拉桥钢-混组合索塔锚固区节段模型试验研究[J].桥梁建设,2006,(3):16-19.
    [77]马威,余天庆,童智洋等.珠江黄埔大桥北汊桥索塔锚固区足尺节段模型试验研究[J].华东公路,2007,(4):25-27.
    [78]李琦,奉龙成.斜拉桥索塔锚固区模型试验的斜向加载方法[J].山西建筑,2008,34(13):310-311.
    [79]苏庆田,翟慧娜,吴冲.济南黄河三桥索塔锚固区水平受力性能模型试验研究[J].桥梁建设,2008,(3):12-14.
    [80]曾明根,苏庆田,邵长宇等.公轨共用大跨斜拉桥索塔锚固区节段试验研究[J].中国铁道科学,2008,29(4):53-57.
    [81]伍波,常国强,张峰.彭溪河特大桥索塔锚固区段足尺模型试验研究[J].公路交通技术,2008,(6):61-65.
    [82]姚建军,刘孝辉,李琦等.忠县长江大桥索塔锚固区模型试验与裂纹预测[J].桥梁建设,2009,(2):32-39.
    [83]叶梅新,谢莉,申卫.郑州黄河大桥斜拉桥索塔锚固区静力试验研究[J].铁道标准设计,2009,(6):55-58.
    [84]周新亚.闵浦二桥主桥索塔错固区足尺节段模型试验研究[J].上海公路,2009,(2):19-22.
    [85]刘伟,彭卫东,孙志显.斜拉桥索塔新型锚固结构理论分析与模型试验[J].公路,2009,(9):41-48.
    [86]周贤文.斜拉桥拉索锚固区受力性能研究[J].公路交通科技,2009,(6):141-146.
    [87]詹建辉,彭晓彬.鄂东长江公路大桥索塔锚固区抗裂设计[J].中外公路,2010,30(1):151-154.
    [88]张标标,倪强,张宗杰等.海口世纪大桥斜拉索锚固区光弹性应力分析[J].桥梁建设,1997,(4):26-28.
    [89]Schlaich J., Schafer K. Design and Detailing of Structural Concrete Using Strut-and-Tie Models[J]. Journal of structural Engineering,1991,69(6):113-125.
    [90]K. M. Abdalla, A. Alshegeir, W. F. Chen. Analysis and Design of Mushroom Slabs with a Strut-Tie Model[J]. Technical Note, Computer and Structures,1996, 58(2):429-434.
    [91]Liang-Jenq Leu, Chang-Wei Huang, Chuin-Shan Chen, etc. Strut-and-Tie Design Methodology for Three-Dimensional Reinforced Concrete Structures [J]. Journal of Structural Engineering,2006, (6):929-938.
    [92]王田友,苏小卒.钢筋混凝土结构的拉压杆模型设计方法及现状[J].四川建筑科学研究,2004,30(3):18-20.
    [93]陈晓宝,王成刚,腾育梅.结构混凝土拉压杆模型法配筋[J].合肥工业大学学报,2001,24(2):160-165.
    [94]周履.压杆-拉杆模型混凝土结构设计中的应用[J].世界桥梁,2002,(2):1-9.
    [95]刘华新,邢颖,刘舰等.拉-压杆模型法在牛腿配筋设计中的应用[J].辽宁工学院学报,2005,25(1):37-39.
    [96]Michael P.Collins, Denis Mitchell, Perry Adebar etc. A general sheer design method[J]. ACI Structural Journal,1996,93(1):36-45.
    [97]Schlaich J, Schafer K, Jennewein M. Toward a consistent design of structural concrete[J]. PCI Journal,1987,32(3):74-150.
    [98]TONG kebo. Strut-and-Tie Approach to Shear Strength Prediction of Deep Beam[R]. School of Civil and Structural Engineering Nan Yang Technology University,1997.
    [99]Yong Mook Yun, Julio A. Ramirez. Strength of struts and nodes in strut-tie model[J]. Journal of structural Engineering,1996,122 (1):20-29.
    [100]Young Mook Yun. Computer Graphics for Nonlinear Strut-Tie-Model Approach[J]. Journal of Computing in Civil Engineering,2000, (4):127-133.
    [101]Kurt Schafer. Strut-and-Tie Models for the Design of Structural Concrete[R]. National Cheng Kung University,1996.
    [102]Schliaich M., Anagnostou G.. Stress fields for nodes of strut-and-tie model [J]. Journal of structural Engineering,1990,116 (1):13-23.
    [103]Stephen J. Foster, Adnan R. Malik. Evaluation of efficiency factor models used in strut-and-tie modeling of nonflexural members[J]. Journal of structural Engineering, 2002,128 (5):569-577.
    [104]Young Mook Yun. Nonlinear strut-tie model approach for structural concrete[J]. ACI Structural Journal,2000,97 (4):581-590.
    [105]Zhao C.B., Hornby P, Steven G.P., Xie Y.M. A generalized evolutionary method for numerical topology optimization of structures under static loading conditions [J]. Struct. Optim.1998, (15):251-260.
    [106]Q. Q. Liang, Y. M. Xie, G. P. Steven. A performance index for topology and shape optimization of plate bending problems with displacement constraints [J]. Struct Multidisc Optim,2001, (21):393-399.
    [107]Qing Quan Liang, Grant P. Steven. A performance-based optimization method for topology design of continuum structures with mean comliannce constraints [J]. Comput. Methods Appl. Mech. Engrg.2002, (191):1471-1489.
    [108]Q. Q. Liang, Y. M. Xie, G. P. Steven. Optimal topology selection of continuum structures with displacement constraints [J]. Computers and Structures,2000, (77):635-644.
    [109]K. H. Tan, M. A.Mansur. Partial prestressing in concrete corbels and deep beams[J]. ACI Structural Journal,1992,89(3):251-261.
    [110]A. Alshegeir, J. A. Ramirez. Strut-tie approach in pretensioned deep beams[J]. ACI Structural Journal,1992, (5):296-304.
    [111]K. H. Tan, A. E. Naaman. Strut-and-Tie Model for externally prestressed beams[J]. ACI Structural Journal,1993, (9):683-691.
    [112]K. H. Tan, K. Tong, C.Y. Tang. Direct strut-and-tie model for prestressed deep beams[J]. Journal of structural Engineering,2001,127(9):1076-1084.
    [113]C. Y. Tang, K. H. Tan. Interactive Mechanical Model for Shear Strength of Deep Beams[J]. Journal of Structural Engineering,2004, (10):1534-1544.
    [114]K. H. Tan, G. H. Cheng. Size Effect on Shear Strength of Deep Beams: Investigating with Strut-and-Tie Model [J]. Journal of Structural Engineering,2006, (5):673-685.
    [115]孙传洲,夏学军.顶部和底部荷载共同作用下深梁的拉压杆模型[J].国外桥梁,2001,(2):36-41.
    [116]熊进刚,付国平.钢筋混凝土无腹筋短梁受剪承载力计算的软化析架模型[J].南昌大学学报(工科版),2004,26(1):49-53.
    [117]熊进刚,付国平.有腹筋钢筋混凝土短梁受剪承载力计算的软化析架模型[J].南昌大学学报(工科版),2004,26(2):62-65.
    [118]Huang F. C., Lee I.S., Mo Y. L. Designing Pier Caps with Strut-and-Tie Model [J]. Concrete International,1998, (1):43-47.
    [119]周冬华.线荷载下桩承台按空间析架模型的设计方法研究[D].东南大学硕士学位论文,2001.
    [120]林松.桩厚承台空间析架理论的研究及程序编制[D].东南大学硕士学位论文,2002.
    [121]Sri Sritharan. Strut and Tie Analysis of Bridge Tee Joints Subjected to Seismic Actions[J]. Journal of Structural Engineering,2005, (9):1321-1333.
    [122]Sri Sritharan. Improved Seismic Design Procedure for Concrete Bridge Joints[J]. Journal of Structural Engineering,2005, (9):1334-1344.
    [123]Chun S. Cai. Three-dimensional strut-and-tie analysis for footing rehabilitation[J]. Practice periodical of structural design and construction,2002,7(1):14-25.
    [124]Kelth E, Kesner, Randall W. Poston. Evaluation and Strengthening of Structural Concrete Using Strut and Tie Models[J]. Concrete International,2000, (1):48-54.
    [125]Shyh-Jiann Hwang, Wen-Hung Fang, Hung-Jen Lee. Analytical Model for Predicting Shear Strength of Squat Walls[J]. Journal of Structural Engineering, 2001,(1):43-50.
    [126]Vincenzo Colotti, Giuseppe Spadea, Ramnath Narayan Swamy. Structural Model to Predict the Failure Behavior of Plated Reinforced Concrete Beams[J]. Journal of Composites for Construction,2004, (3-4):104-122.
    [127]Shyh-Jiann Hwang, Hung-Jen Lee. Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model[J]. Journal of Structural Engineering,2006, (6):1519-1526.
    [128]周履.利用压杆-拉杆模型进行结构混凝土的评估和加固[J].世界桥梁,2002,(4):49-52.
    [129]Liang Q. Q., Steven G. P. Performance-Based Optimization for Strut-Tie Modeling of Structural Concrete[J]. Journal of Structural Engineering,2002, (6):815-823.
    [130]Liang Q. Q., Xie Y. M., Steven G. P. Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure[J]. ACT Structural Journal,2000, (2):322-330.
    [131]Liang Q. Q., Xie Y. M., Steven G. P. Generating optimal strut-and-tie models in prestressed concrete beams by performance-based optimization[J]. ACT Structural Journal,2001, (2):226-232.
    [132]Ali M., Mhite R. Automatic Generation of Truss Model for optimal Design of Reinforced Concrete Structures[J]. ACT Structural Journal,2001, (4):431-442.
    [133]陶海.基于空间分析的混凝土斜拉桥关键问题研究[D].同济大学博士学位论文,2007.
    [134]单炜,李玉顺,于玲等.哈尔滨四方台大桥索塔锚固区节段足尺模型试验研究[J].中国公路学报,2005,(3):60-65.
    [135]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [136]Bendsoe M.P., Kikuchi N. Generatnig Optimal Topologies in Structural Design Using a Homogenization Method. Comput Appl Mech Engrg[J].1988,(71): 197-224.
    [137]Kikuchi N, Suzuki K. A Homogenization Method for Shape and Topology Optimization. Comput Appl Mech Engrg[J].1991,(93):291-318.
    [138]Baumal A.E., Macphee J.J., Calamai P.H. Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System Homogenization. Comput Mech Appl Mech Engrg[J].1998,(163):87-94.
    [139]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [140]刘照球.混凝土结构表面对流换热研究[D].同济大学硕士学位论文,2006.
    [141]太阳能利用协作小组.我国各地大气透明系数资料[J].气象科技,1980,(6):32-33.
    [142]《民用建筑热工设计规范》(GB 50176-93)[S].北京:中国建筑工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700