用户名: 密码: 验证码:
基于PEBI网格的油藏数值计算及其实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国是仅次于美国的世界第二大石油消费国,而我国石油进口依存度也逐年增长,在2008年进口依存度约为50%左右,而且随着国家经济的快速发展,对石油的需求也持续增长。然而,我国的很多老油田生产已进入中后期阶段,石油产量逐渐下降。为了实现老油田的稳产,提高采收率,必须对油田进行精细开发。
     精细开发的重要内容之一是利用多种动态监测技术获得油藏层间构造、砂体连通、大孔道及剩余油分布变化。经过长期注采以及加密井不断增加,我国老油田的井网密度大、油水分布变化复杂,开采挖潜的主要对象转向高度分散而又局部相对富集的剩余油。这给测试数据的解释、评价与数值模拟提出了新的要求:由于解析方法难以解决油藏的非均匀性、复杂边界与多相流问题,须发展数值方法;规则网格难以描述复杂的油藏边界,应使用不规则网格划分方法;数值计算方法应与一般意义的数模有所区别,能准确模拟瞬态压力,以满足压力等数据的解释需要。
     为此,本文研究了PEBI非结构网格下的多层多相非均值油藏的数值计算模型,数值模型包括以下部分。
     1、网格划分。在综合比较了笛卡尔网格、角点网格、曲线网格、中点网格、径向网格与PEBI网格的特点后,选择使用PEBI网格来对油藏区域进行空间离散。提出了针对油藏区域PEBI网格点生成的限定边算法,算法通过对油藏区域的垂直井、裂缝井、水平井、断层和边界进行分类,将油藏区域划分为点模块、线模块、圆模块、圆角矩形模块和平面模块,通过对模块之间的干扰情况分别考虑,可以得到各模块的限定边,对每个模块在其限定边内生成网格点,就可以得到整个油藏区域的网格点。对所得到的网格点作Delaunay剖分,继而生成出网格点的Voronoi图。可以根据此Voronoi图生成二维与三维油藏区域的PEBI网格。本算法可以对存在复杂边界、复杂断层、复杂的井间干扰、复杂的井与断层间干扰的情况生成正确的PEBI网格。
     2、油藏模型。数值计算模型以黑油模型方程为基础,使用有限体积法对其方程在PEBI网格上进行离散;对单相和多相方程的离散格式进行了详细推导,推导过程中对方程的非线性项进行了线性化处理。对单相方程中的非线性项可以使用显式方法或迭代的隐式方法进行线性化;对多相方程中的非线性项分成弱非线性项和强线性项,对弱非线性项的处理方法和单相类似,可以使用显式方法或迭代的隐式方法进行线性化,对强非线性项的处理方法使用线性隐式或全隐式方法进行线性化。
     3、井模型。文中对已有的井模型如源汇模型、van Pollen模型和Peaceman模型进行了介绍,并分别针对垂直井、裂缝井和水平井的提出了相应的内边界模型。针对不同井型,讨论了其相应的网格划分方法,并根据达西定律推导出井的生产指数。由于水平井通常需要离散到不同的网格中,分别对无限传导和均匀流量两种模型推导出其流量方程。
     4、根据以上研究成果,已开发出可生产应用的数值试井软件。该软件能解决多层多相非均值各向异性油藏的数值计算。PEBI网格划分部分可对各种复杂油藏进行正确、快速的PEBI网格划分,计算部分可对单相、两相、三相问题进行计算,并能正确处理PVT设置、非均质、各相异性、过泡点等情况。通过实例计算对数值试井软件进行检验,并对若干问题如井间干扰问题、水平井网格划分问题、两相注水问题、过泡点问题进行了数值分析,表明计算结果正确可靠。经过某油田的大量实测资料检验及其与国外软件的对比表明:此软件已可在油田现场应用,在精度与稳定性方面不低于国外同类软件。
Recently, China is the second largest oil consumption nation in the world. As the rapid development of national economic, the requirement of oil is continuously rising, this results in that the oil import dependency is about 50%. While After years of production, many old oil fields in our country already entered middle or later period. Fine development is necessary to keep the stable production in old oil fields.
     One of fine development's contents is to retrieve the connectivity of sand bodies, the macro-pores and the distribution of remaining oil by various dynamic monitor technologies. Over a long period of injection-production and increases of infilling wells in old oil fields, the consistency of well network is compact and the transformation of oil-water distribution becomes very complicated, so the target of production has been shifted to the remaining oil which highly disperses but relatively concentrates in certain spot. And this puts new demands on the interpretation, evaluation and simulation of testing data. Because the analytical method is difficult to solve problems with heterogeneous reservoir, reservoir with complicated boundaries or multi-phase flow, numerical method is necessary to be developed. The regular grids are not effective to describe complicated boundaries, so the development of unstructured grids is obligatory. The numerical calculation should be able to accurately simulate the transient pressure to fulfill the demands of explanation of pressure data.
     Therefore, this paper researches on the numerical calculation model of multi-layer, multi-phase, heterogeneous reservoir on PEBI grid. The model contain the below parts.
     1. Meshing. After comparing the Cartesian grid, corner grid, curvilinear grid, the mid-point grid, radial grid and PEBI grid, PEBI grid are chosen to discrete the space of the reservoir. Restricted edge algorithm is proposed to generate PEBI grids in the reservoir. By classifying vertical wells, fractural wells, horizontal wells, faults and boundaries, the algorithm split the reservoir into point modules, line modules, circle module, rounded rectangular modules and flat modules. By considering the interferences between the modules, restricted edges of each module are obtained. After generating grid points within restricted edges of every module, grid points of the reservoir are obtained. After making Delaunay triangulation to the mesh points, the Voronoi graph of the grid points is generated. Then the 2-D or 3-D PEBI grid of the reservoir can be obtained. This algorithm can generate correct PEBI grids of reservoir which involves complicated boundaries, faults, interferences between wells, interferences between wells and fault.
     2. Reservoir model. The numerical model is based on black-oil model, and it discretizes the equations on PEBI grid. The single-phase and multi-phase discretized equations are derived in detail. The non-linear item of the equations is linearized. In the single-phase equation, explicit method or iterating implicit method can be used to linearize the non-linear item. The non-linear item of the multi-phase equation can be divided into weak non-linear item and strong non-linear item. The processing method of the weak non-linear item is similar to the single-phase. The half explicit method or full explicit method can be use to linearize the strong non-linear item.
     3. Well models. The existing models are introduced, such as source-sink model, van Pollen model and Peaceman model. Internal boundary model is proposed for vertical well, vertical fractural well and horizontal well. Correspondingly, the mesh methods are analyzed, and the well index is derived from Darcy law. Because horizontal well usually need to be discretized into separate grids, the flow equation has been derived from infinite conduction model and average flow model.
     4. Numerical well testing software is developed based on the above research. The software can generate correct PEBI mesh of complicated quickly, and can calculate single-phase, two-phase and three-phase flow. After compared to foreign softwares, this software is proved to be correct and stable, and can be applied in oil fields.
引文
[1]Abdou M K, Pham H D, Alaqueeli A S. Impact of Grid Selection on Reservoir Simulation[J]. JPT(July 1993):664-669.
    [2]Aguilar C, Ozkan E, Kazemi H, Al-Kobaisi M, Ramirez B. Transient Behavior of Multilateral Wells in Numerical Models:A Hybrid Analytical-Numerical Approach[J]. SPE 104581.2007.
    [3]Al-Mohannadi N, Ozkan E, Kazemi H. Grid-System Requirements in Numerical Modeling of Pressure-Transient Tests in Horizontal Wells[J]. SPE 92041-PA.2007.
    [4]Al-Thawad F M, Issaka M B, Aramco S. A Simple Approach to Numerical Analysis of Complex Well Tests[J]. SPE 81514-MS.2003.
    [5]Appleyard J R, Chesire I M. Nested Factorization[J]. SPE 12264.1983.
    [6]Archer R A, Yildiz T T. Transient Well Index for Numerical Well Test Analysis[J]. SPE 71572.2001.
    [7]Aziz K, Settari A.油藏数值模拟[M].袁士义,王家禄译.北京:石油工业出版社,2004.
    [8]Babu D K, Odeh A S; Al-Khalifa A J; McCann R C. The Relation Between Wellblock and Wellbore Pressures in Numerical Simulation of Horizontal Wells[J]. SPE 20161-PA.1991.
    [9]Bruce G H, Peaceman D W, Rachford H H, Rice J D. Calculationsof unsteady-state gas flow through porous media[J]. Transactions, American Institute of Mining and Metallurgical Engineers, 198(1953),79-91.
    [10]Coats K H. An equation of state compositional model. SPE J.1:363-376.1980.
    [11]Coats K H, Nielsen, R L, Terhune M H, Weber A G. Simulation of Three-Dimensional, Two-Phase Flow in Oil and Gas Reservoirs [J]. SPE Journal. December,1967.
    [12]Douglas J, Blair P M, Wagner R J. Calculation of linear waterflood behavior including the effects of capillary pressure[J]. Petroleum Trans., AIME.1958.213,96-102.
    [13]Douglas J, Peaceman D W, Rachford H H. A method for calculating multi-dimensional displacement[J]. Trans AIME,216 (1959) 297-308.
    [14]Douglas J, Rachford H H. On the numerical solution of the heat conduction problem in two and three space variables[J]. Transactions of the American Mathematical Society 82, 1956:421-439.
    [15]Escobar F H, Tiab D. PEBI Grid Selection for Numerical Simulation of Transient Tests[J]. SPE 76783-MS.2002.
    [16]Ferziger J H, Peric M. Computational methods for fluid dynamics[M]. Springer.1996.
    [17]gulfmoon.数值模拟技术发展史.http://www.petro-china.com/admin/journal/No1.pdf.
    [18]Gunasekera D, Cox J, Lindsey P. Generation and application of K-orthogonal grid systems Source:Proceedings of the SPE Symposium on Reservoir Simulation[J]. SPE 37998.1997: 199-214.
    [19]Heinemann Z E. Interactive Generation of Irregular Simulation Grids and Its Practical Applications[J]. SPE 27998.1994:409-428.
    [20]Heinemann Z E, Brand C W. Gridding techniques in reservoir simulation[C], Presented at First and Second Imernational Forum of Reservoir Simulation.1989.339~426.
    [21]James W Demmel.应用数值线性代数[M].王国荣译.北京:人民邮电出版社,2006.
    [22]Jhon D Anderson. Computational fluid dynamics:The basics with applications[M].影印版. 清华大学出版社,2002.
    [23]Kamal M M, Pan Y, Landa J L, Thomas O O. Numerical Well Testing:A Method To Use Transient Testing Results in Reservoir Simulation[J]. SPE 95905-MS.2005.
    [24]Lloyd N Trefthen, David Bau Ⅲ.数值线性代数[M].陆金甫,关治译.北京:人民邮电出版社,2006.
    [25]Melichar H, Reingruber A, Shotts D, Dobbs W. Use of PEBI Grids for a Heavily Faulted Reservoir in the Gulf of Mexico Source[C]. SPE Annual Technical Conference and Exhibition. SPE 84373.2003.
    [26]Nghiem L X, Fong D K, Aziz K. Compositional modeling with an equation of state[J]. SPEJ (1981), pp.687-698 (Dec.).
    [27]Nnadi M; Onyekonwu M. Numerical Welltest Analysis[J]. SPE 71034.2004.
    [28]Palagi C L, Aziz K. Use of Voronoi grid in reservoir simulation[C]. SPE 22889-PA.1994.
    [29]Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations[J]. J. Soc. Indust. Appl. Math.3 (1) (1955) 28-41.
    [30]Pedrosa Jr, Oswaldo A P, Aziz K. Use of a hybrid grid in reservoir simulation[J]. SPE 13507, 1986.
    [31]Pieter Wesseling. Principles of computational fluid dynamics[M]. Springer,2001.
    [32]Pinzon C L, Chen H Y, Teufel L W. Numerical Well Test Analysis of Stress-Sensitive Reservoirs[J]. SPE 71034.2001.
    [33]Pointing D K. Corner Point Geometry in Reservoir simulation[C]. Paper presented at the 1992 3rd European on the Mathematics of Oil Recovery Oxford, England.
    [34]Sharpe H N, Anderson D A. A new Adaptive Orthogonal Grid Generation Procedure for Reservoir simulation[C]. SPE 20744. presented at the 65th SPE Annual Technical conference and Exihibition held in New Orleans, LA., September 23-26,1990.
    [35]Sharpe H N, Anderson D A. Orthogonal curvilinear Grid Generation with preset internal boundaries for Reservoir simulation[C]. SPE 21235. presented at the 11th SPE Symposium on Reservoir simulation held in Anaheim, Cal., February 17-20,1991.
    [36]Sinha S P, Al-Qattan R. Numerical simulation to design and analyze pressure transient tests in a shaly, interbedded reservoir[C].14th SPE Middle East Oil and Gas Show and Conference, MEOS 2005, Proceedings.2005. SPE 93491.
    [37]Skoreyko F, Sammon P H, Melichar H. Use of PEBI Grids for Complex Advanced Process Simulators[C]. SPE Reservoir Simulation Symposium,3-5 February 2003, Houston, Texas. SPE 79685.
    [38]Stone H L. Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations[J]. SIAM Journal of Numerical Analysis.1968. vol.5, pp.530-538.
    [39]Stone H L. Estimation of three-phase relative permeability and residual oil data[J]. J. Can. Pet. Technol.,12,53-61,1973.
    [40]Stone H L. Probability model for estimating 3-phase relative permeability [J]. Trans. Soc. Petrol. Eng. AIME 249:214-218.1970.
    [41]Su H J, Kabir C S, Dismuke C T. Analytic-Numeric Hybrid Modeling Approach for Interpreting Transient Tests in Horizontal Wells[J]. SPE 62914.2000.
    [42]Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, etc.算法导论[M].第2版.潘金贵,顾铁成,李成法,等译.北京:机械工业出版社,2006.
    [43]Versyeeg H K, Malalasekera W. An introduction to computational fluid dynamics[M]. England:Longman Group Ltd,1995.
    [44]Warren G M. Numerical Solutions for Pressure Transient Analysis[J]. SPE 26177-MS.1993.
    [45]West W J, Garvin W W, Sheldon J W. Solution of the equations of unsteady-state two-phase flow in oil reservoirs[J]. Trans., AIME(1954)201,217.
    [46]Young L C, Stephenson R E. A generalized compositional approach for reservoir simulation, SPE 10516.1982.
    [47]安永生,吴晓东,韩国庆.基于混合PEBI网格的复杂井数值模拟应用研究[J].中国石油大学学报:自然科学版.2007,31(6):60-63.
    [48]蔡强,杨钦,李吉刚,等.三维PEBI网格生成的初步研究[J].计算机工程与应用.2004,40(22):97-99.
    [49]蔡强,杨钦,孟宪海,等.二维PEBI网格的生成[J].工程图学学报.2005,26(2):69-72.
    [50]查文舒,李道伦,卢德唐,等.井间干扰条件下PEBI网格划分研究[J].石油学报.2008,29(5):742-746.
    [51]陈龙玄,钟立敏.线性代数简明教程[M].合肥:中国科学技术大学出版社,1997.
    [52]崔明荣.油藏数值模拟中动边值问题的迎风差分格式[J].高校应用数学学报:A辑.1999,14A(3):333-340.
    [53]董平川,牛彦良,李莉.各向异性油藏渗流的有限元数值模拟[J].岩石力学与工程学报.2007(z1):2633-2640.
    [54]郭永存,曾清红,王仲勋.动边界低渗透油藏的无网格方法数值模拟[J].工程力学.2006,23(11):188-192.
    [55]郭永存,卢德唐,马凌宵.低渗透油藏渗流的差分法数值模拟[J].水动力学研究与进展:A辑.2004,19(3):288-293.
    [56]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    [57]胡茂林.矩阵计算与应用[M].北京:科学出版社,2008.
    [58]胡勇,钟兵,杨雅和.用交错网络建立气水两相数值试井模型[J].油气井测试.2001,10(3):10-14.
    [59]胡勇,钟兵,杨雅和,等.气水两相井筒/地层组合数值试井模型的建立和求解[J].天然气工业.2000,20(6):66-69.
    [60]孔宪辉.数值试井方法及其在裂缝井中应用[D]:[硕士].2008.合肥:中国科学技术大学.
    [61]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [62]李人宪.有限体积法基础[M].第2版.北京:国防工业出版社,2008.
    [63]李玉坤,姚军.复杂断块油藏Delaunay三角网格自动剖分技术[J].油气地质与采收率.2006,13(3):58-60.
    [64]廖新维,刘立明.三维两相流数值试井模型[J].石油大学学报:自然科学版.2003,27(6):42-44.
    [65]刘福平,杨长春,丁柱.河道油藏的数值模拟[J].地球物理学报.2002,45(C00):332-339.
    [66]刘立明,陈钦雷.试井理论发展的新方向—数值试井[J].油气井测试.2001,10(1):78-82.
    [67]刘立明,陈钦雷,王光辉.油水两相渗流压降数值试井模型的建立[J].石油大学学报:自然科学版.2001,25(2):42-45.
    [68]刘立明,陈软雷.单相流数值试井模型[J].油气井测试.2001,10(4):11-14.
    [69]刘立明,廖新维,陈钦雷.混合PEBI网格精细油藏数值模拟应用研究[J].石油学报.2003,24(3):64-67.
    [70]刘立明,廖新维,刘柏良,等.油气两相压降数值试井模型及其典型曲线的规律[J].石 油勘探与开发.2002,29(4):77-79.
    [71]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [72]刘曰武,陈慧新,张大为,等.存在邻井影响条件下的油井数值试井分析[J].油气井测试.2002,11(5):4-7.
    [73]刘月田,徐明旺,彭道贵,等.各向异性渗透率油藏数值模拟[J].计算物理.2007,24(3):295-300.
    [74]卢德唐,陈永辉,黄丰.利用勘探数据进行数值试井网格划分[J].中国科学技术大学学报.2004(z1):39-42.
    [75]吕秀凤,刘振宇,张瞳阳.数值试井分析的有限元法[J].大庆石油学院学报.2005,29(5):12-15.
    [76]梅海燕,雷从众,李闽,等.非牛顿流体油藏数值模拟研究[J].特种油气藏.2003,10(B09):34-36.
    [77]饶盛文,贺成才,赵丰.有限差分法在低渗油藏数值模拟中的应用[J].石油工业计算机应用.2008,16(2):26-27.
    [78]邵德保.数值试井中不规则稀疏矩阵相关算法研究[D]:[硕士].2007.合肥:中国科学技术大学.
    [79]孙波,郝俊丽,李治平,等.求解不出径向流井和非监测井的平均地层压力新方法[J].油气井测试.2008,17(6):21-24.
    [80]孙贺东,韩永新,肖香姣,等.裂缝性应力敏感气藏的数值试井分析[J].石油学报.2008,29(2):270-273.
    [81]王磊.多层油藏渗流规律研究及其应用[D]:[博士].2008.合肥:中国科学技术大学.
    [82]吴洪彪,佟斯琴,兰丽凤.考虑层间窜流的多层多相数值试井方法研究[J].大庆石油地质与开发.2003,22(6):40-43.
    [83]向祖平,张烈辉,陈辉,等.相渗曲线对油水两相流数值试井曲线的影响[J].西南石油大学学报.2007,29(4):74-78.
    [84]向祖平,张烈辉,陈中华,等.油藏任意约束平面域PEBI网格的生成算法[J].西南石油学院学报.2006,28(2):32-35.
    [85]谢海兵,桓冠仁,郭尚平,等.PEBI网络二维两相流数值模拟[J].石油学报.1999,20(2):57-61.
    [86]许广明,徐怀大,孔祥言.三角网格差分方法在油藏数值模拟中的应用[J].石油勘探与开发.1999,26(6):54-56.
    [87]薛国庆,李闽,王道成,等.低渗非均质油藏数值模拟研究[J].断块油气田.2007,14(4):43-44.
    [88]杨坚,姚军,王子胜,等.底水碳酸盐岩油藏数值试井模型及其应用[J].油气地质与采收率.2006,13(6):63-65.
    [89]杨权一.复杂断层限定条件下二维PEBI网格生成方法[J].工程图学学报.2005,26(3):75-79.
    [90]杨权一,蔡强,李吉刚.二维限定PEBI网格生成技术的研究[J].计算机工程与应用.2004,40(7):80-83.
    [91]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003.
    [92]张风波,王怒涛,黄炳光,等.异常高压变型介质气藏数值试井研究[J].能源科学进展.2008,4(3):61-65.
    [93]张凤莲.低渗透油藏表面活性剂驱油数值模拟[J].大庆石油学院学报.2007,31(1):31-34.
    [94]张烈辉,向祖平,李允,等.井间干扰对油水两相流数值试井曲线的影响[J].水动力学研究与进展:A辑.2006,21(6):805-810.
    [95]张韵华,奚梅成,陈效群.数值计算方法与算法[M].北京:科学出版社,2006.
    [96]朱绍鹏,张辉,李茂.网格粗化技术对油藏数值模拟的影响[J].中国海上油气.2008,20(5):319-321,
    [97]朱自强,吴子牛,李津,等.应用计算流体力学[M].北京:北京航空航天大学出版社,1998.
    [98]庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700