用户名: 密码: 验证码:
Daintain/AIF-1在Ⅰ型糖尿病发生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1型糖尿病是一种T细胞介导、以胰腺beta细胞特异性损伤为特征的自身性免疫疾病,目前临床上主要靠终身注射胰岛素维持患者生命。1型糖尿病的早期病理特征是胰岛炎,主要表现为活化的单核免疫细胞(巨噬细胞、树突状细胞和T细胞等)浸润胰岛,这些细胞释放的介质(细胞因子、一氧化氮和氧自由基等),直接损伤胰腺beta细胞。虽然1型糖尿病发病的分子机理还不清楚,但积累的证据显示与机体免疫相关的细胞因子在这一过程中发挥了关键作用。
     上世纪90年代,Dr Chen从猪小肠中分离并鉴定出一个多肽,命名为daintain。与此同时,Utans等从鼠心脏移植排斥物中克隆出一个巨噬细胞因子—异体移植炎症因子1 (allograft inflammatory factor-1,AIF-1),两者氨基酸序列高度同源,故称daintain/AIF-1。作为一个与炎症相关的巨噬细胞因子,daintain/AIF-1引起了许多学者的关注。本实验室前期研究显示在发生胰腺炎的1型糖尿病模型鼠胰腺中存在大量的daintain/AIF-1,而正常鼠胰腺中很少,提示了daintain/AIF-1参与了1型糖尿病的发生,为了进一步探讨daintain/AIF-1在1型糖尿病发生中的作用及机理,本论文主要开展了以下工作:
     1.分离纯化daintain/AIF-1以猪小肠为原料,通过Sephadex G-25(fine)凝胶过滤和DEAE纤维素弱阴离子交换层析以及两次高效液相色谱等方法分离蛋白组分,纯化出了daintain/AIF-1。
     2.制备daintain/AIF-1和胰岛素的单克隆抗体。以纯化的daintain/AIF-1和购买的胰岛素为免疫原免疫Balb/c小鼠,利用杂交瘤技术,采用间接酶联免疫吸附(enzyme linked immunosorbent assay,ELISA)的方法筛选分别针对daintain/AIF-1和胰岛素的单克隆细胞株,并鉴定了抗体的效价、亚类以及亲和常数。
     3.研究daintain/AIF-1在1型糖尿病的发生发展中的可能作用。利用制备的daintain/AIF-1及其单克隆抗体,通过免疫共沉淀和western blotting,发现小鼠血清中存在daintain/AIF-1,证明daintain/AIF-1是一个分泌的胞外蛋白。间接ELISA显示1型糖尿病模型NOD(non obese diabetic)小鼠血清中daintain/AIF-1的含量显著高于同周龄的Balb/c小鼠。用组织免疫化学法,发现daintain/AIF-1在发生1型糖尿病模型BB(biobreeding)大鼠的胰腺中密集,且胰腺beta细胞逐渐消失,说明daintain/AIF-1参与了损害beta细胞的作用,从而在1型糖尿病的发生发展中起一定作用。
     4.进而在细胞以及机体水平上研究了daintain/AIF-1促进并导致1型糖尿病发生发展的分子机理。给NOD鼠静脉注射daintain/AIF-1后,其白细胞升高,血中胰岛素减少,伴随血糖升高,导致NOD鼠提前发生糖尿病。免疫组化结果显示其胰腺中胰岛萎缩,beta细胞量很少。同时,体外实验观察到daintain/AIF-1可抑制胰岛素分泌,直接破坏胰岛细胞。将daintain/AIF-1标记上异硫氰酸荧光素(fluorescinisothiocyate,FITC),利用全内反射荧光显微镜和流式细胞技术,检测胰岛细胞的荧光强度,显示daintain/AIF-1可与胰岛细胞结合。利用亲和层析,寻找并提取daintain/AIF-1在胰腺中的相互作用蛋白,经过胶内酶切,肽指纹图谱测定,以及肽段测序,鉴定出一个相互作用蛋白为胱硫醚beta合成酶。
     5.daintain/AIF-1对血液生物学特性的影响。将外源daintain/AIF-1静脉注射入昆明鼠可引发炎症反应,例如激发氧化物产生,降低超氧化物岐化酶的活性,引起游离血红素释放,增高血浆c反应蛋白和纤维蛋白原的含量,伴随着血液粘度的提高,造成血液在空气中更快速的凝固,提高在体内促进血液凝固的功能。daintain/AIF-1处理后的小鼠血清可以消耗更多的还原剂二巯基苏糖醇。镍-组氨酸pull down以及western blotting鉴定daintain/AIF-1在血液中与血红蛋白beta亚基1结合,促进红细胞裂解,血红素释放。炎症、氧化应激以及游离的血红素作为糖尿病血管并发症主要诱因的事实提示daintain/AIF-1与糖尿病的血管并发症相关。
     以上研究表明daintain/AIF-1是1型糖尿病的致病因子之一,参与并促进了1型糖尿病的发生发展,与糖尿病血管并发症相关,可以作为1型糖尿病治疗的新的靶点。
Type 1 diabetes is a multifactorial autoimmune disease, which is characterised by Tcell mediated destruction of the beta cells in the pancreas. The early stages of the diseaseprocess are termed insulitis, the infiltration of the pancreatic islets by mononuclearimmune cells, including macrophages, dendritic cells, and T cells. Beta-cell death in thecourse of insulitis is probably caused by direct contact with activated macrophages andT-cells, and/or exposure to soluble mediators secreted by these cells, including cytokines,nitric oxide (NO), and oxygen free radicals. Although the molecular pathways for theinitiation, perpetuation, and eventual destruction of the beta cell in the disease areunknown, accumulating experimental evidence implicates cytokines as key mediators.
     In the mid 1990s, Dr Chen isolated and characterized a polypeptide from porcineintestines and named it as "daintain". Contemporaneously, Utans et al identified a novelmacrophage factor, allograft inflammatory factor-1(AIF-1), in rat cardiac allografls withchronic rejection. Daintain is identical to AIF-1 in amino acid sequence, therefore we callthe polypeptide as daintain/AIF-1. As an inflammation maker in macrophages, thiscytokine has rapidly gained interest from a fast growing group of scientists. Our perviousstudy demonstated there was an accumulative daintain/AIF-1 immunostraining in thepancreas of BB rats when they were suffering from insulitis. To further investigate theroles of daintain/AIF-1 in type 1 diabetes, the following work has been done, including:
     1. daintain/AIF-1 purification and identification. Daintain/AIF-1 was purified fromporcine intestine with a sephadex G-25 (fine) column chromatography, DEAE anionexchange column chromatography and reverse-phase HPLC purification.
     2. monoclonal antibodies (mabs) against daintain/AIF-1 and insulin production. Thepurified daintain/AIF-1 and insulin were then used to immunize Balb/c mice as theimmunogen. Both hybridization technique and enzyme linked immunosorbent assay(ELISA) were performed to generate cell lines which secreted mabs against the twopeptides. Isotypes, titer and affinity of the mabs were identified.
     3. daintain/AIF-1 participated in the pathogenesis of type 1 diabetes. Using the mabagainst daintain/AIF-1, daintain/AIF-1 was found as a circulating protein in the blood ofBalb/c and NOD mice with immunoprecipitation followed by western blotting. Theconcentration of daintain/AIF-1 in the plasma of NOD mice was distinctly higher compared with the same aged Balb/c mice, which suggested daintain/AIF-1 wasassociated with type 1 diabetes. Furthermore there was still daintain/AIF-1immunostraining in the pancreas of BB rats when they were suffering from type 1 diabetes,but no beta cells in pancreas. These data implicated that daintain/AIF-1 was involved inbeta cell death in type 1 diabetes.
     4. the roles and action mechanism of daintain/AIF-1 in type 1 diabetes. Whendaintain/AIF-1 was intravenously injected into NOD mice, it promoted white blood cellproliferation, increased the concentration of blood glucose, and decreased theconcentration of insulin in the blood and pancreas, aggravated diabetes in NOD mice. Invitro, daintain/AIF-1 inhibited insulin secretion from islets of Langerhans, and damagedthe primary pancreas islet cells. Daintain/AIF-1 was labeled with FITC, and fluorescencewas detected on pancreas islet cells by total internal reflection fluorescence microscope(TIRFM) and flow cytometer. Daintain/AIF-1-interacting protein was identified ascyatathionine-beta-synthase (CBS) in the mice pancreas by peptide mass fingerprinting.
     5. As a circulating protein in the blood, daintain/AIF-1 impaired plasma superoxidedismutase activity, enhanced concentrations of C-reactive protein and fibrinogen,accompany with higher blood viscosity and faster blood coagulation. The serum from themice administrated with daintain/AIF-1 oxidized more dithiothreitol (DTT). Furthermore,AIF-1 interacting protein was separated by an AIF-1/histidine fusion protein nickelaffinity assay. MALDI-TOF mass analysis identified hemoglobin subunit beta-1 as anAIF-1 interacting protein. This interaction was verified by westem blotting. This was afunctional interaction, because AIF-1 induced cytolysis of erythrocytes, and further boundwith hemoglobin subunit beta-1 resulting in heme release in vitro. Oxidative stress,inflammation, free heme and blood coagulation contribute to the vesicular complicationsin diabetes. These data suggested that daintain/AIF-1 associated with the vesicularcomplications in diabetes.
     In conclusion, dainain/AIF-1 as an inflammatory factor taken critical roles in theinitiation and progress of type 1 diabetes.
引文
[1] 李秀钧,董砚虎,程丽霞等.糖尿病研究进展--第16届国际糖尿病联盟大会纪要.中华内分泌代谢杂志,1998,14(2):72-77
    [2] Nathan DM. Long-term.complications of diabetes mellitus. N Engl J Med, 1993,328:1676-1685
    [3] Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care, 1993,16:434-444
    [4] Yodaiken RE. The relationship between diabetic capillaropathy and myocardial infarction: a hypothesis. Diabetes, 1976, 25:928-930
    [5] Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.Diabetes Care, 1997, 20:1183-1197
    [6] Gale EA: The discovery of type 1 diabetes. Diabetes, 2001,50:217-226
    [7] Lernmark A: Type 1 diabetes. Clin Chem, 1999, 45:1331-1338
    [8] Gepts W, De Mey J. Islet cell survival determined by morphology: an immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes, 1978, 27:251-61
    [9] Eizirik DL, Mandrup-Poulsen T. A choice of death: the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia, 200, 44:2115-2133
    [10] Campbell, I. L. and L. C. Harrison. Molecular pathology of type-Ⅰ diabetes. Mol. Biol. Med, 1990,7:299-309
    [11] Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes. Diabetes, 1965,14:619-33
    [12] Roep BO, Kolb H, Martin S: B-cell deficiency and type 1 diabetes (Letter). N Engl J Med, 2002, 346 :538 -539
    [13] Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today, 1997, 18:335-343
    [14] Kawamura T, Nagata M, Utsugi T et al.Prevention of autoimmune type Ⅰ diabetes by CD4+ suppressor T cells in superantigen-treated non-obese diabetic mice. J.Immunol, Oct 1993,151: 4362-4370
    [15] Walter U, Santamaria P. CD8~+ T cells in autoimmunity. Curr Opin Immunol, 2005,17:624-631
    [16] Nagata M, Santamaria P, Kawamura T et al. Evidence for the role of CD8 cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J Immunol, 1994, 152:2042-2050
    [17] Baekkeskov S, Aanstoot HJ, Christgau S et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature, 1990, 347:151-6
    [18] Christie MR, Tun RY, Lo SS et al. Antibodies to GAD and tryptic fragments of islet 64K antigen as distinct markers for development of IDDM. Studies with identical twins. Diabetes, 1992,41:782-7
    [19] Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet, 1974, 2:1279-83
    [20] Lindberg B, Ivarsson SA, Landin-Olsson M et al. Islet autoantibodies in cord blood from children who developed type I (insulin-dependent) diabetes mellitus before 15 years of age. Diabetologia,1999,42:181-7
    [21] Palmer JP, Asplin CM, Clemons P et al. Insulin antibodies in insulin-dependent diabetic patients before insulin-treatment. Science,1983, 222:1337-1339
    [22] Kuglin B, Gries FA, Kolb H. Evidence of IgG autoantibodies against human proinsulin in patients with IDDM before insulin treatment. Diabetes, 1988, 37:130-2
    [23] 龚非力,沈关心,李卓娅.医学免疫学.第一版.科学出版社,2000.66-89
    [24] Mandrup-Poulsen, T., S. Helqvist, and J. Molvig. Cytokines asimmune effector molecules in autoimmune endocrine diseases with special reference to insulin dependent diabetes mellitus. Autoimmunity, 1989, 4:191-218
    [25] Cavallo MG, Pozzilli P, Bird C, Wadhwa M, Meager A, Visalli N, Gearing AJ, Andreani D, Thorpe R. Cytokines in sera from insulin-dependent diabetic patients at diagnosis. Clin Exp Immunol, 1991, 86:256 -259
    [26] Espersen GT, Mathiesen O, Grunnet N, Jensen S, Ditzel J. Cytokine plasma levels and lymphocyte subsets in patients with newly diagnosed insulin-dependent (type 1) diabetes mellitus before and following initial insulin treatment. APMIS, 1993, 101: 703-706
    [27] Mandrup-Poulsen T, Pociot F, Molvig J, Shapiro L, Nilsson P, Emdal T, Roder M, Kjems LL, Dinarello CA, Nerup J. Monokine antagonism is reduced in patients with IDDM. Diabetes, 1994, 43:1242-1247
    [28] Hussain MJ, Peakman M, Gallati H, Lo SS, Hawa M, Viberti GC, Watkins PJ, Leslie RD, Vergani D. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia, 1996, 39:60 -69
    [29] Hultgren B, Huang X, Dybdal N, et al. Genetic absence o f γ-interferon delays but does not prevent diabetes in NOD mice. Diabetes, 1996, 45:8 12-817
    [30] Mueller R, Bradley LM, Sarvetnick N. Mechanism underlying counter-regulation of autoimmune diabetes by IL-4. Immunity, 1997, 7:411-418
    [31] Lee MS, Mueller R, Wicker LB et al. Pancreatic IL-10 induces diabetes in NOD B6Idd10 mice. Autoimmunity, 1997, 26:215-221
    [32] Shimada A, Morimoto J, Kodama K, Suzuki R, Oikawa Y, Funae O, Kasuga A, Saruta T, Narumi S: Elevated serum IP-10 levels observed in type 1 diabetes.Diabetes Care, 2001, 24:510-515
    [33] Falcone M, Sarvetnick N. Short analytical review: The effect of local product of cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Clin Immunol,1999,90:2-9
    [34] Grewal L, Grewal K, Wong F et al. Local expression of transgene encoded TNFa in nonobese diabetic (NOD) mice by preventing the development of auto -reactive islet-specific T cells. J Exp Med, 1996, 184:1963-1974
    [35] Mc Sorley SJ, Solders S, Malherbe Let al. Immunological toleranc e to a pancreatic antigen as a result of local expression of TNF-alfa by islet beta cells. Immunity,1997,7:401-409
    [36] Tominaga Y, Nagata M, Yasuda Het al. Administration of IL-4 prevents autoimmune diabetes but enhances pancreatic insulitis in NOD mice. Clin I mmunol,1998,86:209-218
    [37] Lee MS, Mueller R, Wicker LS et al. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J E xp Med,1996,183:2663-2668
    [38] Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene ex pression in pancreatic islets compared with various other mouse tissues. Free Biol Med, 1996,20:463-466
    [39] Rabinovitch A, Suarez-Pinzon M, Strynadka K, et al. Humman pancreatic islet β-cell destruction by cytokines involves oxygen free radicals and aldehyde production.J Clin Endocrinol Metab, 1996, 81:3197-3202.
    [40] Pryor WA, Squadrito GL. The chemistry of peroxynitrite: A product from th e reaction nitric oxide with superoxide. Am J Physiol, 1995, 268:L699-L722.
    [41] Szabo C. The pathophysiological role of peroxynitrite in shock, inflamma tion, and ischemia-reperfusion injury. Shock, 1996, 6:79-88
    [42] Suarez-Pinzon WL, Szabo C, Kabinovitch A. Development of autommune diabe te sin NOD mice is associated with the formation of peroxynitrite in pancreatic is let β-cells. Diabetes,1997,46:907-911
    [43] Chen, ZW. Isolation and structural analysis of a novel peptide daintain, Eur. J.Endocrinol (abstr.). 30 (1994) Suppl 2:32
    [44] Utans, U., Arceci, R.J., et al. Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J. Clin. Invest, 1995, 95:2954-2962
    [45] Utans U., Quist, WC, McManus, B.M et al. Allograft inflammatory factory-1.A cytokine-responsive macrophage molecule expressed in transplanted human hearts.Transplantation, 1996,61: 1387-1392
    [46] Chen ZW, Ahren B, Ostenson et al. Identification, isolation, and characterization of daintain (allograft inflammatory factor 1), a macrophage polypeptidewith effects on insulin secretion and abundantly present in the pancreas of prediabetic BB rats. Proc.Natl.Acad. Sci. USA, 1997, 94:13879-13884
    [47] Martin H. Deininger_, Richard Meyermann et al. The allograft inflammatory factor-1 family of proteins. FEBS Letters, 2002, 514:115-121
    [48] Turner DM, Pravica V, Sinnott PJ et al. Polymorphism in the promoter region of the gene encoding human allograft inflammatory factor-1. Eur J Immunogenet, 2001 Aug, 28(4):449-50
    [49] Sibinga NE, Feinberg MW, Yang H et al. Macrophage-restricted and interferon gamma-inducible expression of the allograft inflammatory factor-1 gene requires Pu.1.2J Biol Chem, 2002 May 3,277(18):16202-10. Epub 2002 Feb 22
    [50] Watano K, Iwabuchi K, Fujii S et al. Allograft inflammatory factor-1 augments production of interleukin-6, -10 and -12 by a mouse macrophage line.Immunology,2001 Nov, 104(3):307-16
    [51] Sheri E. Kelemen and Michael V. Expression of Allograft Inflammatory Factor-1 in T Lymphocytes. American Journal of Pathology, 2005 August, Vol167, No.2:619-626
    [52] Autieri MV. cDNA cloning of human allograft inflammatory factor-1: tissue distribution, cytokine induction, and mRNA expression in injured rat carotid arteries Biochem Biophys Res Commun, 1996 Nov 1, 228(1):29-37
    [53] Nagakawa Y, Nomoto S, Kato Y et al. Over-expression of AIF-1 in liver allografts and peripheral blood correlates with acute rejection after transplantation in rats.Transplant, 2004 Dec, 4(12): 1949-57
    [54] Francis J. Miller, Jr. AIF-1 in the Activated Smooth Muscle Cell Spectator or Participant? Arterioscler Thromb Vase Bio, 2000, 20:1701-1703
    [55] Autieri MV, Carbone C, Mu A. Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury.Arterioscler Thromb Vase Biol, 2000 Jul, 20(7): 1737-44
    [56] Autieri MV, Carbone CM. Overexpression of allograft inflammatory factor-1 promotes proliferation of vascular smooth muscle cells by cell cycle deregulation.Arterioscler Thromb Vase Biol, 2001 Sep, 21(9): 1421-6
    [57] Autieri MV, Kelemen SE, Wendt KW. AIF-1 is an actin-polymerizing and Racl-activating protein that promotes vascular smooth muscle cell migration.Circ Res, 2003 May 30, 92(10):1107-14. Epub 2003 Apr 24
    [58] Chen X, Kelemen SE, Autieri MV. AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler Thromb Vase Biol, 2004 Jul, 24(7): 1217-22. Epub 2004 Apr 29
    [59] Autieri MV, Chen X. The ability of AIF-1 to activate human vascular smooth muscle cells is lost by mutations in the EF-hand calcium-binding region. Exp Cell Res, 2005 Jul 1, 307(l):204-l 1. Epub 2005 Apr
    [60] Postler E, Rimner A, Beschorner R, et al.Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebra infarctions. Neuroimmunol, 2000 Apr 3, 104(1):85-91
    [61] Deininger MH, Weinschenk T, Meyermann R et al. The allograft inflammatory factor-1 in Creutzfeldt-Jakob disease brains. Neuropathol Appl Neurobiol, 2003 Aug, 29(4):389-99
    [62] Schwab JM, Frei E, Klusman I et al. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. J Neuroimmunol, 2001 Oct 1, 119(2):214-22
    [63] Schluesener HJ, Seid K, Kretzschmar J et al. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells. Glia, 1998 Oct, 24(2):244-51
    [64] Schluesener HJ, Seid K, Meyermann R. Effects of autoantigen and dexamethasone treatment on expression of endothelial-monocyte activating polypeptide Ⅱ and allograft-inflammatory factor-1 by activated macrophages and microglial cells in lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis. Acta Neuropathol (Berl),1999 Feb, 97(2):119-26
    [65] Deininger MH, Seid K, Engel S et al. Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas.Acta Neuropathol (Berl), 2000 Dec,100(6):673-80
    [66] Morohashi T, Iwabuchi K, Watano K et al. Allograft inflammatory factor-1 regulates trinitrobenzene sulphonic acid-induced colitis. Immunology, 2003 Sep,110(1):112-9
    [67] Brauner A, Hertting O, Alkstrand E et al. CAPD peritonitis induces the production of a novel peptide, daintain/allograft inflammatory factor-1.Perit Dial Int,2003 Jan-Feb, 23(1):5-13
    [68] Koshiba H, Kitawaki J, Teramoto M. Expression of allograft inflammatory factor-1 in human eutopic endometrium and endometriosis: possible association with progression of endometriosis. J Clin Endocrinol Metab, 2005 Jan, 90(1):529-37. Epub 2004 Oct 26
    [69] Hiroko Kanazawa, Keiko Ohsawa, Yo Sasaki. Macrophage/Microglia-specific Protein Iba1 Enhances Membrane Ruffling and Rac Activation via Phospholipase C-γ-dependent Pathway. J Biol. Chem., 2002, 277:20026-20032
    [70] Yo Sasaki, 1 Keiko Ohsawa, Hiroko Kanazawa et al. Actin-Cross-Linking Protein in Macrophages/Microglia, Biochemical and Biophysical Research Communications, 2001, 286:292-297
    [71] Hara H, Ohta M, Ohta K. Isolation of two novel alternative splicing variants of allograft inflammatory factor-1. Biol Chem, 1999 Nov, 380(11):1333-6
    [72] 徐志凯.实用单克隆抗体技术[M].西安:陕西科学技术出版社,199l:33-102
    [73] 杨唐斌,赵定胜.抗8-精氨酸.力口压素单克隆抗体的制备与鉴定[J].细胞与分子免疫学杂志,2000,16(4)
    [74] Gomes P, Andreu D. Direct kinetic assay of interactions between small peptides and immobilized antibodies using a surface plasmon resonance biosensor. J Immunol Methods, 2002, 259(1-2):217-230
    [75] Jian-He Wang, Xin-Peng Dun, Li-Na Qu et al. Preparation and Identification of Monoclonal Antibodies against Pea Albumin 1b (PA1b). Hybridoma, volum 24,number 4, 2005:197-200
    [76] Bordier C, Loomis WF. The major developmentally regulated protein complex in membranes of dictyostelium. J Biol Chem, 1978, 253:5133-5139
    [77] Deutecher. Guide to protein purification. Academic Press, 1990, 613-626
    [78] Rosenfeld J, Capdevielle J, Guillemot JC, et al. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem, 1992, 203:173-179
    [79] Hellman U, Wernstedt C, Gonez J, et al. Improvement of an 'In-Gel' digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem,1995, 224: 451-455
    [80] Brunden KR, Berg CT, Poduslo JF. Isolation of an integral membrane glycoprotein by chloroform-methanol extraction and C3-reversed-phase high-performance liquid chromatography. Anal Biochem, 1987, 164: 474-481
    [81] Y Kashino. Separation methods in the analysis of protein membrane complexes. J Chromatography, 2003: 797: 191-216
    [82] Skovby F, Kraus JP,Rosenberg LE. Biosynthesis and proteolytic activation of cystathionineP- synthase in rat liver. J Biol Chem,1984 , 259 (1):588-593
    [83] Kery V, Poneleit L, Kraus JP. Trypsin cleavage of human cystathion2 ineβ- synthase into an evolutionarily conserved active core: structureand functional consequences.Arch Biolchem Biophy, 1998 , 355(2): 222 - 232
    [84] Camp VM, Chipponl J, Faraj BA, et al. Radioenzymatic asay for direct measurement of plasma pyridoxal 5'2 phosphate. Clin Chem,1983,29(4):642-644
    [85] Kery V, Bukovaskat G, Kraus JP, et al. Transsulfuration depends on heme in addition to pyridoxal 5'2 phosphate. J Biol Chem, 1994 , 269(41): 25 283-288
    [86] Kery V, Elleder D, Greenberg DM, et al. Aminolevulinate increases heme saturation and yield of human cystathionine β-synthase expressed in escherichia coli.Arch Biolchem Biophy, 1995 , 316(1):24-29
    [87] Blundell G, Jones BG, Rose FA, et al. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis , 1996, 122 : 163-172
    [88] Bao L, Vlcek C , Paces V , et al . Identification, and tissue distribu2 tion of human cystathionineβ-synthase mRNA isoforms. Arch Biolchem Biophy , 1998 , 350 (1):95- 103
    [89] Nishinaga M, Ozawa T, Shimada K, et al. Homocysteine, a thromdogenic agent, suppresses anticoagulant heparan sulfate expression incultured porcine aortic endothelial cells. J Clin Invest, 1993,92 : 381-386
    [90] 陈光慧,朱燕青,张晨晖等.同型半胱氨酸/半胱氨酸诱导血管平滑肌细胞中的新cDNA.中国生物化学与分子生物学报,1998,14(1):8-14
    [91] Eikelboom, J. W., Lonn, E., Genest, J., Jr, Hankey, G., Yusuf, S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence, Ann. Intern. Med, 1999, 131,363-375
    [92] Hankey, G. J., Eikelboom, J. W. Homocysteine and vascular disease. Lancet 1999,354, 407-413
    [93] McCully, K. S., Wilson, R. B. Homocysteine theory of arteriosclerosis.Atherosclerosis, 1975, 22, 215-227
    [94] Matthias D, Becker CH, Riezler R, et al. Homocysteine induced arteriosclerosis like alterations of the aorta in normotensive and hypertensive rats following application of high doses of methionine. Atherosclerosis, 1996,122 : 201-216
    [95] Ueland, P. M., Mansoor, M. A., Guttormsen, A. B., M(u|¨)ller, F., Aukrust, P., Refsum,H., Svardal, A. M. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status-a possible element of the extracellular antioxidant defense system. J. Nutr, 1996, 126, 1281S-1284S
    [96] Mansoor, M. A., Guttormsen, A. B., Fiskerstrand, T., Refsum, H., Ueland, P. M.,Svardal, A. M. () Redox status and protein binding of plasma aminothiols during the transient hyperhomocysteinemia that follows homocysteine administration. Clin.Chem, 1993, 39,980-985
    [97] Mansoor, M. A., Ueland, P. M., Aarsland, A., Svardal, A. M. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with homocystinuria. Metabolism, 1993, 42,1481-1485
    [98] Jakubowski, H., Zhang, L, Bardeguez, A., Aviv, A. Homocysteine thiolactone and protein homocysteynilation in human endothelial cells. Circ. Res, 2000, 87: 47-51
    [99] Erbagci AB, Tarakcioglu M, Coskun Y, Sivasli E, Sibel NE. Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem, 2001, 34 :645 -650
    [100]Lechleitner M, Koch T, Herold M, Dzien A, Hoppichler F. Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk factors. J Intern Med, 2000248: 67-76
    [101] Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K, Gomis R. Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia, 2001,44:309-311
    [102]Schloot NC, Hanifi-Moghaddam P, Goebel C, Shatavi SV, Floh(?) S, Korthaus G,Kolb H, Rothe H. Serum IFN(?) and IL-10 levels are associated with disease progression in non-obese diabetic mice. Diabetes Metab Res Rev, 2002, 18:64-70
    [103]Furudoi S, Yoshii T, Komori T. Balance of tumor necrosis factor alpha and interleukin-10 in a buccal infection in a streptozotocin-induced diabetic rat model.Cytokine, 2003, 24: 143-149
    [104]Kulseng B, Vatten L, Espevik T: Soluble tumor necrosis factor receptors in sera from patients with insulin-dependent diabetes mellitus: relations to duration and complications of disease. Acta Diabetol, 1999, 36:99-105
    [105]Targher G, Zenari L, Bertolini L, Muggeo M, Zoppini G. Elevated levels of interleukin-6 in young adults with type 1 diabetes without clinical evidence of microvascular and macrovascular complications (Letter). Diabetes Care, 2001, 24:956-957
    [106]Chait, A., Bornfeldt, K. E. Diabetes and atherosclerosis: is there a role for hyperglycemia? J. Lipid Res, 2009, 50: S335-S339
    [107]Manson JE, Colditz GA, Stampfer MJ, et al. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med, 1991, 151:1141-1147
    [108] Libby P, Nathan DM, Abraham K,Brunzell JD, Fradkin JE, Haffner SM, Hsueh W, Rewers M, Roberts BT, Savage PJ, Skarlatos S, Wassef M, Rabadan-Diehl C,National Heart, Lung, and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus: Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation, 2005,111:3489-3493,
    [109] Jialal I, Devaraj S, Venugopal SK: C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension, 2004, 44:6-11
    [110] Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulim resistance and beta-cell dysfunction? Diabetes, 2003,52(1):1-8
    [111] Liu S, Tan WY, Chen QR et al. Daintain/AIF-1 promotes breast cancer proliferation via activation of the NF-kappaB/cyclin D1 pathway and facilitates tumor growth.Cancer science, May 2008, 99(5):952-957
    [112] Yamauchi F, Sato K, Yamagishi T. Isolation and partial characterization of a salt extractable globulin from soybean seeds. Agric Biol Chem, 1984, 48(3): 645-650
    [113] Watanabe Y, Barbashov S F, Konatsu S, et al. A peptide that stimulates phosphorylation of the plant insulin-binding protein: Isolation, primary structure and cDNA cloning. Eur J Biochem,1994, 224:167-172
    [114] Higgins T J, Chandler P M, Randall P J, et al. Gene structure, protein structure, and regulation of the synthesis of a sulfur-rich protein in pea seeds. Biol Chem J, 1986,261(24): 11124-11130
    [115] Yamazaki T, Takaoka M, Katoh E, et al. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur J Biochem, 2003,270:1269-1276
    [116] Hancock K R, Ealing P M, White D W. Identification of sulfur-rich proteins which resist rumen degradation and are hydrolysed rapidly by intestinal proteases. Br J Nutr, 1994, 72:855-863
    [117] Spencer D, Higgins T J V, Freer M, et al. Monitoring the fate of dietary proteins in rumen fluid using gel electrophoresis. Br J Nutr, 1988, 60:241-247
    [118]Sandrine L, Bernard D, Frederic G, et al. Molecular and biological screening for insect-toxic seed albumins from four legume species. Plant Science, 2004, 167:705-714
    [119] Craik D J, Daly N L, Waine C. The cystine knot motif in toxins and implications for drug design. Toxicon, 2001, 39: 43-60
    [120] Watanabe Y, Barbashov S F, Komatsu S, et al.A peptide that stimulates phosphorylation of the plant insulin-binding protein. Isolation, primary structureand cDNA cloning. Eur J Biochem, 1994, 224: 167-172
    [121] Wang J H , Dun X P, Qu L N, Preparation and Identification of Monoclonal Antibodies against pea albumin 1b (PA1b) Hybridoma. 2005, 24(4): 197 -200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700