用户名: 密码: 验证码:
甘蓝型油菜始花期的遗传分析和QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是全世界广泛种植的重要油料作物,开花的早晚或开花时间的长短会影响植物果实的成熟、收获时间和产量。植物的开花时间是一个遗传基础十分复杂的数量性状,它受到植物内部开花基因、激素水平、生理生化过程及外部环境因素(主要是光周期和温度)等的综合调控,由多基因控制,存在位点的多态性。研究油菜开花时间多态性及相应控制基因有助于培育适应不同季节和轮作方式的品种。
     本研究以06-6-7003和06-6-657组配得到的F_2分离群体(184个体)为基础,通过2个环境下的田间试验,考察开花时间性状,结合分子标记分析,对开花时间性状进行了QTL定位。主要结果如下:
     1.利用BLASTn寻找与拟南芥开花时间相关基因同源的甘蓝型油菜、甘蓝和白菜型油菜的序列,根据同源区序列设计了29对ACGM引物,其中24对引物在亲本基因组中能扩增出清晰、明亮的带型,7对多态性引物产生了8个多态性位点,分别位于N6,N12,N13上。
     2.以119个SSR标记、131个AFLP标记、35个SRAP标记和8个ACGM标记进行连锁遗传分析,选取LOD≥3.0,有214个标记进入连锁群,得到一张包含23个连锁群的甘蓝型油菜分子遗传图谱。该图谱总长1865.00 cM,标记间平均图距为8.45cM,与甘蓝型油菜通用图谱进行了初步对应。
     3.29个标记(13.6%)表现极显著偏分离(P<0.01),其中SSR标记13个,AFLP标记13个,SRAP标记2个,ACGM标记1个。偏分离标记中,有11个(37.9%)偏向母本(晚花亲本)。
     4.两个坏境下开花时间性状均表现为正态分布,在家系间的基因型差异达到显著水平,变异非常丰富,环境方差分量明显大于基因型方差分量,广义遗传力为43.8%。不同地点开花时间性状存在极显著正相关性。
     5.应用复合区间作图法对2个环境下的F_(2:3)家系进行全基因组开花时间QTL扫描,甘肃和政和湖北武汉各检测到7个QTL,其中有2个QTL被重复检测到。
Oilseed rapa is an important oilcrop planted extensively in the world. Flowering early or late, or days to flowering (DTF) will produce important impacts on the maturity, harvesting time and yield of seed. To our best knowledge, DTF is one quantitative trait with a complex genetic basis and regulated by endogenous flowering genes, hormone level, physiological and biochemical processes and environmental factors (mainly including photoperiod and temperature) together. Flowering time is controlled in a multiple gene form with locus variation between different varieties and affected by environment factors. Studies on flowering time may help breed varieties suitable to crop rotation and manipulate pollination control systems in hybrid breeding and production.
     In this study, we employed an F_2 population resulting from crossing "06-6-7003×06-6-657", Field experiments were designed in two environments. Molecular markers were used to analyze the genetic model associated with flowering time performance. The major results are as follows:
     1. A total of 29 ACGM primer pairs were designed according to the different genes in flowering time of Arabidopsis. Of these, each of the majority (24) amplified a clear and strong band from the total genomic DNA of two parents when detected by 6% PAGE analysis, a total of 7 ESTs (Expression Sequence Tags) or genes from B. napus, B. rapa and B. oleracea showed polymorphisms between the parents of the mapping population, providing total 8 marker loci in the mapping population. These markers, respectively, located in the linkage groups N6, N12 and N13 of B. napus.
     2. 119 simple sequence repeat (SSR) markers, 131 amplified fragment length polymorphism (AFLP), 35 sequence-related amplified polymorphism (SRAP) markers and 8 ACGM markers were used to construct a genetic linkage map of B. napus. Under the condition of LOD≥3.0, a total of 214 markers were assigned to 23 linkage groups (LGs). This map covered 1865.00 cM with average marker interval of 8.45 cM. The public information of microsatellites (SSR markers), contributed to establish the links between the map of Parkin et. al (1995) and ours.
     3. In the F_2 population, 29 markers (13.6%) by Chi-square test. There are 13 markers of SSR, 13 markers of AFLP, 2 markers of SRAP and 1marker of ACGM that skewed from the expected genotypic segregation and there are 13 markers (37.9%) of them skewed towards the female parent.
     4. Flowering time demonstrated the normal distribution in both environments. There existed significant difference in genotype of flowering time interval the F_(2:3) family line. There existed significant difference of flowering time in both environments. Environmental variance is more than genotypic variance greatly observed for floweringtime. Broad sense heritability of flowering time is 43.8%. There is significant positivecorrelation of flowering time in two environments.
     5. The entire genome was searched for QTL conferring significant effects on floweringtime by composite interval mapping in two populations. 7 QTL were detected offlowering time in He Zheng and 7 QTL were detected of flowering time in Wu Han.There were 2 QTL repeatedly detected.
引文
1.安贤惠,陈宝元,傅廷栋,刘后利.利用RAPD标记研究中国芥菜型油菜遗传多样性.华中农业大学,1999,18:524-527
    2.蔡长春.甘蓝型油菜开花时间和光周期敏感性的遗传分析和OTL定位.[博士学位论文].华中农业大学,2006
    3.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博士学位论文].华中农业大学,2007
    4.旦巴,涂金星,胡书银,何余堂,王建林,陈宝元,栾运芳,尼玛卓玛,孟霞,卓嘎.西藏油菜种质资源的RAPD分子标记分析.作物学报,2003,29:1-7
    5.胡芳名,刘丽娜,李建安,孙颖,郭文丹.拟南芥FLC基因抑制成花机理研究进展.经济林研究,2007,25:77-81
    6.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的PCR标记初报.西南农业大学学报,2000b,22:199-202
    7.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-523
    8.刘春林,官春云,李枸,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报,2000,27:918-924
    9.刘列钊,林呐.油菜简单重复序列SSR研究进展.生命科学,2004,16:173-176
    10.刘平武.甘蓝型油菜人工合成种及杂交种亲本遗传多样性评价与研究.[博士学位论文].华中农业大学,2004
    11.刘仁虎,孟金陵.MapDraw在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    12.刘玉平,李建平,兰素缺,赵风梧,李杏普,AJworland.光周期迟钝基因对小麦农艺性状的影响[J]华北农学报,2001,16:59-64
    13.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文].华中农业大学,2004
    14.龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].华中农业大学,2007
    15.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31:1309-1315
    16.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004a,30:104-107
    17.沈金雄,陆光远,傅廷栋,杨光圣.甘蓝型油菜遗传多样性及其与杂种表现的关系.作物学报,2002,28:622-627
    18.史卫东.油菜开花时间变异分析和拟南芥晚开花突变体鉴定与基因克隆.[博士学位论文].中国农业科学院,2006
    19.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料90-2441A的遗传及其等位性分析.华中农业大学学报,1997,16:255-258
    20.王道杰,郭蔼光,李殿荣,田建华.油菜单显性核雄性不育基因的分子标记.植物生理与分子生物学学报,2006,32:513-51
    21.王贵春,甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因的分子标记开发.[博士学位论文].华中农业大学,2007
    22.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26:575-578
    23.王心宇,陈佩度,张守中.小麦白粉病抗病基因的聚合极其分子标记辅助选择[J].遗传学报,2001,28:640-646
    24.王新望,赖箐茹,刘广田.农艺性状优良冬小麦ph1b系的创造及标记辅助选择的应用[J]作物学报,2000,26:327-332.
    25.伍宁丰,李汝刚,伍晓明,朱莉,范云六,钱秀珍.中国甘蓝型油菜遗传多样性的RAPD 分子标记.生物多样性,1997,5:246-250
    26.许鲲,陈碧云,王汉中,胡琼,C.Dixelius,伍晓明.长江中、下游地区白菜型油菜遗传多样性RAPD分析及其与农艺性状的相关性.中国油料作物学报,2004,26:20-26
    27.薛庆中,张能义,熊兆飞.应用分子标记辅助选择培育白叶枯病的水稻恢复系[J].浙江农业大学学报,1998,24:581-582
    28.种康,雍伟东,谭克辉.高等植物春化作用研究进展.植物学通报,1999,16:481-487
    29.周国岭,刘平武,杨光圣,傅廷栋.甘蓝型油菜杂交种亲本的遗传多样性评价.中国农业科学,2004,37:1766-1771
    30.朱莉,李汝刚,伍晓明,伍宁丰,范云六,钱秀珍.我国部分白菜型油菜RAPD的研究.生物多样性分析,1998,6:99-104
    31.Alam Z and M A Aziz.Inheritance of flower colour in some self-fertile olciferous Brassicae.Pakistan J Sci Res,1954,6:27-36
    32.Altschul S F,Gish W,Miller W,Myers EW,Lipman D J.Basic local alignment search tool.J Mol Biol,1990,215:403-410
    33.Anneloor L M A,Asbroek T,Olsen J,Housman D,Baas F,Stanton V J.Genetic Variation in mRNA coding sequences of highly conserved genes.Physiol Genomics,2001,5:113-118
    34.Armstrong K C,Keller W A.Chromosome pairing in haploids of Brassica campestris.Theor Appl Genet,1981,59:49-52
    35.Atria T,Robbelen G.Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors.Can J Genet Cytol,1986,28:323-329
    36. Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTL within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome, 2001, 44: 856-864
    37. Baggett J R, Kean D. Inheritance of annual flowering in Brassica oleracea. HortScience, 1989, 24: 662-664
    38. Becker J, Vos P, Kuiper M. Combined mapping of RFLP and AFLP markers in barley. Mol Gen Genet, 1995,249:65-73
    39. Bhuiyan M S A. Inheritance of flower colour in Brassica juncea Indian JGenet. Plant Breeding, 1986,46:563
    40. Blazquez M A, Greem R, Nilsson O, Sussman M R, and Weigel D. Gibberellins promote Flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 1998, 10: 791-800
    41. Blazquez M A, Weigel D. Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404: 889-892
    42. Bolle C, Koncz C, Chuan H, Pati. A New Number of the GRAS Family is Involved in Phytochrome A signal Transduction [J]. Genes, Dev, 2000 ,14: 1269-1278
    43. Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopisis. Plant J, 2000, 24: 591-599
    44. Brunei D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGMs) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome, 1999,42:387-402
    45. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L. Genetics 1999, 153: 949-964
    46. Castiglioni P, Ajmone P, van Wijk R, Motto M. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theoretical Applied Genetics, 1999, 99:425-431
    47. Chen Wei, Zhang Yan, Liu Xueping, Chen Baoyuan, Tu Jinxing, Fu Tingdong. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
    48. Chen, B Y, Heneen, W K, R Jonsson. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B campestris L. with special emphasis on seed color. Plant Beeding, 1988, 101: 52-59
    49. Chen, B Y, W K Heneen. Independent inheritance of flower colour and male-fertility restorer characters in Brassica napus L. Plant Breeding, 1990, 104: 81-84
    50. Chyi Y S, Hoenecke M E, Sernyk J L. A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome, 1992, 35: 746-757
    51. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton Detjen L R. A preliminary report on cabbage breeding. Proc Am Soc Hort Sci, 1926, 93: 356
    52. Dickson M H. Eight newly described genes in broccoli. Proc Am Soc Hort Sci, 1968, 23: 325-332
    53. Dudley J W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits [J]. Crop Sci, 1993, 33: 660-668.
    54. Ecke VV, Uzunova M, Weissleder K. Mapping the genome of rapeseed (Brassica napus L.) II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995,91:972-977
    55. Faville M J, Vecchies A C, Schreiber M, Drayton M C, Hughes L J, Jones E S, Guthridge K M, Smith K F, Sawbridge T G, Spangenberg C, Bryan G T, Forster J W. Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet, 2004, 110: 12-32
    56. Ferreira M E, Rimmer S R, Williams P H, Osborn T C. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath, 1995b, 90: 213-217
    57. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalzation requirement and flowering time in Brassica napus. Theor Appl Genet, 1995a, 90: 727-732
    58. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994, 89: 615-621
    59. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996,93: 1017-1025
    60. Fourmann M, Barret P, Froger N, Baron C, Chariot F, Delourme R, Brunei D. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet, 2002, 105: 1196-1206
    61. Fourmann M, Chariot F, Froger N, Delourme R, Brunei D. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome, 2001, 44: 1083-1099
    62. Grant I, Beversdorf W D. Heterosis and combining ability estimates in spring rapa (Brassica napus). Can J Genet Cytol, 1985, 27: 472-478
    63. Griffiths S, Dunford R P, Coupland G. The evolution of CONSTANS-Like gene families in barley, riceand Arabidopsis [J]. Plant Physiology, 2003, 131:1855-1867.
    64. Haanstra J, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden A W, Tanksley S, Lindhout P, Pelemen J. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicum esculentum L. pennellii F2 populations. Theor Appl Genet, 1999, 99: 254-271
    65. Hayama R, Coupland G. The molecular basis of diversity in the photo periodic flowering responses of Arabidopsis and rice [J]. Plant Physiology, 2004, 135: 677-684.
    66. Hayden M J, Sharp P J. Targeted development of informative microsatellite (SSR) makers. Nucleic Acids Reseach, 2001, 29: 1 -6
    67. Hoenecke M, Chyi Y S. Comparison of Brassica napus and B. rapa genomes based on the restriction fragment length polymorphism mapping. Rapeseed in a Changing World: Proc. 8th International Rapeseed Cong. (Saskatchewan, Canada), 1991, pp 1102-1107
    68. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151: 401-409
    69. Hosaka K, Kianian S F, McGrath J M, Quiros C F. Development and chromosomal localization of genome specific DNA markers of Brassica and the evolution of amphidiploids and n=9 diploid species. Genome, 1990, 33: 131-142
    70. Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454-460
    71. Hu J, Quiros C F. Molecular and cytological evidence of deletions in alien chromosomes for two monosomic addition lines of Brassica campestris-oleracea. Theor Appl Genet, 1991, 90: 258-262.
    72. Huang Z, Chen Y, Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet. 2007, 115: 113-118.
    73. Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis [J]. Curr Opin Plant Biology, 2003, 6: 113-120.
    74. Jackson S A, Cheng Z, Wang M L, Goodman H M, Jiang J. Comparative fluorescence in situ hybridization mapping of a 431 -kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics, 2000, 156:833-838
    75. Janeja H S, Banga S K, Bhaskar P B, Banga S S. Alloplasmic male sterile Brassica napus with Enarthrocarpus lyratus cytoplasm: introgression and molecular mapping of an E. lyratus chromosome segment carrying a fertility restoring gene. Genome, 2003b, 46: 792-797
    76. Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet, 2003a, 107: 148-154
    77. Jean M, Brown G G. Landry B S. Genetic mapping of nuclear fertility restorer genes for the 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers, Theor Appl Genet, 1997, 95: 321-328
    78. Jourdren C, Barret P, Brunei D, Delourme R, Renard M. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet, 1996, 93: 512-518
    79. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breeding, 2005, 124: 367-370
    80. Ke L, Sun Y, Liu P, Yang G. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138: 163-168
    81. Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: linkage arrangement among various populations and evolutionary implications. Theor Appl Genet, 1992, 84: 544-554
    82. Koomneef M and van der Veen J H. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor Appl Genet. 1980, 58: 257-263
    83. L, Dheu J E, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content inoilseed rape (Brassica napus L.). Theor Appl Genet, 2006, 113: 1331-1345
    84. Lande R, Thompson R. Efficiency of maker-assisted selection in improvement of quantitative of traits [J]. Genetics, 1990, 124: 743-756
    85. Landry B S, Hubert N. A genetic map of Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552
    86. Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, and Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000, 14: 2366-2376
    87. Lee M. DNA makers in plant Breeding programs [J]. Adv Agron, 1995, 55: 265-344
    88. Lei S, Yao X, Yi B, Chen W, Ma C, Tu J, Fu T. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet. 2007, 115: 643-51
    89. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461
    90. Li Y C, Korol A B, Fathima T, Belles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 2002, 11: 2453-2465
    91. Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphitica, 2006, 152: 25-39
    92. Lincoln S, Daly M, Lander E S. Construction genetic maps with MAPMAKER/EXP 3.0. In: Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    93. Liu C L, Guan C Y, Li X, Ruan Y, Liao X L, Xiong X H, Zhou X Y, Wang G H, Chen S Y. Construction of linkage map and mapping resistance gene of Scterotinia scterotiorum in Brassica napus. Yi Chuan Xue Bao, 2000, 27: 918-924
    94. Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTL mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao, 2006, 33: 181-187
    95. Liu X P, Tu J X, Liu Z W, CHen B Y, Fu T D. Construction of a molecular marker linkage map and Its use for QTL analysis of Erucic Acid Content in Brassica napus L Acta Agronomica Sinica, 2005, 31:275-282
    96. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103:491-507
    97. Maheswaran M, Subudhi P K and Nandi S. Polymorphism, distribution and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet, 1997, 94: 39-45
    98. Manton I. Introduction to the general cytology of the Cruciferae. Ann Bot, 1932, 46: 509-556
    99. Mayerhofer R, Bansal V K, Thiagarajah M R, Stringam G R, Good A G. Molecular mapping of resistance to Leptosphaeria maculans in Austrilian cultivars of Brassica napus. Genome, 1997, 40:294-301
    100. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I. Complexities of chromosome landing in a highly duplicated genome: Towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005, 171: 1977-1988
    101. McGrath J M, Quiros C F. Generation of alien addition lines from synthetic Brassica napus: morphology, cytology, fertility and chromosome transmission. Genome, 1990, 33: 374-383
    102. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 2001, 13(4): 935-941
    103. Morinaga T. Interspecific hybridization in Brassica. I The cytology of F_1 hybrids of B. napella and various other species with 10 chromosomes. Cytologia, 1929a, 1: 16-27
    104. Morinaga T. Interspecific hybridization in Brassica. II The cytology of F_1 hybrids of B. cernua and various other species with 10 chromosomes. Japan J Bot, 1929b, 4: 277-289
    105. Morinaga T. Interspecific hybridization in Brassica. VI The cytology of F_1 hybrids of B.juncea and B. nigra. Cytologia, 1934a, 6: 62-67
    106. Morinaga T. On the chromosome number of Brassica juncea and B. napus, on the hybrid between the two and on offspring line of the hybrid. Japan J Genet, 1934b, 9: 161-163
    107. Osborn T C, Kole C, Parkin I A, Sharpe A G, Kuiper M, Lydiate D J, Trick, M. Comparison of flowering time gene in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146: 1123-1129
    108. Palmer J D. Intraspecfic variation and multicircularity in Brassica mitochondrial DNAs. Genetics, 1988, 118:341-351
    1:09. Pandy B P and A B Singh. Note on a new type of flower-colour variant in brown-sarson (Brassica campestris L. var dichotoma Watt). Indian J Agric. Sci, 1971, 41: 1115-1116.
    110. Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within Brassica napus genome. Genome, 2003, 46: 291-303
    111. Pilet M L, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not in winter rapeseed (Brassica napus L). Theor Appl Genet, 1998a, 96: 23-30
    112. Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998b, 97: 398-406
    113. Pineiro M and Coupland G. The control of flowering time and floral identity in Arabidopisis. Plant Physiol, 1998,117: 1-8
    114. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514-1523
    115. Pradhan A K, Prakash S, Mukhopadhyay A, Pental D. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomical classifications are incongruous. Theor Appl Genet, 1992, 85: 331-340
    116. Prakash S, Hinat K. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot, 1980,55: 1-57
    117. Prakash S. Haploidy in Brassica nigra Koch. Euphytica, 1974, 22: 613-614
    118. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114:67-80
    119. Quiros C F, Ochoa O, Douches D S. Exploring the role of x=7 species in Brassica evolution: hybridization with B. nigra and B. oleracea. J Heredity, 1988, 79: 351-358
    120. Quiros C F, Ochoa O, Kianian S F, Douches D S. Analysis of the Brassica oleracea, genome by the generation of B. campestris-oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet, 1987, 74: 758-766
    121. Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napur L.). Euphitica, 1999, 105: 173-181.
    122. Rawat D S, I J Anand. Inheritance of flower colour in mustard mutant. Indian J Agric. Sci,1986, 56: 206-208
    123. Reeves P H and Coupland G. Response of plant development to environment: Control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 2000, 3: 37-42
    124. Ribaut J M, Hoisington D. Maker-assisted selection: new tools and strategies [J]. Trends in plant Sci, 1998:236-239
    125. Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus, PMB, 1998, 37: 763-772
    126. Ruco M J, Quiros C F. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor Appl Genet. 1994, 89: 590-598
    127. Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet, 1997, 95: 714-722
    128. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897-901
    129. Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67-80
    130. Robert J. Schmitz, Lewis Hong, Scott Michaels and Richard M. Amasino. FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development, 2005, 132: 5471-5478.
    131. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino R A, Coupland G (2006). self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits. Plant Breeding, 2005, 124: 111-116
    132. Sernyk J L, B R Stefansson. Heterosis in summer rapa (Brassica napus L.). Plant Sci, 1983, 67: 147-151.
    133. Sheldon C C, Burn J E, Perez P P, Metzger J, Edwards J A, Peacock W J and Dennis E S. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458
    134. Slavov G T, Howe G T, Yakovlev I, Edwards K J, Krutovskii K V, Tuskan G A, Carlson J E, Strauss S H, Adams W T, Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theor Appl Genet, 2004, 108: 873-880
    135. Slocum M K, Figdore S S, Kennard W C, Suzuki J Y, Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor Appl Genet, 1990, 80: 57-64
    136. Snowdon R J, Kohler W, Friedrich T, Friedt W. Fishing for physical genome information-Brassica cytogenetics past, present and future. In Proc 11~(th) Intern. Rapeseed Congr, Copenhagen, Denmark. 6-10 July 2003
    137. Snowdon R J. Cytogenetics and genome analysis in Brassica crops. Chromosome Res, 2007, 15: 85-95
    138. Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet, 1995, 90: 1-10
    139. Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113:55-62
    140. Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast, and nucleus. In: Frankel R (ed), heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg, New York, 1983, pp 260-286
    141. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F and Coupland G CONSTANTS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120.
    142. SUN Hua, XU Caikang, ZHANG jiangdong. Preliminary study of white-flowering germplasm resources in rapeseed (Brassical napus L.). The 12th international Rapeseed Congress(vol 1), Science Press USA Inc. 2007: 358-359
    143. Sung S and Amasino R M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 2004, 159-164.
    144. Truco M J, Hu J, Sadowski J, Quiros C F. Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet, 1996, 93: 1225-1233
    145. Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci, 1996, 36: 1337-1344
    146. U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot, 1935, 7: 389-452
    147. Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609
    148. Uzunova M, Ecke W, Weissleder K, Rovvelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTL for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204
    149. Venkateswarlu J, Kamala T. Pachytene chromosome complements and genome analysis in Brassica. Ind Bot Soc, 1971, 50: 442-449
    150. Wang S, Basten C J, Zeng Z B. WinQTL Cartographer 2. 5, Department of Statistics. North Carolina State University, Raleigh, North Carolina.
    151. Warwick S I, Black L D. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) chloroplast genome and cytodeme congruence. Theor Appl Genet, 1991, 82:81-92
    152. Wen, Chang C. Arabidopsis RGL1 Encodes a Negative Regulator of Gibberellin Responses [J]. Plant Cell, 2002, 14:87-100.
    153. Wilson R N, Heckman J W and Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 1992, 100: 403-408
    154. Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120: 319-324
    155. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005). TWIN SISTER OF FT(TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol, 46: 1175-1189
    156. Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet, 2006, 113: 643-650
    157. Yu F, Lydiate D J, Rimmer S R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet, 2005, 110: 969-979
    158. Yu F, Lydiate D J, Rimmer S R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet, 2005, 110: 969-979
    159. Zaman M W. Introgression in Brassica napus for adaptation to the growing condition in Bangladesh. Theor Appl Genet, 1989, 77: 721-728
    160. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    161. Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006,113: 33-38
    162. Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant breeding, 2003b, 122: 19-23
    163. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L). Theor Appl Genet, 2003a, 106: 759-764.
    164. Zhao J, Udall J A, Quijada P A, Grau C R, Meng J, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet, 2006, 112: 509-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700