用户名: 密码: 验证码:
基于叉指式共面波导的RF MEMS开关线型移相器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术在射频领域的应用,产生了一个全新的研究领域——RF MEMS,它使得射频器件的微型化成为可能。RF MEMS器件不仅在体积上大大小于传统的射频器件,方便集成,并且在性能上也有很大的提高。与传统射频器件相比,RF MEMS器件具有体积小、功耗低、重量轻、成本低等优点,并与传统的IC技术相兼容,使得单片集成成为可能。可以说,MEMS技术为无线通信系统的微型化、低功耗和高频化提供了良好的解决方案。
     传输线是微波器件中传输信号的基本元件,自从引入MEMS技术,人们设计了多种新型结构的微机械传输线,对于目前在微波集成电路中应用较多的共面波导,出现了提升式共面波导、重叠式共面波导、微屏蔽式共面波导等结构,这些新型设计从不同的设计角度出发提高了传输线的微波性能比如降低损耗、拓宽可用阻抗范围等,但是大多具有工艺复杂、难于在实际中大规模应用以及没有兼顾射频器件微型化的要求等。针对这些不足之处,本文对传统共面波导结构进行改进,设计了改良型的叉指式共面波导结构。
     移相器是现代通信、雷达系统中的重要部件,目前主要是基于铁氧体材料、PIN管和FET开关来实现,这些移相器或者损耗大,或者成本高昂,或者直流功耗大,在实际应用上都存在着一定的限制。RF MEMS移相器的出现有望克服这些不足,与传统移相器相比,它具有损耗小、成本低、重量轻等优点,目前出现的RF MEMS移相器主要有开关线型移相器、反射式移相器以及分布式移相器等,其中开关线型移相器存在着平面尺寸较大的缺点,主要是由传输线长度较大造成的。本文在研究叉指式共面波导的基础上,以改良型的叉指式共面波导作为传输路径,与并联电容式开关相结合,设计了整体尺寸较小的X波段三位开关线型移相器
     本文首先设计了改良型的叉指式共面波导,这种波导采用周期性弯曲结构,并采用MEMS技术对接地线进行加厚。弯曲结构能有效缩小传输线的纵向尺寸,加厚的接地线能够更好地隔断弯曲信号线平行段之间的相互耦合干扰。另外,地线加厚还能改善信号线上表面电流的分布,减小导体损耗,降低特性阻抗;还能限制电场在空间的分布,减小辐射损耗。采用高频电磁场仿真软件对这种结构进行模拟,通过对比仿真结果与测试结果,分析了各结构参数对叉指式共面波导微波性能的影响,测试的插入损耗可以达到-0.33dB/cm,回波损耗在5~20GHz范围内存在两个波谷,并且波谷出现的位置随叉指式共面波导结构参数的变化有规律的移动。在对回波损耗波谷位置变化研究的基础上,为了能从信号线上下两个方向隔断弯曲信号线平行段之间的相互耦合干扰,设计了地线埋入式叉指式共面波导,仿真结果与测试结果一致,地线埋入后回波损耗波谷位置有显著变化,并且波谷的位置也随结构参数的变化有规律的移动。
     本文设计的开关线型移相器是以叉指式共面波导结构为传输路径,静电开关采用的是并联电容式开关,开关上极板为卍型,由四个L型梁支撑,采用有限元仿真的方法分析了各结构参数对有效弹性系数的影响,简要分析了开关的静电激励以及电磁模型。三位移相器是由0/45°、0/90°、0/180°三个一位移相器连接而成,共采用了9个静电开关,整体尺寸为5.5mm×7mm。对开关进行测试,驱动电压为36.5V,在6~15GHz范围内隔离度好于25dB;对移相位的测试,1°GHz时测出的移相结果分别是38.1°、94.7°和188.3°,相应的插入损耗分别为-6.6dB、-8.6dB和-9dB,这三种移相状态下的回波损耗都好于-31.5dB。
     本文研究了叉指式共面波导以及开关线型移相器所涉及的工艺技术,确定合适的工艺方案和工艺参数,选用合适的材料,涉及的基本工艺包括溅射、电镀、光刻、刻蚀、研磨、牺牲层技术等,并根据器件设计和实验要求,改进了一些常规工艺以保证器件的成功制作。
With the employment of MEMS technology in radio frequency(RF) field, RF MEMS, a new research field appears which makes the RF devices' micromation possible. Compared with the traditional RF devices, the components and systems fabricated by RF MEMS technology have smaller volume, easier integration and higher performance than traditional RF devices. RF micromachining and MEMS technology promise to provide an innovative approach in the development of effective and low-cost circuits and systems, and are expected to have significant impact on existing RF architectures in radar and communications by reducing weight, cost, size, and power dissipation. MEMS technologies provide good solutions for realizing miniature, low-power and high-frequency wireless communication systems.
     Transmission line is a primary component of microwave devices and many kinds of novel transmission lines have been designed since MEMS technology was introduced into RF field. As to coplanar waveguide which is widely used in MMIC, several new structures such as Elevated CPW, Overlay CPW and Microshield CPW were designed and fabricated. These structures have better performance in some aspects, reducing loss or widening available impedance range, but they still have much limitation in their practical application for their complicated fabrication process and can not minimize the size of devices effectively. To overcome these disadvantages, the structure of traditional CPW was modified and a novel interdigital CPW was designed in this paper.
     Phase shifter is a vital component of modern communication and radar systems and now it is mainly realized based on ferrite material, PIN diode and FET switch. These phase shifters may have high loss, or high cost, or high power consumption which limit their application. RF MEMS phase shifter was designed to avoid these disadvantages which has low loss,low cost and weight. Since then, several kinds of phase shifter, such as switched-line phase shifters, reflect-line phase shifter and distributed phase shifter, were designed and fabricated. In this paper a X-band 3-b switched-line phase shifter was designed using shunt capacitive switch, based on the study of interdigital CPW.
     The interdigital CPW has a periodic bend structure which can minimize the size in the longitudinal direction. Its ground lines were thickened through MEMS technology which can improve the distribution of the surface current density on the signal line and consequently reduce the conductor loss. It also can limit the distribution of the electric field in the space which can reduce the radiation loss. Another merit is that the thickened ground lines can reduce the interference between the adjacent parallel sections of the signal line. This design was evaluated by high frequency electromagnetic simulation software. Studied the simulated results and measured results, the effects of interdigital CPW’s sturcture parameters on its performance were ayalysised. The measured insertion loss can be lowered to -0.33dB/cm and the return loss has wave hollows within 5~20GHz and its position can be moved with the structure parameters. Based on the study of the wave hollows' position, the interdigital CPW with ground lines partly buried was designed and simulated. From the simulated results and measured results we found that its positons has distinctly been moved and the interference between the adjacent parallel sections of the signal line can be reduced above and under it.
     The switched-line phase shifter consists of interdigital CPW and shunt capacitive switch which has卍-type movable ploar plate. The plate is supported by four L-shape beams whose effective elastic coefficient was calculated by FEM and the effect of structure parameters on it was studied. Also the electrostatic actuated principle and electromagnetic model was built and analysised. The 3-b phase shifter consists of four 1-b phase shifter with 0/45°, 0/90°and 0/180°phase shift respecitvely and has 9 switches and the whole size is 5.5mm×7mm. The measured pull-in voltage is 36.5V and its isolation is higher than 25dB within 6~15GHz. The measured phase shifts at 10GHz are 38.1°, 94.7°and 188.3°and their insertion losses are -6.6dB, -8.6dB and -9dB respectively and their return losses are all higher than -31dB.
     The related micromachining technology has been studied for interdigital CPW and switched-line phase shifter, and the proper method, parameter and materials have been selected. The basic micromachining technologies used include sputtering, electroplating, photolithography, etching, grinding and sacrificial layer technology. In order to ensure the devices being fabricated successfuly, some normal micromachining technologies have been modified according to the design and actual requirement.
引文
[1] M.Bao, W. Wang. Future of microelectromechanical systems. Sensors and actuations A. 1996(56):135-141.
    [2] Zhen Yang, Aiping Wen. Key technology and design methodology of SOC. Microelectronics Technology, 2001,141(5): 30-34.
    [3]李志坚.微电子技术的又一次革命——微电子机械系统(MEMS)发展展望.科技导论. 1997(9):3-5.
    [4]李志坚,周润德. ULSI器件电路与系统.北京:科学出版社. 1996.
    [5] Susumu Sugiyama. Synchrotron radation micro lithography and etching for MEMS fabrication. Pro. IEEE, Microprocesses and Nanotechnology Conference. 2001:264-265.
    [6] A. M. Madni, L. A. Wan. Microelectromechanical systems: an overview of current state-of-the-art. Proc. IEEE, Aerospace Conference. 1998:21-28.
    [7]章吉良,杨春生等.微机械系统及其相关技术.上海:上海交通大学出版社. 1999.
    [8] Xing Zhang, Yilong Hao, Zhihong Li, et al. MEMS technology. Electronic Science and Technology Review. 1999(4):2-6
    [9] Sung-Keun Lee, Kwang-Cheol Lee, Lee S S. Microlens Fabrication by the Modified LIGA Process, Proc. IEEE, Micro Electro Mechanical Systems. 2002:520-523.
    [10] H Debeda, T. Vfreyhold, J Mohr, et al. Development of miniaturized piezoelectric actuators for optical applications realized using LIGA Technology. IEEE Journal of Microelectromechanical systems. 1999,8(3):258-263.
    [11] Xilin Qi, Feifei Qu. SOC system on a chip, MEMS micro-electro-mechanical system and smart dust. Control and Automation. 2003,19(6):1-3.
    [12] Qingde Zhuang, Shanci Wang, Shuwang Chen. Development and current status of MEMS in Japan. Journal of Transducer Technology. 2001,20(11):63-65.
    [13] Liren Ma, Zhonghua Jiang. Biochip. Beijing:Chemical Industry Press. 2000.
    [14]武国英. RF MEMS器件的研究及其应用前景.前沿技术. 2003:37-40.
    [15] Zhengping Zhao, Yongjun Yang. IT-MEMS technology. Micronanoelectronic Technology. 2002,39(3):6-11.
    [16] Linda P. B. Katehi, James F. Harvey, Elliott Brown. MEMS and Si micromachined circuits forhigh-frequency applications. IEEE Transactions on Theory and Techniques. 200,50(3):858-866.
    [17] Jung-Chin Chiao. MEMS RF devices for antenna applications. Proc. IEEE, APMC’. 2000:895-898.
    [18] C. Goldsmith, J. Kleber, B. Pillans, et al. RF MEMS: Benefits and challenges of an evolving RF switch technology. Proc. IEEE, GaAs IC Symposium. 2001:147-148.
    [19] Chang Liu. Micro electromechanical systems: technology and future applications in circuits. Proc. IEEE, Solid-state and integrated circuit technology. 1998:928-931.
    [20] Chunguang Liang. Technology of RF MEMS. Micronanoelectronic Technology. 2002,39(1):6-8.
    [21] Newell W. E. Miniaturization of Tuning Forks. Science. 1968(161):1320-1326.
    [22] Nathanson H. C., Newell W. E., et al. The Resonant Gate Transistor, IEEE Trans. Electron Devives. 1967,ED-14:117-133.
    [23] F. D. Banon, et al. IEDM Tech. Digest. 1999:773-776.
    [24] Wang K.. Wong A. C., Nguyen T. C. VHF Free-free Beam High-Q Micromechanical Resonators. Journal of Microelectromechanical Systems. 2000(9):347-360.
    [25] Aleksander Dec, Ken Suyama. Micromachined Electro-Mechanically Tunable Capacitors and Their Applications to RF IC’s. IEEE Transactions on Microwave Theory and Techniques. 1998,46(12):2587-2596.
    [26] Suyama K. RF Micromachined Varactors with Wide Tuning Range. Radio Frequency Integrated Circuits Symposim. 1998:309-312.
    [27] Yoon J. B., Nguyen T. C. A High-Q Tunable Micromechanical Capacitor with Movable Dielectric for RF Applications. IEDM Technical Digest. 2000:489-492.
    [28] Kamogowa K., Nishikawa K., Toyoda I. A Novel High-Q and Wide-frequency Range Inductor Using Si 3-D MMIC Technology. IEEE Microwave and Guided Wave Letter. 1999,9(1):16-18
    [29] Chang J. Y., et al. Large Suspended Inductors on Silicon and Their Use in a 2um CMOS RF Amplifier. IEEE Electron Device Letter. 1993,14(5):246-248.
    [30] Park M., Lee S., et al. High-Q CMOS Compatible Microwave Inductors Using Double-Metal Interconnection Silicon Technology. IEEE Microwave and Guided Wave Letter. 1997,7(2):45-47.
    [31] Jun-Bo Yoon, Bon-Kee Kim, Chul-Hi Han, Euisik Yoon. Surface Micromachined Solenoid On-Si and On-Glass Inductors for RF Applications. IEEE Electron Device Letters. 1999,20(9):487-489.
    [32]格普塔K. C.,加格R,查德哈R.微波电路的计算机辅助设计.冯忠华译北京:科学出版社. 1986.
    [33]房少军,王百锁,金红.具有金属底板非对称波导的研究.无线通信技术. 2001,10(4):37-39.
    [34] Jae-Hyoung Park, Chang-Wook Bake, Sanghwa Jung, Hong-Teuk Kim. Novel Micromachined Coplanar Waveguide Transmission Lines for Application in Millimeter-Wave Circuits. Jpn. J. Appl. Phys. 2000(39):7120-7124.
    [35] Hong-Teuk Kim, Sanghwa Jung, et al. A new micromachined overlap CPW structure with low attenuation over wide impedance ranges. IEEE MTT-S Digest 2000:299-302.
    [36] Hong-Teuk Kim, Sanghwa Jung, et al. A new micromachined overlay CPW structure with low attenuation over wide impedance ranges and its application to low-pass filters. IEEE Transactions on Microwave Theory and Techniques. 2001(49):1634-1639.
    [37] Ignacio Llamas-Garro, Alonso Corona-Chavez. Micromachined Transmission Lines for Millimeter-Wave Applications. Proc. IEEE Int. Conference on Electronics, Communications and Computers. 2006.
    [38] Veljko Milanovic, Michael Gaitan, Edwin D. Bowen. Micromachined Microwave Transmission Lines in CMOS Technology. IEEE Transactions on Microwave Theory and Techniques. 1997(45):630-635.
    [39] U.Bhattacharya, S. T. Allen, M. J. W. Rodwell. DC-725GHz Sampling Circuits and Subpicosecond Nonlinear Transmission Lines Using Elevated Coplanar Waveguide. IEEE Microwave and Guided Wave Letters, 1995(5):50-52.
    [40] Yue Yan, Protap Pramanick. Finite-Element Analysis of Generalized V- and W- shaped Edge and Broadside-Edge-Coupled Shielded Microstrip Lines on Anisotropic Medium. IEEE Transactions on Microwave Theory and Techniques. 2001(49):1649-1657.
    [41] Anna Reichelt, Ingo Wolff. New Coplanar-Like Transmission Lines for Application in Monolithic Integrated Millimeter-Wave and Submillimeter-Wave Circuits. IEEE MTT-S Digest. 1998:99-102.
    [42] David A. Thompson, Robert L. Rogers. The Interdigital Coplanar Waveguide: A New Low-Impedance Micromachinable Planar Structure. IEEE Microwave and Guided Wave Letters. 1998(8):257-259.
    [43] V. T. Vo, L. Krishnamurthy, Q. Sun, A. A. Rezazadeh, R. Sloan. 3-D Low-loss Coplanar Waveguide Transmission Line Structures With Wide Range of Characteristic Impedance for MMICs. IEEE Transactions on Microwave Theory and Techniques. 2006,54(6):2864-2891.
    [44] F. Schnieder, R. Doerner, W. Heinrich. High-Impedance Coplanar Waveguides with Low Attenuation. IEEE Microwave and Guided Wave Letters. 1996(6):117-119.
    [45] Hideki Kamitsuna. A Very Small, Low-loss MMIC Rat-race Hybrid Using Elevated Coplanar Waveguides. IEEE Microwave and Guided Wave Letters. 1992(2):337-339.
    [46] Kwok-Keung, M. Cheng, Ian D. Robertson. Simple and Explicit Formulas for the Design and Analysis of Asymmetrical V-shaped Microshield line. IEEE Transactions on Microwave Theory and Techniques. 1995(43):2501-2504.
    [47] N. Yuan, C. Ruan, W. Lin, J. He, C. He. Coplanar Coupled Lines the Effects of the Presence of the Lateral Ground Planes, Upper and Lower Ground Planes, and the V-shaped Microshield Ground Walls. IEE Proc.Microw. Antennas Propag. 1995(142):63-66.
    [48] Thomas M. Weller, Linda P. B. Katehi, Gabriel M. Rebeiz. High Performance Microshield Line Components. IEEE Transactions on Microwave Theory and Techniques. 1995(43):534-543.
    [49] Jong-Man Kim, Kyongtae Chu, Sanghyo Lee, et al. Novel Compact Low-loss Millimeter-wave Filters Using Micromachined Overlay and Inverted Overlay Coplanar Waveguide Transmission Lines with Defected Ground Structures. Journal of Micromechanics and Microengineering. 2006(16):2183-2191.
    [50] Nick J. Farcich, P. M. Asbeck. A Three-Dimensional Transmission Line with Coplanar Waveguide Features. Microwave and Optical Technology Letters. 2006(48):2189-2192.
    [51] Yukihisa Yoshida, Tamotsu Nishino, Jiwei Jiao, Sang-Seok Lee, Yoshiyuki Suehiro. A Novel Grounded Coplanar Waveguide with Cavity Structure. IEEE 2003.
    [52] Rainee N. Simons. Coplanar Waveguide Circuits, Components and Systems. John Wiley and Sons, Inc. 2001.
    [53] Gabriel M. Rebeiz, Guan-leng Tan, Joseph S. Hayden. RF MEMS Phase Shifters: Design and Applications. IEEE Microwave Magazine. 2002(3):72-81.
    [54] Vijay K. Varadan, K. J. Vinoy, K. A. Jose. RF MEMS应用指南.赵海松邹江波译.北京:电子工业出版社. 2005.
    [55] Gabriel M. Rebeiz, Jeremy B. Muldavin. RF MEMS switches and switch circuits. IEEE Microwave Magazine. 2001(2):59-71.
    [56]娄建中,赵正平,杨瑞霞,吕苗,胡小东.射频微机械移相器.半导体技术. 2004(1):31-34.
    [57]张永华,丁桂甫,蒋振新,蔡炳初,沈民宜.基于MEMS技术的射频移相器.微细加工技术. 2004(1):73-80.
    [58]卿健,石艳玲,赖宗声,朱自强. MEMS移相器及其在微型通信系统中的应用. 2002(32):241-244.
    [59] Guan-Leng Tan, Robert E. Mihailovich, Jonathan B. Hacker, Jeffrey F. DeNatale, Gabriel M. Rebeiz. Low-Loss 2- and 4-bit TTD MEMS Phase Shifters Based on SP4T Switches. IEEE Transactions on Microwave Theory and Techniques. 2003(51):297-304.
    [60] B. R. Norvell, R. J. Hancock, J. K. Smith, M. L. Pugh, S. W. Theis, J. Kviatkofsky. Micro Electro Mechanical Switch(MEMS) Technology Applied to Electronically Scanned Arrays for Spaced Based Radar. Proc. Aerosp. Conf. 1999:239-247.
    [61] Jad Rizk, Guan-Leng Tan, Jeremy B. Muldavin, Gabriel M. Rebeiz. High-Isolation W-Band MEMS Switches. IEEE Microwave and Wireless Components Letters. 2001,11(1):10-12.
    [62] Guan-Leng Tan, Gabriel M. Rebeiz. A DC-Contact MEMS Shunt Switch. IEEE Microwave and Wireless Components Letters. 2002,12(6):212-214.
    [63] Charles L. Goldsmith, Zhimin Yao, Susan Eshelman, David Denniston. Performance of Low-Loss RF MEMS Capacitive Switches. IEEE Microwave and Guided Wave Letters. 1998,8(8):269-271.
    [64] I. De Wolf, W. M. van Spengen. Techniques to Study the Reliability of Metal RF MEMS Capacitive Switches. Microelectronics Reliability. 2002(42):1789-1794.
    [65] Jeremy B. Muldavin, Gabriel M. Rebeiz. High-Isolation CPW MEMS Shunt Switches—Part 1:Modeling. IEEE Transactions Microwave Theory and Techniques. 2000,48(6):1045-1052.
    [66] Jeremy B. Muldavin, Gabriel M. Rebeiz. High-Isolation CPW MEMS Shunt Switches—Part 2:Modeling. IEEE Transactions Microwave Theory and Techniques. 2000,48(6):1053-1056.
    [67] Jonathan. B. Hacker, Robert. E. Mihailovich, Moonil Kim, Jeffrey F. DeNatale. A Ka-Band 3-bit RF MEMS True-Time-Delay Network. IEEE Transactions Microwave Theory and Techniques. 2003,51(1):305-308.
    [68] E. Stenger, M. Sarantos, E. Niehenke, H. Fudem, C. Schwerdt, F. Kuss, D. Strack, G. Hall, J. Masti. A Miniature, MMIC One Watt W-Band Solid-State Transmitter. IEEE MTT-S Int. Microwave Symp. Dig. 1997(2):431-434.
    [69] M. Kim, J. B. Hacker, R. E. Mihailovich, J. E. DeNatale. A DC-to-40GHz Four-Bit RF MEMS True-Time Delay Network. IEEE Microwave and Wireless Components Letters. 2001,11(2):56-58.
    [70] B. Pillans, S. Eshelman, A. Malczewski, J. Ehmke, C. Goldsmith. Ka-Band RF MEMS PhaseShifters. IEEE Microwave and Guided Wave Letters. 1999,9(12):520-522.
    [71] M. J. Schindler, M. E. Miller. A 3 Bit K/Ka Band MMIC Phase Shifter. Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig. 1988:95-98.
    [72] Jad B. Rizk, Gabriel M. Rebeiz. W-Band CPW RF MEMS Circuits on Quartz Substrates. IEEE Transactions Microwave Theory and Techniques. 2003,51(7):1857-1862.
    [73] G. M. Rebeiz, J. B. Muldavin. RF MEMS Switches and Switch Circuits. IEEE Microwave Magzine. 2001(2):59-71.
    [74] Nickolas Kingsley, Pete Kirby, George Ponchak, John Papapolymerou. 14GHz MEMS 4-Bit Phase Shifters on Silicon. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. 2004:326-328.
    [75] G. D. Lynes, G. E. Johnson, B. E. Hudkleberry, N. H. Forrest. Design of a Broad-Band 4-Bit Loaded Switched-Line Phase Shifter. IEEE Transactions on Microwave Theory and Techniques. 1974(22):693-697.
    [76] S. Pacheco, C. T. Nguyen, L. P. B. Katehi. Micromechanical Electrostatic K-Band Switches. IEEE Microwave Theory Tech. Symp. 1998:1569-1572.
    [77] A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, C. L. Goldsmith. X-Band RF MEMS Phase Shifters for Phased Array Applications. IEEE Microwave and Guided Wave Letters. 1999,9(12):517-519.
    [78] E. R. Brown. RF MEMS Switches for Reconfigurable Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques. 1998(46):1868-1880.
    [79] R. E. Mihailovich, M. Kim, J. B. Hacker, E. A. Sovery, J. Studer, J. A. Higgins, J. F. DeNatale. MEM Relay for Reconfigurable RF Circuits. IEEE Microwave Wireless Components Letters. 2001(11):156-158.
    [80] Hong-Teuk Kim, Jae-Hyoung Park, Joungwa Yim, Yong-Kweon Kim, Youngwoo Kwon. A Compact V-Band 2-Bit Relfelction-Type MEMS Phase Shifter. IEEE Microwave and Wireless Components Letters. 2002,12(9):324-326.
    [81] J. H. Park, K. Kang, N. Kang, C. Kim, C. Song, C. Y. Cheon, Y. Kwon, Y. K. Kim. A 3-Voltage Actuated Micromachined RF Switch for Telecommunications Applications. 11th Int. Conf. Solid-State Sens. Actuators Transducers. 2001:1540-1543.
    [82] Sanghyo Lee, Jae-Hyoung Park, Hong-Teuk Kim, Jung-Mu Kim, Yong-Kweon Kim, Youngwoo Kwon. A 15-to-45GHz Low-Loss Analog Reflection-Type MEMS Phase Shifter. IEEE MTT-SDigest. 2003:1493-1496.
    [83] Sanghyo Lee, Jae-Hyoung Park, Hong-Teuk Kim, Jung-Mu Kim, Yong-Kweon Kim, Youngwoo Kwon. Low-Loss Analog and Digital Reflection-Type MEMS Phase Shifters With 1:3 Bandwidth. IEEE Transactions on Microwave Theory and Techniques. 2004,52(1):211-219.
    [84] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Tadashi, S. Urasaki. An Ultra-Broad-Band Reflection-Type Phase-Shifter MMIC with Series and Parallel LC Circuits. IEEE Transactions on Microwave Theory and Techniques. 2001(49):2446-2452.
    [85] Joseph S.Hayden, Gabriel M. Rebeiz. Very Low-Loss Distributed X-Band and Ka-Band MEMS Phase Shifters Using Metal-Air-Metal Capacitors. IEEE Transactions on Microwave Theory and Techniques. 2003,51(1):309-314.
    [86] Joseph S.Hayden, Gabriel M. Rebeiz. 2-Bit MEMS Distributed X-Band Phase Shifters. IEEE Microwave and Guided Wave Letters. 2000,10(12):540-542.
    [87] Joseph S.Hayden, Gabriel M. Rebeiz. Low-Loss Cascadable MEMS Distributed X-Band Phase Shifters. IEEE Microwave and Guided Wave Letters. 2000,10(4):142-144.
    [88] Joseph S.Hayden, Gabriel M. Rebeiz. A Low-Loss Ka-Band Distributed MEMS 2-Bit Phase Shifter Using Metal-Air-Metal Capacitors. IEEE MTT-S Digest. 2002:337-340.
    [89] Hong-Teuk Kim, Jae-Hyoung Park, Sanghyo Lee, Seongho Kim, Jung-Mu Kim, Yong-Kweon Kim, Youngwoo Kwon. V-Band 2-B and 4-B Low-loss and Low-Voltage Distributed MEMS Digital Phase Shifter Using Metal-Air-Metal Capacitors. IEEE Transactions on Microwave Theory and Techniques. 2002,50(12):2918-2923.
    [90] Hong-Teuk Kim, Jae-Hyoung Park, Yong-Kweon Kim, Youngwoo Kwon. V-Band Low-Loss and Low-Voltage Distributed MEMS Digital Phase Shifter Using Metal-Air-Metal Capacitors. IEEE MTT-S Digest. 2002:341-344.
    [91] Yu Liu, Andrea Borgioli, Amit S. Nagra, Robert A. York. K-Band 3-Bit Low-Loss Distributed MEMS Phase Shifter. IEEE Microwave and Guided Wave Letters. 2000,10(10):415-417.
    [92] Juo-Jung Hung, Laurent Dussopt, Gabriel M. Rebeiz. Distributed 2- and 3-Bit W-Band MEMS Phase Shifters on Glass Substrates. IEEE Transactions on Microwave Theory and Techniques. 2004,52(2):600-606.
    [93] Joseph S. Hayden, Andrew Malczewski, Jennifer Kleber, Charles L. Goldsmith, Gabriel M. Rebeiz. 2 and 4-Bit DC-18GHz Microstrip MEMS Distributed Phase Shifters. IEEE MTT-S Digest. 2001:219-222.
    [94] N. Scott Barker, Gabriel M. Rebeiz. Optimization of Distributed MEMS Transmission-Line Phases——U-Band and W-Band Designs. IEEE Transactions on Microwave Theory and Techniques. 2000,48(11):1957-1966.
    [95] Amit S. Nagra, Robert A. York. Distributed Analog Phase Shiters with Low Insertion Loss. IEEE Transactions on Microwave Theory and Techniques. 1999,47(9):1705-1711.
    [96] Andrea Borgioli, Yu Liu, Amit S. Nagra, Robert A. York. Low-Loss Distributed MEMS Phase Shifter. IEEE Microwave and Guided Wave Letters. 2000,10(1):7-9.
    [97] N. S. Barker, Gabriel M. Rebeiz. Optimization of Distributed MEMS Phase Shifters. IEEE MTT-S Digest. 1999:299-302.
    [1] K.C.格普塔,R加格,R查德哈.微波电路的计算机辅助设计[M].北京:科学出版社. 1986:43-46.
    [2]房少军,王百锁,金红.具有金属底板非对称波导的研究[J].无线电通信技术. 2001,10(4):37-49.
    [3] Wen, C.P. Coplanar Waveguide : A Surface Strip Transmission Line Suitable for Non-Reciprocal Gyromagnetic Device Application. IEEE Trans. Microwave Theory Tech. 1969(17):1087-1090.
    [4] Davis, M.E.,et al., Finite-Boundary Correction to the Coplanar Waveguide Analysis. IEEE Trans. Microwave Theory Tech. 1973(21):594-596.
    [5] Hatsuda,T., Computation of Coplanar-Type Strip LIne Characteristic by Relaxation Method and its Applications to Microwave Circuits. IEEE Trans. Microwave Theory Tech. 1975(23):795-802.
    [6] Yamashita, E., and S. Yamazaki, Parallel-strip Line Embedded in or Printed on a Dielectric Sheet, IEEE Trans. Microwave Theory Tech. 1968(16):972-973.
    [7] Yamashita, E., and K. Atsuki, Analysis of Microstrip-like Transmission Lines by Non-Uniform Discretization of Integral Equation, IEEE Trans. Microwave Theory Tech. 1976(24):195-200.
    [8] Gupta, K.C., et al., Microstrip Lines and Slotlines. Dedham, Mass:Artech House, 1979.
    [9] Wheeler, H.A., Formulas for the Skin Effect, Proc.IRE, 1942(30):412-424.
    [10] Hong-Teuk Kim, Sanghwa Jung, Jae-Hyoung Park, Chang-Wook Baek, Yong-Kim, and Youngwoo Kwon. A New Micromachined Overlap CPW Structure with Low Attention Over Wide Impedance Ranges. IEEE MTT-S. Dig. 2000:299-302.
    [11] Robert W. Jackson. Considerations in the Use of Coplanar Waveguide for Millimeter-wave Integrated Circuits. IEEE Trans. Microwave Theory and Tech. 1986,34(12):1450-1456.
    [12] David A. Thompson and Robert L. Rogers. The Interdigital coplanar waveguide: a new low-impedance micromachinable planar structure. IEEE Microwave and Guided Wave Lett. 1998,8(7):257-259.
    [13] Hong-Teuk Kim, Sanghwa Jung, Jae-Hyoung Park, Chang-Wook Baek, Yong-Kim and Youngwoo Kwon. A New Micromachined Overlay CPW Structure with Low Attenuation over Wide Impedance Ranges and its Application to Low-pass Filters. IEEE Trans. Microwave Theory and Tech. 2001,49(9):1634-1639.
    [14] Hargsoon Yoon, Vijay K. Varadan. Design and Performance of Bilateral Interdigital Coplanar Waveguide Phase Shifter for RF Communication Applications. J. Microlith., Microfab., Microsyst. 2004,3(3):459-466.
    [15] U. Bhattacharya, S.T.Allen, and M. J. W. Rodwell. DC-725 GHz Sampling Circuits and Subpicosecond Nonlinear Transmission Lines Using Elevated Coplanar Waveguide. IEEE Microwave and Guided Wave Lett. 1995,5(2):50-52.
    [16] F. Schnieder, R. Doerner, and W. Heinrich. High-impedance Coplanar Waveguides with Low Attenuation. IEEE Microwave and Guided Wave Lett. 1996,6(3):117-119.
    [17]张敏. CST微波工作室用户全书.成都:电子科技大学出版社. 2004年.
    [18] K.E. Pertersen. Micromechanical Membrane Switch on Silion. IBM J. Res. Dev. 1979,23(4):376-385.
    [19] L.E. Larson, R.H. Hackett, et al. Micromachined Microwave Actuator MIMAC Technology-A NEW Turning Approach for Microwave Integrated Circuits. IEEE MMIC Symposium. 1991:27-30
    [20] J. Jason Yao, M.Frank Chang. A Surface Micromachined Miniature Swtich for Telecommunication Application with Signal Frequencies from DC up to 4GHz. Transducers' 1995:384-387
    [21] C. Goldsmith, W.-R. Wu, B. Norvell. Micromechanical Membrane Switches for Microwave Applications. IEEE MTT-S Digest. 1995:91–94.
    [22] C. Goldsmith, J. Randall, S. Eshelman, T. H. Lin, D. Denniston, S. Chenm, et al. Characteristics of Micromachined Switches at Microwave Frequencies. IEEE MTT-S Digest. 1996:1141–1144.
    [23] S.Pacheco, Clark T.C. Nguyen, Micromachined Electrostatic K-band Switches. IEEE MTT-S Digest. 1998:87-91.
    [24] C.L. Goldsmith, Z.Yao, et al. Performance of Low-loss RF MEMS Capactive Switches. IEEE Microwave Guided Wave Lett. 1998,8(8):269-271.
    [25] J.B. Muldavin and G.M. Rebeiz. All-metal series and series/shunt MEMS switches. IEEE Microwave Wireless Comp. Lett. 2001,11(9):373-375.
    [26] S.-C. Shen and M. Feng. Low Actuation Voltage RF MEMS Switches with Signal Frequencies from 0.25GHz to 40GHz. Proceeding of the IEEE International Electronics Device Meeting. 1999:689-692.
    [27] D. Perouls, S.Pacheco and L.P.B. Katehi. MEMS Devices for High Isolation Switching andTunalble Filtering. IEEE MTT-S International Microwave Symposium Digest. Boston, MA, 2000:1217-1220.
    [28]杨桂通.弹性力学.北京:高等教育出版社. 1998.
    [29]程昌钧,朱媛媛.弹性力学.上海:上海大学出版社. 2005.
    [30] W. Weaver, Jr., S.P. Timoshenko, and D.H. Young. Vibration Problems in Engineering. 5th edition, John Wiley&Sons, New York, 1990.
    [31] Gabriel M. Rebeiz. RF MEMS Theory, Design and Technology. New York: John Wiley&Sons. 2003.
    [32] M. Andrews, I. Harris, and G. Turner. A Comparison of Squeeze-film Theory with Measurements on a microstructure. Sensors and Actuators A. 1993(36):79-87.
    [33] W.S. Griffen, H.H. Richardson, and S. Yamanami. A Study of Fluid squeeze-film damping. J. Basic Eng. Trans. ASME. 1966:451-456.
    [34] J.J. Blech. On Isothermal Squeeze films. J. Lubrication Tech. 1983(36):615-620.
    [1]廖承恩.微波技术基础.西安:西安电子科技大学出版社. 1994年第一版.
    [2]高志山,陈进榜.表面微观形貌的显微干涉检测原理及干涉显微镜发展现状.光学仪器. 1999,21(6):36-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700