用户名: 密码: 验证码:
相邻建筑物地震碰撞研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相邻建筑物碰撞是指地震作用下其间距无法满足相对位移要求时造成的侧向撞击,常常导致或加剧结构破坏。目前,我国城镇现存建筑,尤其是临街建筑中多数防震缝宽度不足甚至为零。国内外近年的几次地震表明,这些建筑在强烈地震作用下,极易发生碰撞破坏,造成生命和财产巨大损失。因此,开展相邻建筑地震碰撞破坏研究,发展相邻建筑抗震能力评估方法具有重要的理论意义和工程应用价值。
     针对相邻建筑地震碰撞破坏问题,本文主要进行了两方面研究。首先,推导了考虑屈曲的钢筋本构方程,基于纤维模型建立钢筋混凝土框架梁柱单元,模拟了清华大学公布的一个框架结构边柱拟静力试验加载过程;与试验结果对比表明,本文建立的梁柱单元模型能满足计算要求;选取Hertz-damp接触单元模型,推导了考虑碰撞的结构动力方程;提出变积分步长法,兼顾了计算效率和碰撞模拟精度;模拟了相邻钢筋混凝土框架结构地震碰撞过程,编写后处理程序,显示梁柱单元破坏指数的变化过程,分析了碰撞破坏致灾原因;研究了相邻建筑结构破坏指数与其间距的关系,给出相邻建筑间距取值方法。其次,本文提出相邻建筑物碰撞谱的概念,分析了碰撞谱的影响因素和特征,可为相邻建筑物抗震能力评估以及防撞、加固措施研究提供参考。主要结论如下:
     (1)相邻钢筋混凝土框架结构碰撞过程模拟
     碰撞过程分析表明,多数情况下随防震缝的加宽,碰撞力幅值和碰撞次数降低,结构破坏程度减轻;随着PGA的增大,碰撞力的幅值增加,碰撞次数增多;碰撞力峰值与PGA基本呈线性关系,说明PGA对结构碰撞影响很大;当碰撞力峰值较高时,结构的侧向振动主振型会发生改变;碰撞会使得结构水平加速度反应放大,高频成分会增多,并且产生方向性差异;碰撞对结构水平位移反应的影响明显小于加速度,位移反应的主要特征就是单方向位移受限;单元破坏指数分析表明,防震缝较小时碰撞会造成相邻结构局部或整体破坏程度加重;分析结构破坏指数与相邻结构间距的关系,发现在小于无碰撞间距的一定区间内时,结构的破坏指数稍微降低或稍微增加,基本保持不变,本文认为此区间内结构破坏程度不变,建议相邻结构间距取该区间的最小值,算例表明本文建议间距比无碰撞间距缩小10%左右,可节约土地成本,给设计施工带来方便。
     (2)相邻建筑碰撞谱研究
     碰撞谱既能反映地震动的特征,也能考虑相邻建筑之间碰撞对结构地震反应的影响。选取76条最不利设计地震动进行碰撞谱计算,主要在弹性范围内研究了不同参数对碰撞谱的影响,为近似估计碰撞影响提供参考。分析表明防震缝宽度和PGA对碰撞谱曲面的影响与时程分析结果一致。当质量、阻尼比、延性系数相同时,若不考虑地震动输入相位差,相邻结构周期相同则无碰撞。另外,结构的阻尼比、延性系数越大,质量越轻、接触刚度越低,相邻结构之间的碰撞力越小。碰撞对小阻尼比结构反应峰值的影响比大阻尼比结构要大。结构的质量越大,碰撞力越大,但碰撞对结构反应的影响越小;质量小的结构的反应受碰撞影响较大。碰撞对延性系数大的结构加速度反应峰值影响较大。降低相邻建筑物之间的接触刚度,可有效避免相邻结构地震碰撞破坏。场地类型对碰撞作用有一定影响,但随PGA增大,影响变小。
Pounding between adjacent buildings can be referred as a lateral collision for thedistance between adjacent buildings failing to satisfy the demand of relative displacementunder earthquake. Building structures are often built close to each other as in the case ofresidential building complexes or in downtown of metropolitan cities where the cost of landis high. Due to the close proximity of these structures, they have often been found to impacteach other while responding to earthquake induced strong ground motion and brings greatcasualties and economic losses. So, the study of pounding between adjacent buildings, and todevelop seismic capacity assessment for adjacent buildings contribute a lot in the fields ofboth theoretical significance and engineering value.
     With the aim of studying pounding between adjacent buildings, the thesis mainlyfocuses on the following two aspects. Firstly, the thesis derives the constitutive equations ofsteel considering buckling and establishes a beam element based on fiber model. The loadingprocess of quasi-static test made by Tsinghua University is simulated. The results show thatthe beam element is available for calculation of seismic response. The paper selectsHertz-damp model, which can account for non-linearity associated with impact as well as theenergy dissipated during collision. Dynamic equations of adjacent RC frame structuresconsidering pounding get derived with Hertz-damp model. The method of variableintegration step, guaranteeing both efficiency and accuracy, is proposed. The collisionprogress of adjacent frame structures is simulated and varying process of constructiondamage index is provided by a post processor program. Then the thesis analyzes the cause ofcollision damage and the relation between structural damage index and gap between adjacentbuildings. Secondly, the thesis offers the conception of pounding spectrum of adjacentbuildings, at the same time, analyzes its characteristics and influencing factors, which canoffer good references for seismic capacity assessment and the study of pounding resistanceand reinforcement. The main contents and conclusions are as follows:
     (1) Simulation of pounding between adjacent RC frame buildings
     The analyses of pounding between buildings show that:1.in most cases, with wideningthe seismic joint, the structure becomes less damaged, and the collision force and the numberof pounding decrease;2.when PGA increases, the impact force and the number of poundingwill also increase;3.peak force and PGA appear to have linear relation, which indicates thatthe PGA has a significant influence on pounding;4.when the peak force is high, the mainmode shape of the lateral vibration will change;5.the pounding of structure will magnifyhorizontal acceleration, increase high frequency components, and generate directionaldifferences;6.impact of pounding on horizontal displacement is significantly less thanacceleration, and one of the main characteristics of the displacement reaction is being limited in a single direction;7.the analyses of unit damage index show that smaller seismic joint willaggravate partial or total damage of adjacent structures;8.throughout the analysis of therelation between structural damage index and interval between adjacent structures, thestructural damage index, in nearer than a certain distance of without-pounding, decreases orincreases for just a little, and basically remains unchanged. This thesis considers the degreeof structural damage within this interval unchanged, and I personally recommend the intervalvalue of adjacent structures the minimum of the interval. Examples show that the proposedcollision-interval should narrow about10%, aiming at saving the cost of land, and beingconvenient for the design and construction.
     (2) Study on the pounding spectrum between adjacent buildings
     Pounding spectrum not only is able to show the characteristics of earthquake motion,but also consider the impact between adjacent buildings to structural response. The thesismainly study the impact of different parameters to the pounding spectrum curved surfaces inits elastic range,76most unfavorable design ground motions are selected to calculate thesurfaces, the analyses indicate that:1.the impact of PGA and the width of seismic joint fit theresults of time-history analysis.2.without considering the phase difference of the inputearthquake motion, adjacent buildings with the same mass, damping ratio and ductility factorwill never collide.3. with a larger damping ratio and ductility factor, or a smaller mass andtouching stiffness, the adjacent buildings suffer a smaller collision force.4. poundinginfluence is more obvious to structure with small damping ratio on PGA than that with largeone, and in PGD aspect, the conclusion is opposite.5. for a larger mass and smaller ductilityfactor, the structure withstands a smaller impact.6. decreasing the touching stiffness is aneffective way to avoid damage.7. the type of site has some certain impact, but with a largerPGA, the impact becomes smaller.
引文
[1]彼得艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003.
    [2]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学,2003.
    [3]邓育林,彭天波,李建中.地震作用下桥梁结构横向碰撞模型及参数分析[J].振动与冲击,2006,26(9):104-107.
    [4]丁遂亮,洪嘉振.柔性多体系统接触碰撞动力学研究[J].上海交通大学学报.2003,37(12):1927-1930.
    [5]东南大学,天津大学,同济大学合编.混凝土结构(上册)[M].北京:中国建材工业出版社,2003.
    [6]杜修力,尹之潜,李小军. RC框架结构地震倒塌反应分析[J].哈尔滨建筑大学学报,1992,25(3):7-13.
    [7]杜修力,李小军,尹之潜.极限后负刚度模型对RC框架结构地震倒塌反应的影响[J].计算结构力学及其应用,1993,10(2):179-186.
    [8]方德平,王全凤.基于改进能力谱法的混凝土框架Pushover分析[J].工程力学,2008,25(1):150-154.
    [9]冯世平,沈聚敏.钢筋混凝土框架结构的地震倒塌反应[J].地震工程与工程震动,1989,9(1):67-78.
    [10]高路彬.混凝土变形与损伤的分析[J].力学进展,1993,23(4):510-519.
    [11]郭安萍,洪嘉振,杨辉.柔性多体系统接触碰撞子结构动力学模型[J].中国科学(E辑).2002,32(6):765-770
    [12]郭少华.混凝土破坏理论研究进展[J].力学进展,1993,23(4):520-529.
    [13]郭玉红.弹塑性反应谱的动力参数及其特性浅析[J].北京电力高等专科学校学报,2009,7:144-145.
    [14]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计[J].地震工程与工程振动,2000,20(2):31-38.
    [15]胡少卿.建筑物的群体震害预测方法研究及基础设施经济损失预测方法探讨
    [D].哈尔滨:中国地震局工程力学研究所,2007.
    [16]黄潇,朱宏平.近断层地震作用下相邻隔震结构的碰撞研究[J].土木工程与管理学报,2011,28(3):249-253.
    [17]侯新录编著.结构分析中的有限单元法与程序设计——用Visual C++实现[M].北京:中国建材工业出版社,2004.
    [18]季志政.高层钢筋混凝土框架结构抗震能力研究[D].哈尔滨:中国地震局工程力学研究所,2011.
    [19]建筑工程抗震性态设计通则CECS160:2004.北京:中国计划出版社,2004.
    [20]建筑抗震设计规范GB50011-2010.北京:中国建筑工业出版社,2010.
    [21]建筑抗震设计规范GB50011-2001.北京:中国建筑工业出版社,2008.
    [22]蒋凤昌,朱慈勉,薛剑胜,赵英豪.基于ANSYS的锈蚀钢筋屈曲承载力非线性分析[J].同济大学学报(自然科学版).2008,36(8):1045-1049.
    [23]蒋凤昌,朱慈勉,薛剑胜,赵英豪.基于弧长法的钢筋屈曲承载力非线性分析[J].建筑科学,2007,23(11):9-12.
    [24]江见鲸,贺小岗.工程结构计算机仿真分析[M].北京:清华大学出版社,1996.
    [25] Johnson K L著.接触力学[M].徐秉业等译.北京:高等教育出版社,1992.
    [26]克拉夫,彭津著.结构动力学[M].王光远等译.北京:科学出版社,1981.
    [27]李明.考虑近断层水平地震动影响的结构设计研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [28]李爽.近场脉冲型地震动对钢筋混凝土框架结构影响[D].哈尔滨:哈尔滨工业大学,2005.
    [29]李爽.杆系结构倒塌过程数值分析方法[D].哈尔滨:哈尔滨工业大学,2010.
    [30]李永强,王铁光.关于恢复因子e取值范围的讨论[J].力学与实践.2006,28(1):83-84.
    [31]李忠献,岳福青.城市桥梁地震碰撞反应研究与发展[J].地震工程与工程振动,2005,25(4):91-99.
    [32]林世镔.建筑物抗震能力研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [33]刘尔烈.结构力学[M].天津:天津大学出版社,2000.
    [34]刘恢先主编.唐山大地震震害(第二册)[M].北京:地震出版社.1986.
    [35]刘南科,周基岳,肖允徽,向阳.钢筋混凝土框架的非线性全过程分析[J].土木工程学报,1990,23(4):2-14.
    [36]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [37]刘鹏,郑凯锋,何伟,刘会.地震中结构碰撞的接触单元模型的改进算法[J].重庆大学学报,2012,35(2):135-143.
    [38]刘卫国主编.MATLAB程序设计教程[M].北京:中国水利水电出版社,2005.
    [39]刘西拉,籍孝广.混凝土本构模型的研究[J].土木工程学报,1989,22(3):55-62.
    [40]龙晓鸿,李建军,李俊,杨斌.两自由度体系地震碰撞影响因素及防撞研究[J].土木工程与管理学报,2011,28(3):369-375.
    [41]路新征,江见鲸.世界贸易重心飞机撞击后倒塌过程的仿真分析[J].土木工程学报.2001,34(6):8-10.
    [42]卢明奇,杨庆山.地震作用下相邻结构的防震缝宽度确定方法[J].中国石油大学学报,2012,36(1):145-149.
    [43]吕西林,周德源,李思明编著.房屋结构抗震设计理论与实例[M].上海:同济大学出版社.1995.
    [44]孟庆利,徐盛增.相邻结构地震碰撞研究简述[J].世界地震工程,2003,19(4):68-72.
    [45]清华大学.钢筋混凝土框架结构拟静力倒塌试验[R].网址: http:\\www.collapse-prevention.net,2011.
    [46]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,15(2):53-64.
    [47]谭平,谈忠坤,周福霖.近场地震动特性及其弹性与塑性谱的研究[J].华南地震,2008,28(2):1-9.
    [48]王东升,冯启民,王国兴.基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析与参数设计[J].工程力学,2004,21(2):81-85.
    [49]王东升,王国兴,冯启民.桥梁结构地震反应邻梁碰撞分析等效刚体模型[J].工程力学,2007,24(11):100-105.
    [50]王焕定,王伟.有限单元法教程[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [51]王军文,李建中,范立础.连续梁桥纵向地震碰撞反应参数研究[J].中国公路学报,2005,18(4):42-47.
    [52]王立新,周添锦.相邻偏心高层建筑物间的振动台碰撞试验[J].华南地震,2008,28(2):36-46.
    [53]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [54]王威,孙景江.基于改进能力谱法的位移反应估计[J].地震工程与工程振动,2003,23(6):37-43.
    [55]王亚勇.汶川地震建筑震害启示:三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.
    [56]吴应强.地震作用下相邻钢筋混凝土框架结构碰撞分析[D].哈尔滨:哈尔滨工业大学,2009.
    [57]肖明葵,白绍良,刘纲,董银峰.求弹塑性位移谱的一种简化方法[J].重庆大学学报.2002,25(7):99-103.
    [58]谢不瀛.框架结构倒塌过程中的动力学分析[J].同济大学学报.1996.24(5):492-497.
    [59]谢礼立.地震工程研究的传统与非传统研究领域[J].自然科学基金委十五优先研究领域研讨会论文集.北京,1999,12.
    [60]邢誉峰,诸德超.用模态法识别结构弹性碰撞荷载的可行性[J].力学学报.1995,27(5):560-566.
    [61]薛定宁,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2005.
    [62]杨永强,李爽,谢礼立.构件跌落碰撞的数值模拟研究[J].振动与冲击,2010,29(6):54-58.
    [63]叶燎原.考虑R.C.框架节点钢筋粘结滑移影响的附加节点力方法[J].云南工业大学学报,1996,12(2):9-13.
    [64]易伟建,张海燕.弹塑性反应谱的比较及其应用[J].湖南大学学报(自然科学版).2005,32(2):42-45.
    [65]翟长海,蒋珊,李爽,吴迎强,谢礼立.地震作用下相邻建筑结构碰撞反应分析[J].土木工程学报,2012,45(s2):142-146.
    [66]张雷明.灾害荷载下结构倒塌机制研究[D].北京:清华大学,1999.
    [67]张雷明,刘西拉.相邻结构之间的碰撞分析[J].上海交通大学学报,2004,38(6):941-946.
    [68]张志娟,水小平.柔性多体系统碰撞动力学研究进展[J].河北大学学报(自然科学版).2004,24(2):191-195.
    [69]赵建伟,邹立华,方雷庆.考虑相邻建筑物碰撞的基础隔震结构的地震反应分析[J].振动与冲击,2010,29(5):215-219.
    [70]周文峰,李晓明.纤维模型中约束混凝土模型的程序化[J].四川建筑,2006,26(5):40-41.
    [71]邹宏德,蓝宗建.相邻建筑结构碰撞问题的探讨[J].工业建筑,2002,32(4):49-52.
    [72]邹立华,方雷庆,黄凯,王黎园.相邻建筑考虑桩-土-结构相互作用(PSSI)碰撞分析[J].地震工程与工程振动,2011,31(5):132-141.
    [73] Abdel Rheem SE. Seismic Pounding between Adjacent Building Structures[J].Electronic Journal of Structural Engineering,2006,6:66-74.
    [74] Anagnostopoulos SA. Pounding of buildings in series during earthquakes[J].Earthquake Engineering and Structural Dynamics,1988,16:443-456.
    [75] Anagnostopoulos SA, Spiliopoulos KV. An investigation of earthquake inducedpounding between adjacent buildings[J]. Earthquake Engineering and StructuralDynamics,1992,21:289-302.
    [76] Anagnostopoulos SA. Building pounding re-examined: how serious a problem isit?[C]Proceedings of Eleventh world conference on earthquake engineering,1996,paper no.2108.
    [77] Anagnostopoulos SA. Equivalent viscous damping for modeling inelastic impacts inearthquake pounding problems[J]. Earthquake Engineering and Structural Dynamics,2004,33(8):897-902.
    [78] Athanassiadou CJ, Penelies GG. Elastic and inelastic system interaction under anearthquake motion[C]. Proceedings of the7th Hellenic Conf. on Concrete, Patras,Greece,1985,1:211-216.
    [79] Athanassiadou CJ, Penelis GG, Kappos AJ.Seismic response of adjacent buildingswith similar or different dynamic characteristics[J]. Earthquake Spectra,1994,10:293-317.
    [80] Azevedo J, Bento R. Design criteria for buildings subjected to pounding [C].Proceedings of11WCEE. Acapulco, Mexico,23-28June1996, Paper No.1063.
    [81] Bae S, Mieses AM and Bayrak O. Inelastic Buckling of Reinforcing Bars[J]. ASCEJournal of Structural Engineering,2005,131(2):314-321.
    [82] Balan TA, Filippou FC and Popov EP. Hysteretic Model of Ordinary andHigh-Strength Reinforcing Steel[J]. ASCE Journal of Structural Engineering,1998,124(3):288-297.
    [83] Bayrak O, Sheikh SA. Plastic Hinge Analysis[J]. ASCE Journal of StructuralEngineering,2001,127(9):1092-1100.
    [84] Berry MP, Eberhard MO. Practical Performance Model for Bar Buckling[J]. ASCEJournal of Structural Engineering,2005,131(7):1060-1070.
    [85] Binici B. An Analytical Model for Stress-Strain Behavior of Confined Concrete[J].Engineering Structures,2005,27(7):1040-1051.
    [86] Binici B,Mosalam KM. Analysis of Reinforced Concrete Columns Retrofitted withFiber Reinforced Polymer Lamina[J]. Composites Part B: Engineering,2007,38(2):265-276.
    [87] Blakeley RWG, Park R. Prestressed concerte sections with cyclic flexure[J]. Jounralof the Structural Division, ASCE,1973,99(8):1717-1742.
    [88] Brown J, Kunnath SK. Low-Cycle Fatigue Failure of Reinforcing Steel Bars[J]. ACIMaterials Journal,2004,101(6):457-466.
    [89] Chang G, Mander JB. Seismic Energy Based Fatigue Damage Analysis of BridgeColumns: Part I-Evaluation of Seismic Capacity[R]. NCEER Technical Report,1994,94-0006.
    [90] Chau KT, Wei XX. Pounding of structures modeled as non-linear impacts of twooscillators[J]. Earthquake Engineering and Structural Dynamics,2001;30:633-651.
    [91] Chau KT, Wei XX, Guo X et al. Experimental and theoretical simulations of seismicpoundings between two adjacent structures[J]. Earthquake Engineering andStructural Dynamics,2003,32:537-554.
    [92] Chopra AK. Dynamics of structures: Theory and applications to earthquakeengineering[M]. Englewood Cliffs (NJ): Prentice-Hall,1995.
    [93] Clough RW, Benuska KL, Wilson EL. Inelastic earthquake response of tallbuildings[C]. Proceedings3rd World Conference on Earthquake Engineering. NewZealand,1965,11:68-89.
    [94] Cusson D, Paultre P. Stress-strain model for confined high-strength concrete[J].Journal of Structural Engineering, ASCE,1995,121(3):468-477.
    [95] Davis RO.Pounding of buildings modelled by an impact oscillator[J].EarthquakeEngineering and Structural Dynamics,1992,21:253-274.
    [96] DesRoches R, Muthukumar S. Effect of pounding and restrainers on seismicresponse of multiple-frame bridges[J]. Journal of Structural Engineering ASCE,2002,128:860-869.
    [97] Dhakal RP and Maekawa K. Modeling for Postyield Buckling of Reinforcement[J].ASCE Journal of Structural Engineering,2002,128(9):1139-1147.
    [98] Dhakal RP and Maekawa K. Path-Dependent Cyclic Stress-Strain Relationship ofReinforcing Bar Including Buckling[J]. Engineering Structures,2002,24(11):1383-1396.
    [99] Dhakal RP and Maekawa K. Reinforcement Stability and Fracture of Cover Concretein Reinforced Concrete Members[J]. ASCE Journal of Structural Engineering,2002,128(10):1253-1262.
    [100] El-Metwally SE, Chen WF. Nonlinear behavior of R/C frames[J]. Computer&Structure,1989,32(6):1203-1209.
    [101] Favvata MJ, Karayannis CG. Non-linear static versus dynamic analyses for theinteraction of structures[C]. Proceedings7thEuropean Conference on StructualDynamics, EURODYN. Southampton.2008, E218.
    [102] Filiatrault A, Wagner P, Cherry SH.Analytical prediction of experimental buildingpounding[J]. Earthquake Engineering and Structural Dynamics,1995,24:1131-1154.
    [103] Gregory LC, Rajesh PD, Fred MT. Building pounding damage observed in the2011Christchurch earthquake[J]. Earthquake Engineering and Structural Dynamics,2012,41:893-913.
    [104] Giannakopoulos AE.The return mapping method for the integration of frictionconstitutive relations[J].Computer&Structures.1989,32(1):157-167.
    [105] Hao Hong, Shen Jay. Estimation of relative displacement of two adjacent asymmetricStructures[J]. Earthquake Engineering and Structural Dynamics,2001,30:81-96.
    [106] Hoshikuma J, Kawashima K, Knagaya K, Taylor AW. Stress-stain model for confinedreinforced concrete in bridge pies[J]. Jounral of Structural Engineering, ASCE,1997,123(5):624-633.
    [107] Imran I, Pantazopoulou SJ. Plasticity Model for Concrete under TriaxialCompressions[J]. ASCE Journal of Engineering Mechanics,2001,127(3):281-290.
    [108] Jankowski R, Wilde K, Fuzino Y. Pounding of superstructure segments in isolatedelevated bridge during earthquakes[J]. Earthquake Engineering and StructuralDynamics,1998,27(5):487-502.
    [109] Jankowski R, Wilde K. A simple method of conditional random field simulation ofground motions for long structures[J]. Engineering Structures,2000a,22:552-61.
    [110] Jankowski R, Wilde K, Fujino Y. Reduction of pounding effects in elevated bridgesduring earthquakes[J]. Earthquake Engineering and Structural Dynamics,2000b,29:195-212.
    [111] Jankowski R. Non-linear viscoelastic modeling of earthquake-induced structuralpounding[J]. Earthquake Engineering and Structural Dynamics,2005,34(6):595-611.
    [112] Jankowski R. Analytical expression between the impact damping ratio and thecoefficient of restitution in the non-linear viscoelastic model of structuralpounding[J]. Earthquake Engineering and Structural Dynamics,2006a,35:517-524.
    [113] Jankowski R. Pounding force response spectrum under earthquake excitation[J].Engineering Structures,2006b,28:1149-1161.
    [114] Jankowski R. Experimental study on earthquake-induced pounding betweenstructural elements made of different building materials[J]. Earthquake Engineeringand Structural Dynamics,2009, DOI:10.1002/eqe.941.
    [115] Jeng V, Kasai K. Spectral relative motion of two structures due to seismic travelwaves[J]. Journal of Structural Engineering ASCE,1996,122:1128-35.
    [116] Jeng V, Tzeng WL. Assessment of seismic pounding hazard for Taipei City[J].Engineering Structures,2000,22(5):459-471.
    [117] Jing HS, Young M.Impact interactions between two vibration systems under randomexcitation[J]. Earthquake Engineering and Structural Dynamics,1991,20:667-681.
    [118] Kasai K and Maison BF. Building pounding damage during the1989Loma Prietaearthquake[J]. Engineering Structures,1997,19(3):195-207.
    [119] Kawashima K, Sato T. Relative displacement response spectrum and itsapplication[C]. In: Eleventh world conference on earthquake engineering,1996,Paper No.1103.
    [120] Kent DC, Park R. Flexural members with confined concrete[J]. Jounral of theStructural Division, ASCE,1971,97(7):1969-1990.
    [121] Kim SH, Lee SW, Mha HS. Dynamic behaviors of the bridge considering poundingand friction effects under seismic excitation[J]. Structural Engineering andMechanics,2000,6:621-33.
    [122] Kobori T, Yamada T, Takenaka Y, Maeda Y, Nishimura I. Effect of dynamic tunedconnector on reduction of seismic response-application to adjacent officebuildings[J]. Proceedings of ninth world conference on earthquake engineering,1988, p.773-778.
    [123] Li Kang-Ning. Multi-Spring model for3-dimensional analyis of RC members[J].Structural Engineering and Mechanics,1993,1(1):17-30.
    [124] Lokuge WP, Sanjayan JG, Setunge S. Triaxial Test The results of High-StrengthConcrete Subjected to Cyclic Loading[J]. Magazine of Concrete Research,2003,55(4):321-329.
    [125] Lokuge WP, Sanjayan JG, Setunge S. Constitutive Model for Confined High StrengthConcrete Subjected to Cyclic Loading[J]. ASCE Journal of Materials in CivilEngineering,2004,16(4):297-305.
    [126] Lokuge WP, Sanjayan JG, Setunge S. Stress-Strain Model for Laterally ConfinedConcrete[J]. ASCE Journal of Materials in Civil Engineering,2005,17(6):607-616.
    [127] Lynna KM, Isobea D. Structural collapse analysis of framed structures under impactloads using ASI-Gauss finite element method[J]. International Journal of ImpactEngineering,2007,34:1500-1516.
    [128] Ma SM, Bertero VV, Popov EP. Experimental and analytical studies on the hystereticbehavior of reinforced concrete rectangular and T-beams[R]. EERC, Reort No.72/02,1976.
    [129] Ma X, Pantelides CP. Linear and nonlinear pounding of structuralsystems[J].Computers and Structures,1998,66:79-92.
    [130] Maison BF, Kasai K. Analysis for type of structural pounding[J]. Journal ofStructural Engineering,1990,116(4):957-977.
    [131] Maison BF, Kasai K. Dynamics of pounding when two buildings collide[J].Earthquake Engineering and Structural Dynamics,1992,21(9):771-786.
    [132] Mander JB, Priestley MJN, Park R. Seismic Design of Bridge Piers[R]. ResearchReport84-02, University of Canterbury, Christchurch, New Zealand,1984.
    [133] Mander JB, Priestley MJN, Park, R. Theoretical Stress-Strain Model forConfinedConcrete[J]. ASCE Journal of Structural Engineering,1988,114(8):1804-1826.
    [134] Menegotto M, Pinto P. Method of Analysis for Cyclically Loaded ReinforcedConcrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior ofElements under Combined Normal Force and Bending[C]. Proceedings-Symposiumon Resistance and Ultimate Deformability of Structures Acted on by Well DefinedRepeated Loads.1973, IABSE:13,15-22.
    [135] Monti G, Filippou FC, Spacone E. Analysis of Hysteretic Behavior of AnchoredReinforcing Bars[J]. ACI Structural Journal,1997,94(3):248-261.
    [136] Monti G, Filippou FC, Spacone E. Finite Element for Anchored Bars under CyclicLoad Reversals[J]. ASCE Journal of Structural Engineering,1997,123(5):614-623.
    [137] Monti G, Nuti C. Nonlinear Cyclic Behavior of Reinforcing Bars IncludingBuckling[J]. ASCE Journal of Structural Engineering,1992,118(12):3268-3284.
    [138] Muthukumar S, DesRoches R. A Hertz contact model with non-linear damping forpounding simulation[J]. Earthquake Engineering and Structural Dynamics,2006,35(7):811-828.
    [139] Oden J.T, Martins J.A.C..Models and computational methods for dynamic frictionphenomena[J].Computer Methods in Applied Mechanics and Engineering.1986,52:527-634.
    [140] Pantelides CP, Ma X. Linear and nonlinear pounding of structural systems[J].Computers and Structures,1998,66:79-92.
    [141] Panthaki FD. Low cycle fatigue behavior of high strength and ordinary reinforcingstells[D]. Buffalo,1991.
    [142] Papadrakakis M, Mouzakis H, Plevris N, Bitzarakis S. A Lagrange multipliersolution for pounding of buildings during earthquakes[J]. Earthquake Engineeringand Structural Dynamics,1991,20:981-998.
    [143] Park R, Kent DC, Sampson RA. Reinforced concrete members with cyclicloading[J]. Jounral of the Structural Division, ASCE,1972,98(7):1341-1359.
    [144] Park YJ, Ang AHS. Mechanistic seismic damage model for reinforced concrete[J].Jounral of the Structural Division, ASCE,1985,111:722-739.
    [145] Polycarpou PC, Komodromos P. On poundings of a seismically isolated buildingwith adjacent structures during strong earthquakes[J]. Earthquake Engineering andStructural Dynamics,2009, DOI:10.1002/eqe.975.
    [146] Rodriguez ME, Botero JC, Villa J. Cyclic Stress-Strain Behavior of Reinforcing SteelIncluding Effect of Buckling[J]. ASCE Journal of Structural Engineering,1999,125(6):605-612.
    [147] Rosenblueth E, Meli R. The1985Earthquake: Causes and Effects in Mexico City[J].Concrete International,1986,8(5):23-36.
    [148] Ruangrassamee A, Kawashima K. Relative displacement response spectra withpounding effect[J]. Earthquake Engineering and Structural Dynamics,2001,30:1511-1538.
    [149] Ruangrassamee A, Kawashima K. Control of nonlinear bridge response withpounding effect by variable dampers[J]. Engineering Structures,2003,25:593-606.
    [150] Sheikh SA, Uzumeir SM. Analytical model for concrete confinement in tiedcolumns[J]. Journal of the Structural Division, ASCE,1982,108(12):2703-2722.
    [151] Smith SS, William KJ, Gerstle KH, Sture S. Concrete over the Top or: Is There Lifeafter Peak?[J]. ACI Materials Journal,1989,86(5):491-497.
    [152] Talaat M. Computational Modeling of Progreesive Collapse in Reinforced ConcreteFrame Structures[D]. California: University of California, Berkeley,2007.
    [153] Terenzani L, Mosalam KM, Russo, G. Loaded Concrete Columns[R]. University ofCalifornia, Berkeley,2001.
    [154] Van Mier JGM, Pruijssers AF, Reinhardt HW, Monnier T. Load–time response ofcolliding concrete bodies[J]. Journal of Structural Engineering ASCE,1991,117:354-74.
    [155] Valles-Mattox R, Reinhorn AM, Kunnath SK,et al. IDARC2D Version4.0: AProgram for the Inelastic Damage Analysis of Buildings[R]. New York: StateUniversity of New York at Buffalo,1996, NCEER Report No.96/0010.
    [156] Valles-Mattox R, Reinhorn AM. Evaluation, Prevention and Mitigation of PoundingEffect in Buildings Structures[R]. National Center of Earthquake EngineeringResearch, Technical Report,1997.
    [157] Vivek KA. Pounding and impace of base isolated buildings due to earthquakes[D].Delhi: Indian Institute of Technology,2004.
    [158] Westermo BD. The dynamics of interstructural connection to prevent pounding[J].Earthquake Engineering and Structural Dynamics,1989,18:687-99.
    [159] Xiao-yan T, Holmgren M. Numerical and experimental verification of a new modelfor fatigue life[J]. Fatigue&Fracture of Engineering Materials&Structures.1989,92:353-359.
    [160] Yang Yongqiang, Xie Lili. Comparison Research on Determination of Contact Loadswith Finite Element Method and Mode Superposition Method[J]. AdvancedMaterials Research,2011,217,62-65.
    [161] Ye Kun, Li Li, Zhu Hongping. A note on the Hertz contact model with nonlineardamping for pounding simulation[J]. Earthquake Engineering and StructuralDynamics,2009,38:1135-1142.
    [162] Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supportedbridges to a spatially varying earthquake ground motion[J]. Earthquake Engineeringand Structural Dynamics,2002,31:1325-1345.
    [163] Zhu P, Abe M, Fujino Y. Modeling three-dimensional non-linear seismicperformance of elevated bridges with emphasis on pounding ofgirders[J].Earthquake Engineering and Structural Dynamics,2002,31:1891-1913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700