用户名: 密码: 验证码:
高强度钢热冲压关键工艺试验研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度钢板热冲压技术是一项既可减轻车体重量,又能提高碰撞安全性的新型制造技术,已得到国际汽车业界的广泛认同并推广使用。热冲压工艺过程中温度场、应力场、相变场相互耦合,在整个热冲压及淬火过程中扮演着非常重要的角色,其中温度因素是关键。高温条件下材料软化及温度瞬时变化易导致成形性缺陷及高温氧化等综合问题,对模拟热冲压板料和模具的传热过程,进行准确的零件成形性分析预测带来挑战。开展温度场相关热冲压工艺因素的试验研究,确定热冲压中关键工艺参数及边界条件,对热冲压工艺优化及准确实现产品成形性仿真预测具有重要的指导作用。
     本论文从工艺原理、流程、材料性能、板料及模具温度场、硬度梯度热冲压工艺试验及仿真应用等温度场相关关键技术研究入手,对热冲压工艺及材料进行了系统研究。对比分析与温度相关的加热温度、保温时间、冷却速率工艺因素对淬火材料抗拉强度、硬度及微观组织性能指标的影响,引入KAHN撕裂韧性试验对热冲压关键工艺参数进行三因素四水平的正交试验优化试验研究,基于抗拉强度、伸长率、撕裂强度和单位面积裂纹形核功四个指标的综合评分方法,获得了基于工艺因素的热冲压高温淬火及中低温回火强韧性改进方案。
     通过自主研发的热力模拟试验机研究了热冲压硼钢板材在马氏体转换温度之上的高温材料热力学性能,得到了不同应变率和温度下的高温应力-应变流动曲线;引入Norton-Hoff模型得到了高温热冲压硼钢22MnB5的流变应力5阶多项式拟合方程,实现热冲压热力多场耦合仿真分析;开展热冲压成形极限(Thermal Forming Limited Diagram,简称TFLD)试验研究,获得了成形温度区间的等温热成形极限三维曲面图,可用于热冲压温度场及成形性仿真模拟中断裂极限的评测;结合数值仿真研究了冷速调整下的简单V型热弯曲和U型热冲压成形过程温度变化规律,通过控制成形前板料冷速使板料达到最佳开始冲压温度600-700℃,可实现复杂深冲盒成形缺陷改善并确保性能满足热冲压生产需求。
     基于温度场相关传热和氧化机理,对热冲压传热过程进行全面分析并开展工艺试验,获得了高温下热冲压钢板的氧化动力学方程;搭建了热冲压界面换热系数圆台试验平台,通过开发的IHCP反向建模流程获得了接触压强和氧化皮影响下的界面换热系数瞬态变化规律,围绕建立的高强度钢板热冲压温度场数值模拟仿真虚拟样机系统(King-Mesh Analysis System/Hot Forming),相关的传热模型和仿真流程有效实现热力耦合条件下热冲压温度场和成形性仿真功能。
     本文还开展了硬度梯度热冲压金属复合材料工艺试验及仿真预测的应用性研究,搭建了热冲压分区冷却试验平台,获得了模具温度、空气间隙等工艺参数对硬度梯度复合材料性能的影响规律;运用量纲分析和反推法建立了热冲压材料硬度-强度-冷速指数模型,实现了温度场预测到产品性能预测的应用扩展。通过典型热冲压实验和仿真分析,证明了该模型可有效地实现产品最终硬度性能的预测,为具有强度定制性能的热冲压产品开发奠定基础。
Hot forming is a new manufacture technology for high strength steel. It can not only reduce the auto body weight, but also enhance the crash safety, which makes it recognized and widely used in the international automotive industry. Temperature is one of the key factors in the temperature-strain-phase transformation field coupling relationship, which plays an important role in the whole quenching and forming process. Due to the material softening and instantaneous temperature variation, some comprehensive problems occures at elevated temperatures, including formability defects and high-temperature oxidation,etc. The problems happened bring challenges to accurately simulating the heat transfer behaviour between blank and tool surface, as well as predicting the sheet formability. To obtain key process parameters and temperature boundary conditions in hot forming process, further process experimental researchs were executed and contribute to provide essential scientific instruction for optimizing the hot forming process and accurately predicting product formability.
     In this paper, hot forming process and materials properties were investigated systematically by experiment and simulation. Temperautre field related key technology studies were involved on the process principle, process, materials of boron steel, the temperature field of blank and tool, gradient hardness hot forming technology. Focus on analyzing rules of the material tensile strength, hardness and microstructure properties factors which related to the temperature in hot forming (just like heating temperature, holding time, cooling rate), a series of fundamental tests were executed, KAHN tear toughness experiments with the L9(34) orthogonal design optimization plan were introduced to analysis effective strength and toughness key process parameters with four indexes (tensile strength, elongation, tear strength and UIE) base on comprehensive evaluation method. As a results, improved process parameters were suitable for quenching and low temperature tempering toughness improvement program.
     To study the thermo-dynamic performance of hot forming boron steel above the martensitic transformation temperature, the independent self-developed thermal mechanical tensile machine was developed to investigate the flow stress and strain relationshipis of different strain rates and temperatures. Five order polynomial fitting equations for boron steel22MnB5rheological stress were obtained by the modified Norton-Hoff model at elevated temperatures, which can be used into the thermal-mechanical field coupling simulation of actual stamping process. Furthermore, thermal forming limit diagram (TFLD) expeiments were executed to get the3D forming limit surface diagram for22MnB5steel at elevated temperature, which providing fracture limit evaluation for formability prediction and temperature field simulation research. In addition, the temperature field experiments and simulation of V-part hot bending and U-part hot forming process were analyzed by controlling cooling rate. Formability experiment and simulation optimization research were conducted by typical deeping drawing parts through controlling the forming temperature in600-700℃, it indicated that the complex production formability improvement and performance meet the requirements in actual production by adjusting cooling rate so as to ensure start forming temperature at optimizing zone.
     Based on heat transfering and the oxidation mechanism related to the temperature field, a comprehensive analysis of the heat transfer process and experiments were investigated, The high-temperature oxidation kinetics equations and special interface heat transfer coefficient (IHTC) cylinder platform was estabished for obtaining transient IHTC variation law, which considered the influence of pressure and the oxide layer factors through the IHCP reverse modeling optimization process. Relevant heat transfer laws were introduced to self-developed hot forming virtual prototype platform, named KMAS/HF (King-Mesh Analysis System/Hot Forming), to built the hot forming temperature field numerical simulation predict virtual prototype system, the coupled themo-mechanical numerical simulation studies for temperature field and formability was developed to prove the correctness and effectiveness based on relevant interface heat transfer models and simulation methods.
     This paper also works on the fundamental simulation prediction study and practical experiment for hardness gradient hot forming metal composite materials. The process parameters influence law was investigated on the district cooling hot forming test platform, including tool temperature, air gap distance, etc. Based on the hot forming temperature field simulation platform, a hot forming material hardness-strength-cooling rate index model was established by dimensional analysis and inverse method for implementing the function extension, which not only the temperature field simulation but also the mechanical property prediction function were invovled. The typical shape of the hot forming through experimental and simulation analysis proved that the relevant model can effectively predict the final hardness properties in the actual hot forming process, as well as contributing to provide the foundation for speical hardness gradient property product development.
引文
[1]Lin Y C, Chen X.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & Design.2011,32 (4):1733-1759.
    [2]Karbasian H, Tekkaya A E.A review on hot stamping[J].Journal of Materials Processing Technology.2010,210 (15):2103-2118.
    [3]康斌.国内外高强度汽车板热冲压技术研究现状[J].冶金管理.2009,(08):58-60.
    [4]王剑峰.国内外高强度汽车板热冲压技术现状研究[J].机电信息.2009,(36):129.
    [5]马宁.高强度钢板热成形技术若干研究[D]:(博士学位论文),大连:大连理工大学,2011.
    [6]Lechler J, Merklein M.Hot stamping of ultra high strength steels as a key technology for lightweight construction[C].Materials Science and Technology (MS&T) 2008, Pittsburgh, Pennsylvania,2008.
    [7]康永林,陈贵江,朱国明,等.新一代汽车用先进高强钢的成形与应用[J].钢铁.2010,(08):1-6.
    [8]刘文华.高强度钢板在汽车轻量化中的应用研究[D]:(硕士学位论文),武汉:武汉理工大学,2009.
    [9]康永林.汽车轻量化先进高强钢与节能减排[J].钢铁.2008,43(06):1-7.
    [10]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].钢铁.2006,41(09):1-8.
    [11]Chang Y, Meng Z H, Ying L, et al.Influence of Hot Press Forming Techniques on Properties of Vehicle High Strength Steels[J].Journal of Iron and Steel Research, International.2011,18 (5):59-63.
    [12]李斌,郭小燕,路洪洲.激光拼焊板在汽车制造中的应用及相关工艺研究[J].激光杂志.2012,(01):59-60.
    [13]Tang B, Yuan Z, Cheng G, et al.Experimental Verification of Tailor Welded Joining Partners for Hot Stamping and Analytical Modeling of TWBs Rheological Constitutive in Austenitic State[J].Materials Science and Engineering:A.2013,585 (2013):304-318.
    [14]王丽霞,许春香,胡美君.基于多点成形的液压成形工艺关键技术的研究[J].机械传动.2011,35(05):68-69.
    [15]杜继涛,甘屹,齐从谦,等.TRB及其轧制应用关键技术[J].汽车技术.2007,(07):45-48.
    [16]王利,陆匠心.汽车轻量化及其材料的经济选用[J].汽车工艺与材料.2013,(01):1-6.
    [17]陈一龙.汽车轻量化技术发展状况及展望[J].汽车工艺与材料.2012,(01):1-4.
    [18]应善强,张义和,曹广祥.汽车轻量化与高强度钢板的应用[J].汽车工艺与材料.2012,(10):11-23.
    [19]杜明义.用铝合金材料实现汽车轻量化[J].轻合金加工技术.2007,(02):11-51.
    [20]胡平,戴明华,盈亮,等.热成形高强度钢22MnB5在车身轻量化设计中的应用[C].中国汽车轻量化技术研讨会,中国北京,2012:281-237.
    [21]Guo R Q, Ying L, Hu P.Experimental Study on Hot Bending of 22MnB5 Steel [J]. Advanced Materials Research.2011,314-316:66-69.
    [22]庄百亮,单忠德,姜超.热冲压成形工艺技术及其在车身上的应用[J].金属加工:热加工.2010,(21):62-64.
    [23]谷诤巍,单忠德,徐虹,等.汽车高强度钢板冲压件热成形技术研究[J].模具工业.2009,(04):27-29.
    [24]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J].汽车与配件.2009,(45):28-30.
    [25]徐伟力,艾健,罗爱辉,等.钢板热冲压新技术介绍[J].塑性工程学报.2009,(04):39-43.
    [26]Nader M.Hot Stamping of Ultra High Strength Steels[D]:(PHD.thesis),aus Teheran: Rheinisch-Westfalischen Technischen Hochschule Aachen,2007.
    [27]Mori K, Saito S, Maki S.Warm and hot punching of ultra high strength steel sheet[J].CIRP Annals-Manufacturing Technology.2008,57 (01):321-324.
    [28]高云凯,高大威,余海燕,等.汽车用高强度钢热成型技术[J].汽车技术.201 0,(08):56-60.
    [29]Mayyas A, Qattawi A, Omar M, et al.Design for sustainability in automotive industry:A comprehensive review[J].Renewable and Sustainable Energy Reviews.2012,16 (04):1845-1862.
    [30]胡平,盈亮,郭润清,等.车用高强度钢热冲压技术的发展与自主研发[J].锻造与冲压.2012,20:18-24.
    [31]Mori K, Ito D.Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil[J].CIRP Annals-Manufacturing Technology.2009,58 (01):267-270.
    [32]Kolleck R, Veit R, Merklein M, et al.Investigation on induction heating for hot stamping of boron alloyed steels[J].CIRP Annals-Manufacturing Technology.2009,58 (01):275-278.
    [33]Windmann M, Rottger A, Theisen W.Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating[J].Surface and Coatings Technology.2013,226:130-139.
    [34]杨洪林,刘昕,李俊,等.热冲压钢镀层技术的研究现状[J].钢铁研究学报.2013,(06):1-7.
    [35]高宏适.热冲压超高强度钢汽车部件的组织控制[J].轧钢技术.2013,(B04):1-6.
    [36]谷诤巍,姜超,单忠德,等.超高强度钢板冲压件热成形工艺[J].汽车工艺与材料.2009,(04):15-17.
    [37]林建平,王立影,田浩彬,等.超高强度钢热流变行为[J].塑性工程学报.2009,(02):180-183.
    [38]Merklein M, Lechler J, Geiger M.Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5[J].CIRP Annals-Manufacturing Technology.2006,55 (01):229-232.
    [39]Merklein M, Lechler J.Investigation of the thermo-mechanical properties of hot stamping steels[J].Journal of Materials Processing Technology.2006,177 (1-3):452-455.
    [40]马宁,胡平,翟述基,等.高强度钢板热成形技术及其工程实现[J].汽车工艺与材料.2009,(12):12-14.
    [41]Naderi M, Saeed-Akbari A, Bleck W.The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel [J].Materials Science and Engineering:A.2008,487 (1-2):445-455.
    [42]Merklein M, Lechler J, Stoehr T.Characterization of tribological and thermal properties of metallic coatings for hot stamping boron manganese steels[C].Proceedings of the 7th International Conference,Chalkidiki, Greece,2008:219-228.
    [43]Geiger M, Merklein M, Lechler J.Determination of tribological conditions within hot stamping[J].Production Engineering.2008,2 (03):269-276.
    [44]Merklein M, Lechler J, Stoehr T.Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping[J].International Journal of Material Forming.2009,2 (S1):259-262.
    [45]Naderi M, Durrenberger L, Molinari A, et al.Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J].Materials Science and Engineering:A.2008,478 (1-2):130-139.
    [46]Geiger M, Merklein M, Kerausch M.Finite element simulation of deep drawing of tailored heat treated blanks[J]. CIRP Annals-Manufacturing Technology.2004,53 (01):223-226.
    [47]Abbasi M, Saeed-Akbari A, Naderi M.The effect of strain rate and deformation temperature on the characteristics of isothermally hot compressed boron-alloyed steel[J].Materials Science and Engineering:A.2012.538:356-363.
    [48]Turetta A, Bruschi S, Ghiotti A.Investigation of 22MnB5 formability in hot stamping operations[J] Journal of Materials Processing Technology.2006,177 (1-3):396-400.
    [49]Geiger M, Merklein M.Determination of forming limit diagrams-a new analysis method for characterization of materials'formability[J].CIRP Annals-Manufacturing Technology.2003,52 (01):213-216.
    [50]Li H Z, Wu X, Li G Y.Prediction of forming limit diagrams for 22MnB5 in hot stamping process[J].Journal of Materials Engineering and Performance.2013,22 (08):2131-2140.
    [51]Shi D Y, Ying L, Hu P, et al.Experimental and Numerical Determination of Thermal Forming Limit Diagrams (TFLD) of High Strength Steel 22MnB5[C].11th International Conference on Numerical Methods in Industrial Forming Process (Numiform2013),Shen Yang China,2013:406-413.
    [52]Bariani P F, Bruschi S, Ghiotti A, et al.Testing formability in the hot stamping of HSS[J].CIRP Annals-Manufacturing Technology.2008,57 (1):265-268.
    [53]Akerstrom P, Oldenburg M.Austenite decomposition during press hardening of a boron steel-Computer simulation and test[J].Journal of Materials Processing Technology.2006,174 (1-3):399-406.
    [54]Abbasi M, Naderi M, Saeed-Akbari A.Isothermal versus non-isothermal hot compression process:A comparative study on phase transformations and structure-property relationships[J].Materials & Design.2013,45:1-5.
    [55]Nikravesh M, Naderi M, Akbari G H.Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel[J].Materials Science and Engineering: A.2012,540:24-29.
    [56]Naderi M, Ketabchi M, Abbasi M, et al.Analysis of microstructure and mechanical properties of different boron and non-boron alloyed steels after being hot stamped[J].Procedia Engineering.2011,10460-465.
    [57]Naderi M, Ketabchi M, Abbasi M, et al.Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J].Journal of Materials Processing Technology.2011,211 (06):1117-1125.
    [58]Akerstrom P.Modelling and Simulation of Hot Stamping-Paul Akerstrom[D]:(PHD.thesis), Lulea:Lulea University of Technology,2006.
    [59]Bergman G, Oldenburg M.A finite element model for thermomechanical analysis of sheet metal forming[J]. Journal for Numerical Methods in Engineering.2004,(59):1167-1186.
    [60]Hoffmann H, So H, Steinbeiss H.Design of Hot Stamping Tools with Cooling System[J].CIRP Annals-Manufacturing Technology.2007,56 (01):269-272.
    [61]Yanagida A, Kurihara T, Azushima A.Development of tribo-simulator for hot stamping[J].Journal of Materials Processing Technology.2010,210 (03):456-460.
    [62]Ghiotti A, Bruschi S, Borsetto F.Tribological characteristics of high strength steel sheets under hot stamping conditions[J] Journal of Materials Processing Technology.2011,211 (11):1694-1700.
    [63]Azushima A, Uda K, Yanagida A.Friction behavior of aluminum-coated 22MnB5 in hot stamping under dry and lubricated conditions[J].Journal of Materials Processing Technology.2012,212 (05):1014-1021.
    [64]Englund D.Investigation into the failure of hot forming tools and their tribological behaviour[D]: (PHD.thesis),Lulea:Lulea University of Technology,2010.
    [65]刘红生,邢忠文,雷成喜.不具冷却系统下高强钢BR1500HS的热冲压成形质量[J].Transactions of Nonferrous Metals Society of China.2012,(S2):542-547.
    [66]朱丽娟,谷诤巍,吕义,等.超高强钢热冲压硬化机理[J].吉林大学学报(工学版).2013,(02):376-379.
    [67]郭怡晖,马鸣图,张宜生,等.汽车前防撞梁的热冲压成形数值模拟与试验[J].锻压技术.2013,(03):46-50.
    [68]贺斌,盈亮,胡平,等.高强度钢板热冲压水冷模具设计[J].锻压装备与制造技术.2012,(06):62-65.
    [69]Ying L, Chang Y, Hu P, et al.Influence of Low Tempering Temperature on Fracture Toughness of Ultra High Strength Boron Steel for Hot Forming[J].Advanced Materials Research. 2011,146-147:160-165.
    [70]侯红苗,盈亮,吴秀峰,等.加热温度对22MnB5微观组织和奥氏体晶粒的影响[J].锻压装备与制造技术.2012,(06):89-91.
    [71]姜大鑫,武文华,胡平,等.高强度钢板热成形热、力、相变数值模拟分析[J].机械工程学报.2012,(12):18-23.
    [72]廖铮玮,盈亮,胡平,等.高强度钢板热冲压成形传热基础研究[J].热加工工艺.2013,(05):1-2.
    [73]Sun H T, Hu P, Ma N, et al.Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact[J].Chinese Journal of Mechanical Engineering.2010,23 (02):252-256.
    [74]马宁,胡平,闫康康,等.高强度硼钢热成形技术研究及其应用[J].机械工程学报.2010,(14):68-72.
    [75]马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系[J].材料热处理学报.2010,(11):33-36.
    [76]马宁,胡平,武文华,等.高强度钢板热成形本构理论与实验分析[J].力学学报.2011,(02):346-354.
    [77]胡平,马宁.高强度钢板热成形技术及力学问题研究进展[J].力学进展.2011,(03):310-334.
    [78]马宁,武文华,申国哲,等.高强度钢板热成形数值模拟-静力显式[J].计算力学学报.2011,(03):371-376.
    [79]马宁,申国哲,张宗华,等.高强度钢板热冲压材料性能研究及在车身设计中的应用[J].机械工程学报.2011,(08):60-65.
    [80]马宁,张宗华,胡平,等.热成形金属复合材料的微观结构及力学行为研究[J].材料工程.2011,(05):88-92.
    [81]Hu P, Shi D Y, Ying L, et al.Coupled of Thermal-Mechanical-Transformation Numerical Simulation on Hot Stamping with Static Explicit Algorithm[C].11th International Conference on Numerical Methods in Industrial Forming Process (Numiform2013),Shen Yang China,2013:394-405.
    [82]Hu P, Ying L, Jiang D X, et al.The Investigation of 3D Temperature Field Numerical Simulation in Hot Forming of High Strength Steel[C].11th International Conference on Numerical Methods in Industrial Forming Process (Numiform2013),Shen Yang China,2013:104-113.
    [83]Kan D B, Liu L Z, Hu P, et al.Numerical Prediction of Microstructure and Mechanical Properties During the Hot Stamping Process[C].8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes,Pohang,Korea,2011:602-609.
    [84]申国哲,李效文,盈亮,等.基于硬度梯度的热成形高强钢弯曲性能研究[J].农业机械学报.2013,(02):261-266.
    [85]胡平,盈亮,赵曦,等.基于CAx的热冲压模具数字样机的功能开发[C].全国先进制造技术高层论坛暨第十一届制造业自动化与信息化技术研讨会,西安,2012:10-16.
    [86]盈亮,李烨,胡平,等.高强度钢热成形虚拟样机工程[C].第三届中德先进制造技术研讨会(CDFK2012),中国上海,2012:78-81.
    [87]胡平,于宏元,盈亮,等.基于侧面碰撞的热成型高强度零件开发[J].汽车技术.2013,(01):57-61.
    [88]史栋勇,盈亮,胡平,等.汽车B柱热成形试验与热力耦合仿真[J].锻压装备与制造技术.2013,(01):82-85.
    [89]邢忠文,包军,杨玉英,等.可淬火硼钢板热冲压成形实验研究[J].材料科学与工艺.2008,(02):172-175.
    [90]邢忠文,方华松,徐伟力.汽车覆盖件成形的有限元模拟及模具设计[J].机械设计与制造.2008,(04):194-196.
    [91]刘红生,包军,邢忠文,等.高强钢板热冲压成形热力耦合数值模拟[J].材料科学与工艺.2010,(04):459-463.
    [92]Liu W, Liu H S, Xing Z W, et al.Effect of tool temperature and punch speed on hot stamping of ultra high strength steel[J].Transactions of Nonferrous Metals Society of China.2012,(S2):534-541.
    [93]Xing Z W, Fang H S, Bao J.Simulation and formability analysis of drawing process for automotive B-pillar[J].Journal of Harbin Institute of Technology.2009,(02):209-212.
    [94]Xing Z W, Bao J, Yang Y Y.Numerical simulation of hot stamping of quenchable boron steel[J].Materials Science and Engineering:A.2009,499(1-2):28-31.
    [95]雷呈喜,崔俊佳,邢忠文,等.高强钢盒形件热冲压成形组织预测[J].塑性工程学报.2012,(06):40-44.
    [96]崔俊佳,于海平,李春峰,等.高强钢板热冲压工艺中的相变模拟[J].塑性工程学报.2013,(01):48-52.
    [97]李辉平,赵国群,贺连芳,等.热冲压硼钢B1500HS高温本构方程的研究[J].机械工程学报.2012,(08):21-27.
    [98]贺连芳.硼钢B1500HS的热冲压关键参数测试及其淬火性能研究[D]:(博士学位论文),济南:山东大学,2012.
    [99]贺连芳,赵国群,李辉平,等.基于响应曲面方法的热冲压硼钢B1500HS淬火工艺参数优化[J].机械工程学报.2011,47(8):77-82.
    [100]李辉平,赵国群,张雷,等.超高强度钢板热冲压及模内淬火工艺的发展现状[J].山东大学学报(工学版).2010,(03):69-74.
    [101]谭志耀.超高强度钢板热冲压成形基础研究[D]:(硕士学位论文),上海:同济大学,2006.
    [102]周全.汽车超高强度硼钢板热成形工艺研究[D]:(硕士学位论文),上海:同济大学,2007.
    [103]林建平,孙国华,朱巧红,等.超高强度钢板热成形板料温度的解析模型研究[J].锻压技术.2009,(01):20-23.
    [104]张静.热成形板料加热装置温度场数值模拟研究[D]:(硕士学位论文),长春:吉林大学,2009.
    [105]朱巧红.热成形模具热平衡分析及冷却系统设计优化[D]:(硕士学位论文),上海:同济大学,2007.
    [106]王立影,林建平,朱巧红,等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计.2008,(04):15-18.
    [107]李翔,许章泽,安涛,等.薄轮辋、深盆形车轮的热成形工艺[J].钢铁研究学报.2007,19(11):40-42.
    [108]田浩彬,林建平,刘晓航.基于组织控制的热成形方法基础研究[J].塑性工程学报.2009,(02):163-166.
    [109]田志强.热成形钢与热成形技术的应用及发展现状[C].第十四届中国科协年会第8分会场:钢材深加工研讨会,中国河北石家庄,2012:5.
    [110]宫建红.含硼金刚石单晶的微观结构、性能与合成机理的研究[D]:(博士学位论文),济南:山东大学,2006.
    [111]王立影,王芝斌.热冲压成形零件质量控制因素分析[J].锻压技术.2010,(02):117-119.
    [112]Sha Q, Sun Z.Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel [J].Materials Science and Engineering:A.2009,523 (1-2):77-84.
    [113]Fernandez J, Illescas S, Guilemany J M.Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel[J].Materials Letters.2007,61 (11-12):2389-2392.
    [114]李安铭.奥氏体化温度和时间对27SiMn钢组织和性能的影响[J].金属热处理.2003,(09):39-41.
    [115]张卫.钢的奥氏体晶粒度检验方法[J].热加工工艺.2010,(22):66-68.
    [116]贺连芳.硼钢B1500HS的热冲压关键参数测试及其淬火性能研究[D]:(博士学位论文),济南:山东大学,2012.
    [117]中国科学院金属研究所.提高材料综合强韧性的新途径[J].高科技与产业化.2009,(07):118-119.
    [118]Abareshi M, Emadoddin E.Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel[J].Materials & Design.2011,32 (10):5099-5105.
    [119]Peng X, Zhu D, Hu Z, et al.Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels:Effect of Cu addition[J].Materials & Design.2013,45:518-523.
    [120]Lee S, Kim J, Lee S, et al.Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel[J].Scripta Materialia.2011,65 (12):1073-1076.
    [12]] 李云,王六定,陈钊.超高强钢23Co14Ni12Cr3强韧性的优化配合[J].西北工业大学学报.2005,(01):138-141.
    [122]刘东风,陆淑娟,卫英慧,等.从拉伸应力-应变曲线分析06Ni9钢强韧性配合[J].热加工工艺.2010,(22):30-32.
    [123]程俊业,赵爱民,陈银莉,等.不同温度回火后30MnB5热成形钢的EBSD研究[J].金属学报.2013,(02):137-145.
    [124]Naderi M, Ketabchi M, Abbasi M, et al.Semi-hot Stamping as an Improved Process of Hot Stamping[J].Journal of Materials Science & Technology.2011,27 (04):369-376.
    [125]李玲玲,李曲全,肖大恒,等.回火工艺对E690超高强度船板强韧性的影响[J].宽厚板.2010,(04):32-35.
    [126]梁晓军,焦四海,王聪,等.回火工艺对直接淬火钢组织与性能的影响[J].热加工工艺.2006,(08):47-50.
    [127]Cao R, Feng W, Peng Y, et al.Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980MPa high strength steel[J].Materials Science and Engineering:A.2010,528 (02):631-642.
    [128]Hwang B, Lee C G, Kim S.Low-Temperature Toughening Mechanism in Thermomechanically Processed High-Strength Low-Alloy Steels[J].Metallurgical and Materials Transactions A.2010,42(03):717-728.
    [129]Zou J, Jing H, Xu L.Surface crack fracture toughness and HRR fields of ultra-high strength steel[J].Materials Science and Engineering:A.2007,454-455:467-471.
    [130]王滨.ASTM金属材料夏比V型缺口冲击试验方法介绍[J].理化检验(物理分册).2004,(07):367-371.
    [131]吴金辉,王树人,李云龙,等.X70高钢级大壁厚管线钢管落锤撕裂试验的影响因素[J].理化检验(物理分册).2011,(02):85-87.
    [132]李荣锋,余立.关于钢材力学性能试验试样断口厚向开裂的若干问题[J].材料开发与应用.2013,(03):1-8.
    [133]万韬喻,丁小平,张纬斌.评铝-锂合金断裂韧性测试方法[J].轻合金加工技术.1989,(09):42-47.
    [134]李翠红,张哲峰.延性金属薄板力学性能评价新方法-撕裂试验[C].第十五届全国疲劳与断裂学术会议,中国广东佛山,2010:2.
    [135]Liu H W.On the fundamental basis of fracture mechanics[J].Engineering Fracture Mechanics.1983,17 (05):425-438.
    [136]Walubita L F, Simate G S, Ofori-Abebresse E, et al.Mathematical formulation of HMA crack initiation and crack propagation models based on continuum fracture-mechanics and work-potential theory[J].International Journal of Fatigue.2012,40:112-119.
    [137]张国英,刘春明,张辉.钢铁材料组织超细化机理的电子理论研究[J].物理学报.2005,(02):875-879.
    [138]药树栋,石文.淬火钢的高温快速回火工艺[J].金属热处理.2009,(02):92-95.
    [139]Edmonds D V, He K, Rizzo F C, et al.Quenching and partitioning martensite-A novel steel heat treatment[J].Materials Science and Engineering:A.2006,438-440:25-34.
    [140]Yu W, Qian Y, Wu H, et al.Effect of Heat Treatment Process on Properties of 1000 MPa Ultra-High Strength Steel [J] Journal of Iron and Steel Research, International.2011,18 (02):64-69.
    [141]李小宝.回火工艺对低碳高强贝氏体钢组织和性能的影响[D]:(硕士学位论文),沈阳:东北大学,2011.
    [142]凌敏,朱茂兰,梁益龙.回火温度对GDL-1高强韧新材料断裂韧性的影响[J].物理测试.2009,(04):1-4.
    [143]贺信莱,褚幼义,柯俊.硼钢淬透性与硼偏聚[J].北京钢铁学院学报.1983,(01):155-168.
    [144]Helm D, Baiker M, Bienger P.Experimental investigations and multiscale modeling of the microstructure evolution and the mechanical properties of a ferritic steel grade during the production process[C].11th International Conference on Numerical Methods in Industrial Forming Processes,Shenyang,China,2013:197-205.
    [145]Oldenburg M, Lindkvist G.Micro-Structure Evolution in the Press Hardening Process with Respect to Tool and Contact Thermal Properties[J].Steel Research International.2010,81(09):865-868.
    [146]宋华.含铌TRIP钢组织性能研究[D]:(硕士学位论文),鞍山:辽宁科技大学,2008.
    [147]彭爱红.Minitab软件在有重复试验的正交试验设计中的应用[J].集美大学学报(教育科学版).2013,(01):111-114.
    [148]张国栋,薛吉林,周昌玉.基于正交试验设计的高温管道焊接工艺优化[J].焊接学报.2008,(11):53-56.
    [149]杨剑秋,王延荣.基于正交试验设计的空心叶片结构优化设计[J].航空动力学报.2011,(02):376-384.
    [150]吴浩扬,常炳国,朱长纯.遗传算法的一种特例--正交试验设计法[J].软件学报.2001,(01):148-153.
    [151]谢建,刘建国,文真.正交试验设计法在发动机动力性能匹配试验中的应用[J].摩托车技术.2013,(02):33-36.
    [152]刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理.2010,(09):52-55.
    [153]Benyounis K Y, Olabi A G.Optimization of Different Welding Processes using Statistical and Numerical Approaches-A Reference Guide[J].Advances in Engineering Software.2008,39(06): 483-496.
    [154]林忠钦,刘罡,李淑慧,等.应用正交试验设计提高U形件的成形精度[J].机械工程学报.2002,(03):83-89.
    [155]祝忆春,杨琳瑜,邱玉兰.基于多指标正交实验的涡流探头优化设计[J].失效分析与预防.2013,(04):222-225.
    [156]丰景春,陈立民,胡肇枢.水利工程评标综合评分法及其模型研究[J].河海大学学报(自然科学版).2003,(04):461-465.
    [157]曾小华,王庆年,王伟华,等.正交优化设计理论在混合动力汽车设计中的应用[J].农业机械学报.2006,(05):26-28.
    [158]陈会英,周衍平.综合评分法的改进与应用[J].农业系统科学与综合研究.1996,(01):37-41.
    [159]胡平,盈亮.高强度钢热冲压技术生产线现状及国产化之路[J].现代制造.2011,(01):1-9.
    [160]Sia N.Experimentally-based micromechanical modeling of metal plasticity with homogenization form micro-to-macro-scale properties[J].IUTAM Symposium on Micro-and Macrostructural Aspects of Thermoplasticity.2002,62:101-113.
    [161]Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains,high strain-rates and high temperature[C].The 7th Symposium on Ballistic, Hague,Netherlands, 1983:541-547.
    [162]Tong L, Stahel S, Hora P.Modeling for the FE simulation of warm metal forming processes[C].The 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes,Detroit,USA,2005:625-629.
    [163]Ghosh S, Kikuchi N.Finite Element Formulation for the Simulation of Hot Sheet Metal Forming Processes[J].International Journal of Engineering Science.1988,26(02):143-161.
    [164]Brosius A, Karbasian H, Tekkaya A, et al.Modellierung und Simulation der Warmblechumformung[J].Aktueller Stand und zukunftiger Forschungsbedarf.2007,2:37-58.
    [165]俞汉清,陈金德.金属塑性成形原理:金属塑性成形原理[Z].北京:机械工业出版社,1999.
    [166]Berisha B, Hora P, Wahlen A, et al.A combined isotropic-kinematic hardening model for the simulation of warm forming and subsequent loading at room temperature[J].International Journal of Plasticity.2010,26 (01):126-140.
    [167]Sai K.Multi-mechanism models:Present state and future trends[J].International Journal of Plasticity.2011,27 (02):250-281.
    [168]姜大鑫.高强度钢板热成形多场耦合关系研究[D]:(硕士学位论文),大连:大连理工大学,2012.
    [169]段玉玲,陈继平,钱健清.板料成形极限图的研究概述[J].安徽冶金.2005,(01):44-47.
    [170]陈明和,高霖,王辉,等.板料成形极限应力图及其应用研究进展[J].中国机械工程.2005,(17):1593-1597.
    [171]冯兰,蔡英文,何丹农,等.金属板料成形数值模拟的研究现状[J].塑性工程学报.2004,(06):1-6.
    [172]翟妮芝.数值模拟在板材成形极限分析中的应用[D]:(硕士学位论文),西安:西北工业大学,2007.
    [173]Jimbert P, Ulacia I, Fernandez J I, et al.New Forming Limits for Light Alloys by Means of Electromagnetic Forming and Numerical Simulation of the Process[C].10th ESAFORM Conference on Material Forming,Zaragoza,Spain,2007:1295-1300.
    [174]谭保中.汽车覆盖件冲压成形数值模拟技术研究及应用[D]:(硕士学位论文),长春:吉林大学,2008.
    [175]Keeler SP.Circular grid system-a valuable aid for evaluating sheet metal formability[J].Sheet Metal Ind.1968,680092(45):371-379.
    [176]Goodwin G M.Application of strain analysis to sheet metal forming problems in the press shop[J].Society of Automotive Engineers.1968,680093:380-387.
    [177]吴华,蒋浩民,李川海,等.钢板力学性能对FLD_0影响的试验研究[J].金属成形工艺.2003,(06):95-97.
    [178]杜平梅,郎利辉,刘宝胜,等.基于M-K模型的成形极限预测及参数影响[J].塑性工程学报.2011,(05):84-89.
    [179]Ghazanfari A, Assempour A.Calibration of forming limit diagrams using a modified Marciniak-Kuczynski model and an empirical law[J].Materials & Design.2012,34:185-191.
    [180]Signorelli J W, Bertinetti M A, Turner P A.Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model[J]. International Journal of Plasticity.2009,25 (01):1-25.
    [181]谷诤巍,朱超,徐虹.一种超高强度钢板热冲压件高温防氧化涂料[P].中国,发明专利,101624500B,2011.9.7.
    [182]徐虹,孟佳,谷诤巍,等.22MnB5钢热冲压高温防氧化涂层[J].汽车技术.2011,(12):48-51.
    [183]刘建华,李明,陶斌武,等.0Cr15Ni5Cu2Ti钢的高温氧化行为[J].航空学报.2008,(01):221-226.
    [184]揭晓华,毛志远.5CrNiMo钢在高温磨损中的动态氧化行为[J].浙江大学学报(自然科学版).1998,(06):121-128.
    [185]卢昌萍.冷轧硅钢片表面氧化层厚度的金相测定方法探讨[J].武钢技术.1996,(05):39-42.
    [186]邢磊,张立文,张兴致,等.TP2铜与3Cr2W8V模具钢的瞬态接触换热系数[J].中国有色金属学报.2010,(04):662-666.
    [187]郑亚菲.车用高强度钢板的氧化脱碳研究[D]:(硕士学位论文),长春:吉林大学,2012.
    [188]赵越,杨功显,袁超,等.铸造镍基高温合金K447的高温氧化行为[J].腐蚀科学与防护技术.2007,(01):1-4.
    [189]包军,邢忠文,杨玉英,等.超高强度硼钢板热弯曲数值模拟[J].材料科学与工艺.2009,(03):326-328.
    [190]林建平,孔庆华,徐洲,等.22MnB5钢板不等温拉深成形的影响因素研究[J]同济大学学报(自然科学版).2011,(04):567-571.
    [191]田浩彬,康达昌.板料n值测量方法的研究[J].塑性工程学报.2003,10(01):36-39.
    [192]Panao M R O, Moreira A L N, Durao D F G.Thermal-fluid assessment of multijet atomization for spray cooling applications[J].Energy.2011,36 (04):2302-2311.
    [193]邵宝东,丁冬芳,王丽凤,等.常压高速水雾喷射淬火的冷却能力研究[J].昆明理工大学学报(自然科学版).2011,(01):16-19.
    [194]Wendelstorf R, Spitzer K H, Wendelstorf J.Effect of oxide layers on spray water cooling heat transfer at high surface temperatures[J].International Journal of Heat and Mass Transfer.2008,51 (19-20):4892-4901.
    [195]胡丽华,傅旻,樊新乾.板料弯曲成形性能的有限元模拟研究[J].模具工业.2013,(01):25-28.
    [196]Mori K, Akita K, Abe Y.Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press[J].International Journal of Machine Tools and Manufacture.2007,47 (02):321-325.
    [197]Park M K, Son H S, Kim T H, et al.Formability,Flow and Heat Transfer Simulation of Hot Press Forming B-pillar Part and Tools[C].Proceedings of th 10th International Conference (NUMIFORM 2010),Pohang,Korea,2010:344-347.
    [198]蒋峥嵘.高强度钢板热冲压工艺研究及有限元分析[D]:(硕士学位论文),重庆:重庆大学,2011.
    [199]齐会文.方盒形件拉深工艺分析及数值模拟[D]:(硕士学位论文),秦皇岛:燕山大学,2005.
    [200]杨玉英,徐伟力,邢忠文.球面压料面对方盒形件成形的影响[J].塑性工程学报.1997,(03):29-33.
    [201]刘林娜,范镜泓.包含相变的非等温内时本构方程及其在2Cr13钢淬火应力分析中的应用[J].力学学报.1989,(S1):62-69.
    [202]崔振山,徐秉业,刘才.金属热成形过程的综合数值模拟[J].工程力学.2002,(01):42-46.
    [203]赵洪壮,许红,刘相华,等.热处理过程数值模拟综述[J].热处理.2004,(01):6-11.
    [204]Wu J, Zhang L, Chen J, et al.Simulation of hot stamping process with advanced material modeling[J].SAE Transactions.2004,113(05):59-66.
    [205]王勖成,唐永进.一般壳体温度场的有限元分析[J].清华大学学报(自然科学版).1989,(05):103-112.
    [206]Bergman G, Oldenburg M.Verification of thermo-mechanical material models by thin plate quenching simulations[J]Journal of Thermal Stresses.1997,20 (07):679-695.
    [207]姜大鑫,武文华,胡平.高强度钢板热成形温度场数值模拟分析[J].工程力学.2013,30(01):419-424.
    [208]张立文,朱大喜,王明伟.淬火冷却介质换热系数研究进展[J].金属热处理.2008,(01):53-56.
    [209]Tekkaya A E, Karbasian H, Homberg W, et al.Thermo-mechanical coupled simulation of hot stamping components for process design[J].Production Engineering.2007,1 (01):85-89.
    [210]张卫刚,但文蛟TRIP钢冲压成形过程中马氏体相变特性研究及其仿真[J].精密成形工程.2011,(06):37-41.
    [211]王星耀,彭程,霍永忠.马氏体相变微结构演化过程的模拟与分析[C].第六届南方计算力学学术会议,青岛,2006:1-4.
    [212]彭程.应力诱发马氏体相变微结构演化的实验观测、理论计算和数值模拟[D]:(硕士学位论文),上海:复旦大学,2008.
    [213]Liu H, Lu X, Jin X, et al.Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process[J].Scripta Materialia.2011,64 (08):749-752.
    [214]Liu H, Jin X, Dong H, et al.Martensitic microstructural transformations from the hot stamping, quenching and partitioning process[J].Materials Characterization.2011,62 (02):223-227.
    [215]罗芳,韩利战,顾剑锋,等.3Cr2Mo钢马氏体相变塑性及应力对其相变动力学的影响[J].材料热处理学报.2011,32(06):98-102.
    [216]Reza T, Abbas N, Reza S.Drawing of CCCT diagrams by static deformation and consideration deformation effect on martensite and bainite transformation in NiCrMoV steel [J].Journal of Materials Processing Technology.2008,196 (1-3):321-331.
    [217]Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J].Acta Metallurgica.1959,7 (01):59-60.
    [218]Inoue T, Wang Z.Coupling between stress, temperature and metallic structures during processes involving phase transformations[J].Material Science and Technology.1985,1 (10):845-850.
    [219]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术.2005,24(02):212-216.
    [220]Bai Q, Lin J, Zhan L, et al.An efficient closed-form method for determining interfacial heat transfer coefficient in metal forming[J].International Journal of Machine Tools and Manufacture.2012,56: 102-110.
    [221]Tondini F, Bosetti P, Bruschi S.Inverse Analysis for HTC Identification[C].Proceedings of the COMSOL Conference 2009,Milan,ltaly,2009.
    [222]Abdulhay B, Bourouga B, Dessain C.Experimental and theoretical study of thermal aspects of the hot stamping process[J].Applied Thermal Engineering.2011,31 (05):674-685.
    [223]Salomonsson P, Oldenburg M.Experimental and Numerical Evaluation of the Heat Transfer Coefficient in Press Hardening[J].Steel Research International.2009,80(11):841-845.
    [224]Hu P, Ying L, GUO R Q, et al.Experimental Study on Hot Bending of Ultra High Strength Steel 22MnB5 and Its Lightweight Application[J].International Journal of Aerospace and Lightweight Structures.2012,2(03):353-364.
    [225]Abdulhay B, Bourouga B, Dessain C, et al.Experimental study of heat transfer in hot stamping process[J].International Journal of Material Forming.2009,2 (01):255-257.
    [226]Blaise A, Bourouga B, Abdulhay B, et al.Thermal contact resistance estimation and metallurgical transformation identification during the hot stamping[J].Applied Thermal Engineering.2012, 61(02):141-148.
    [227]Salomonsson P, Oldenburg M.Investigation of heat transfer in the press hardening process[C].Proceedings of 2nd International Conference on Hot Sheet Metal Forming of High-performance Steel,Lulea,Sweden,2009:239-246.
    [228]贺连芳,李辉平,崔洪芝,等.一种用于评估界面温度与界面换热系数关系的装置及方法[P].中国,发明专利,103033277 A,2013.4.10.
    [229]Rosochowska M, Chodnikiewicz K, Balendra R.A new method of measuring thermal contact conductance[J] Journal of Materials Processing Technology.2004,145 (02):207-214.
    [230]Merklein M, Lechler J, Stoehr T.Investigations on the thermal behavior of ultra-high strength boron manganese steels within hot stamping[J].International Journal of Material Forming.2009,2:259-262.
    [231]Ikeuchi K, Yanagimoto J. Valuation method for effects of hot stamping process parameters on product properties using hot forming simulator[J] Journal of Materials Processing Technology.2011,211 (8):1441-1447.
    [232]Tondini F, Bosetti P, Bruschi S.Heat transfer in hot stamping of high strength steel sheets[J].Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufactur.2011,225(10):1813-1824.
    [233]郭志鹏,熊守美,曹尚铉,等.热传导反算模型的建立及其在求解界面热流过程中的应用[J].金属学报.2007,43(06):607-611.
    [234]朱德才,张立文,裴继斌,等.固态塑性成形过程中界面接触换热的实验研究[J].塑性工程学报.2008,,(01):92-96.
    [235]湛利华,李晓谦,胡仕成.界面接触热阻影响因素的实验研究[J].轻合金加工技术.2002,30(09):40-43.
    [236]Hu P, Ying L, Li Y, et al.Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process[J]. Journal of Materials Processing Technology.2013,213(09):1475-1483.
    [237]陈斌,彭向和,范镜泓,等.考虑相变的热弹塑性本构方程及其应用[J].物理学报.2009,58(s1):29-34.
    [238]Lei C, Cui J, Xing Z, et al.Investigation of Cooling Effect of Hot-stamping Dies by Numerical Simulation[J].Physics Procedia.2012,25:118-124.
    [239]Taylan A.Hot-stamping boron-alloyed steels for automotive-parts 3 Tool design and process simulation[J]. Stamping Journal.2007:10-11.
    [240]蔡玉俊,陈树来,王玉广.高强钢板热冲压模具冷却水道优化设计[J].农业机械学报.2013,(01):253-257.
    [241]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学.2007,24(10):92-99.
    [242]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报.2008,27(03):46-49.
    [243]Naderi M, Uthaisangsuk V, Prahl U, et al.A Numerical and Experimental Investigation into Hot Stamping of Boron Alloyed Heat Treated Steels[J].Steel Research International.2008,79 (02):77-84.
    [244]Kobayashi S, Oh S, Altan T, et al.Metal forming and the finite-element method[J].Journal of Materials Shaping Technology.1990,8(01):65.
    [245]Sjostrom S.The calculation of quench stresses in steel[D]:(PHD.thesis),Sweden:Link6ping University,1982.
    [246]桂中祥,张宜生,王子健.汽车超高强钢热冲压成形新工艺--选择性冷却[J].热加工工艺.2013,(01):108-113.
    [247]王艳青,李军,陈云霞.TRB差厚板在汽车前纵梁上的应用[J].汽车工艺与材料.2013,(06):10-13.
    [248]霍孝波.基于新型板材的汽车车门轻量化优化设计[D]:(硕士学位论文),大连:大连理工大学,2013.
    [249]郭幼丹,程晓农.基于多层复合微观结构的22MnB5钢热成形的力学行为[J].塑性工程学报.2012,19(04):103-107.
    [250]Nishibata T, Kojima N.Effect of quenching rate on hardness and microstructure of hot-stamped steel[J].Journal of Alloys and Compounds.2012 (In Press).
    [251]George R.Hot forming of boron steels with tailored mechanical properties:experiments and numerical simulations[D]:(PHD.thesis),Waterloo:University of Waterloo,2011.
    [252]Svec T, Gruner M, Merklein M.FE-simulation of the heat transfer by defined cooling conditions during the hot stamping process[J]. Key Engineering Materials.2011.473:699-706.
    [253]郭幼丹,程晓农10CrNi3MoV船用钢热成形的力学行为与性能研究[J].船舶工程.2012,34(06):44-47.
    [254]蒋涛,雷新荣,吴红丹,等.热处理工艺对碳钢硬度的影响[J].热加工工艺.2011,40(04):167-168,171.
    [255]行凯歌.层合板弯曲分析的Hermite径向基函数配点法[D]:(硕士学位论文),苏州:苏州大学,2012.
    [256]彭文杰.复合材料层合结构极限强度预测方法及分层应力最小化研究[D]:(博士学位论文),武汉:华中科技大学,2009.
    [257]Graff S, Gerber T, Lenze F J, et al.About the simulation of microstructure evolution in the hot sheet stamping process and the correlation of resulting mechanical properties and crash-performance[C].3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel,Kassel, Germany,2011:323-330.
    [258]Erturk S, Sester M, Selig M, et al.A thermo-mechanical-metallurgical FE approach for simulation of tailored tempering[C].Proceedings of the 3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel,Kassel, Germany,2011:447-454.
    [259]Feuser P, Schweiker T, Merklein. M.Partially Hot-formed Parts from 22MnB5-Process Window Material Characteristics and Component Test Results[C].10th International Conference on Technology of Plasticity,Aachen, Germany,2011:408-413.
    [260]George R, Bardelcik A, Worswick M J.Hot forming of boron steels using heated and cooled tooling for tailored properties[J].Journal of Materials Processing Technology.2012,212 (11):2386-2399.
    [261]Bok H, Lee M, Pavlina E J, et al.Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J].International Journal of Mechanical Sciences.2011,53 (09):744-752.
    [262]Cui J, Lei C, Xing Z, et al.Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation[J].Materials Science and Engineering: A.2012,535:241-251.
    [263]Victor Li M, V.Niebuhr D, L.Meekisho L, et al.A computational model for the prediction of steel hardenability[J].Metallurgical and Materials Transactions B.1998,29 (03):661-672.
    [264]Bardelcik A, Salisbury C P, Winkler S, et al.Effect of cooling rate on the high strain rate properties of boron steel[J].International Journal of Impact Engineering.2010,37 (06):694-702.
    [265]西烟敏伸,小嶋啓达.热冲压钢板的热处理性能[Z].住友金属工业有限公司综合技术研究所,43-50.
    [266]马增胜.纳米压痕法表征金属薄膜材料的力学性能[D]:(博士学位论文),湘潭:湘潭大学,2011.
    [267]付泽民,莫健华,陈伟,等.基于量纲分析法的金属板材折弯回弹数学模型[J].机械工程学报.2010,46(12):53-58.
    [268]Nunmisheet.The Numisheet Benchmark Study[Z].BMBP.Interlaken,Switzerland:2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700