用户名: 密码: 验证码:
区域对流层模型在地基GPS气象学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球定位系统(GPS)近些年来在地球动力学、大气物理学、航空遥感、地质灾害等领域中的应用越来越广泛,用户对GPS定位精度的要求越来越高。然而,对流层误差的影响限制了GPS定位精度的进一步提高。完善GPS对流层改正模型以进一步提高GPS高程上的测量精度,同时提高GPS遥感水汽的精度,成为当前该领域亟需解决的问题。本文基于对流层的相关知识,就对流层对GPS定位精度和地基GPS遥感水汽的影响进行研究分析:分析对流层延迟改正的理论和方法,构造区域对流层改正模型,并采用多种方法验证区域模型的精度,为进一步提高GPS定位精度和地基GPS遥感水汽精度提供基础。
     本文研究的内容有:
     1.地基GPS遥感水汽的基本原理与最新研究进展:总结了地基GPS遥感天顶水汽PWV的基本理论。介绍大气的分层结构,GPS数据处理中的大气延迟的改正方法和GPS数据处理中的几个常用的大气延迟模型,总结了天顶水汽PWV的提取方法,并进行相关的误差分析,以此确保地基GPS高精度遥感天顶水汽PWV值。
     2.区域地基GPS网实时计算绝对天顶水汽PWV的方法研究:在深入分析海潮、映射函数、电离层等对反演天顶水汽PWV精度影响的基础上,高精度实时遥感绝对天顶水汽PWV,并对其外符合精度进行检验。
     3.GPS遥感斜路径水汽SWV:总结了GPS斜路径水汽SWV的计算方法及原理,并研究了大气水平梯度对天顶延迟和斜路径湿延迟(SWD)的影响,分析了大气水平梯度与大气变化、卫星高度角的关系,同时借助于GAMIT软件分析了大气荷载对天顶水汽PWV和斜路径水汽SWV的影响规律,为后续高精度层析水汽奠定基础。
     4.利用香港CORS网2009年的数据和气象数据计算获取该地区天顶总延迟ZTD、天顶湿延迟ZWD、天顶干延迟ZHD值,通过分析天顶延迟与各因素的关系,拟合出以气象数据为参数的区域对流层模型,并对其进行精度检验,然后以时间为参数建立了实时经验模型,将该模型计算的气象要素、欧盟ECMWF实时内插计算的气象要素与真值进行对比,得出了有实用价值的结论。
In recent years,with the application areas of global positioning system (GPS) are increasingly more and more widely, such as geodynamics, atmospheric physics, remote sensing, geological disasters, the user require more and more higher accuracy of GPS positioning, however, the impact of tropospheric delay limit the accuracy of GPS positioning to further increase.Completing the atmosphere models to further improve the measurement accuracy on the GPS elevation, while increasing the accuracy of GPS sensing vapor,has become the urgent problem in this area.Based on the knowledge of the troposphere, this paper researches and analysises the troposphere delay influence of the positioning accuracy of GPS and the ground-based GPS remote sensing water vapor:Analysis the theory and method of tropospheric delay correction,structure local atmosphere models, and use a variety of methods to validate the accuracy of local models, provide the basis for the improvement of the GPS positioning accuracy and the precision of ground-based GPS remote sensing water vapor.
     The main research contents of this paper are as follows:
     1. the basic principles of Ground-based GPS remote sensing Water vapor and its recent advances:Summarize the basic theory of ground-based GPS remote sensing precipitable water vapor. Describe the hierarchical structure of the atmosphere, the correction methods of atmospheric delay and several commonly used model of the atmosphere delay in the GPS data processing,Summarize the extraction methods of the precipitable water vapor, and analysis the associated error, in order to ensure the accuracy of the ground-based GPS remote sensing water vapor.
     2. Research the methods of the calculating the absolute zenith vapor PWV of the gegional ground-based GPS network in real time:Based on the in-depth analysis of the tide, mapping function, the ionosphere, etc. on the inversion accuracy of the Precipitable water vapor,precision remote sensing of precipitable water vapor real-time, and test its external fitting accuracy.
     3. GPS remote sensing slant water vapor:Summarize the calculation method and principle of the GPS slant water vapor, and research the influence of horizontal gradient of atmospheric to the zenith delay and slant wet delay, analysis the relationship between the horizontal gradient of the atmosphere and atmospheric changes, satellite elevation angle, while with the GAMIT software analysis the Influence of the atmospheric loading to the precipitable water vapor and slant water vapor, to lay the foundation for subsequent high-precision chromatography vapor.
     4 Using the Hong Kong CORS network data in 2009 and meteorological data, calculate the zenith total delay, zenith wet delay, zenith dry delay value of this area, by analyzing the relationship between the zenith delay and the various factors, fit out of the regional troposphere model with the weather data for the parameters, and test its precision, and then establish a real time experience model using the time as the parameter, compare the meteorological factors calculated with this model with the meteorological elements which is caculated using European real-time interpolation and the true value, obtained the conclusion of practical value.
引文
[1]张勤,李家权.GPS测量原理及应用[M].北京:科学出版社,2005年
    [2]Saastamoinen J. Contributions to the Theory of Atmosphere Refraction[J]. Bullerin. Geodesique. 1973,105-107:279,383,13
    [3]Rodrigo Leandro, Marcelo Santos, Richard B. UNB Neutral Atmosphere Models:Development and Performance[R]. GPS tool box10.8,A neutral atmosphere delay package
    [4]Niell A. Improved Atmospheric Mapping Function for VLBI and GPS[J]. Earth Planets Space,2000,52:699-702
    [5]Chao C.C.. JPL Technology Report[R]. Pasadena. California:JPL.1974.61:32-1587
    [6]Marini J W. Correction of satellite tracking data for an arbitrary troposphere profile[J]. Radio Science.1972,7(2):223-231
    [7]Davis J L, Herring T A, Shapiro I I, et al. Geodesy by radio interferometry:Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science.1985,20:1593-1607
    [8]Herring T A. Modeling Atmospheric Delay in the Analysis of Space Geodetic Data[J], in DeMunck, J.C. and T.Spoelstra (eds):Refraction of Transatmospheric Signals in Geodesy, N.G.C., New Series.1992,36:157
    [9]Arthur Niell. Improved atmospheric mapping functions for VLBI and GPS [J]. Earth Planets Space, 2000,52:699-702
    [10]Johannes Boehm, P.J. Mendes Cerveira, Harald Schuh and Paul Tregoning. The impact of tropospheric mapping functions based on numerical weather models on the determination of geodetic parameters [J]. IAG Proceedings, Cairns, Aug,2005
    [11]严豪健.大气折射的研究进展[J].世界科技研究与发展,2006,28(1),48~58
    [12]严豪健.中性大气折射映射函数和大气折射母函数方法[J].天文学进展,2000,18(2),104-113
    [13]Johannes Boehm, J. Kouba, and H. Schuh. Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations [J]. Journal of Geodesy,2008, doi:10.1007/s00190-008-0216-y
    [14]Johannes Boehm, Arthur Niell, Paul Tregoning and Harald Schuh. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data [J]. GRL,2006,33:L07304, doi:10.1029/2005GL025546
    [15]Yan H J. Sauermann K,Groten E.6th International Geodetic Symposium on Satellite Positioning[C]. Columbus:The Ohio State University.1992,191
    [16]李延兴,胡新康,帅平.卫星信号大气层路径弯曲改正的精确计算模型[J].大地测量与地球动力学,2002,22(1):6-10
    [17]Bevis M, Businger S, Herring T A, C. Rocken, R. Anthes, and R. Ware. GPS meteorology:romote sensing of atmospheric water vapor using the global positioning system [J]. JGR, 1992,97(D14):15787-15801
    [18]王小亚,朱文耀,严豪健等.地基GPS探测大气可降水量的初步结果[J].大气科学.1999,23(5):605-612
    [19]章红平.利用地基GPS数据估计大气可降水分[D].湖北: 武汉大学,2003
    [20]曲建光,刘基余,韩中元.利用天顶对流层延迟数据直接推算水汽含量的研究[J].武汉大学学报·信息科学版,2005(30):625-628
    [21]宋淑丽,朱文耀,陈钦明.中国区域对流层改正模型(SHAO)的初步建立[C].第一届中国卫星导航学术年会,北京,2010
    [22]翟清斌.利用地基GPS遥感大气水汽含量的研究[D].北京:清华大学,2005
    [23]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1997
    [24]张双城.地基GPS遥感水汽空间分布技术及其应用的研究[D].武汉:武汉大学,2008
    [25]Alber C, Ware R, Rocken C, et al. Obtaining single path phase delays from GPS double differences [J]. GRL,2000,27:2661-2664
    [26]王勇.地基GPS网气象应用研究[D].中国科学院测量与地球物理研究所,2006
    [27]丁金才.GPS气象学原理及其应用[M].气象出版社,2009年
    [28]岩崎博之,木村富士男,中尾茂等.水汽梯度对GPS资料导出的可降水量精度的影响[J] Journal of the Meteorological Society of Japan,78(3):223-231
    [29]Braun J, Rocken C, Liljegren J. Comparisons of line-of-sight water vapor observations using the Global Positioning System and a pointing microwave radiometer [J]. J.Atmos.Oceanic Technol., 2003,20:606-612
    [30]宋淑丽,朱文耀.区域GPS网实时计算可降水量的若干问题[J].中国科学院上海天文台年刊.2003,24:20~27
    [31]Duan J and Coauthors. GPS meteorology:Direct estimation of the absolute value of precipitable water vapor [J]. Appl. Meteor.1996,35:830-838
    [32]宋淑丽,朱文耀.区域GPS网实时计算可降水量的若干问题[J].中国科学院上海天文台年刊. 2003,24:20~27
    [33]王志强,吴斌,周旭华,等.海潮对天顶延迟测定的影响[J].天文学报,2003,44(3):318-323
    [34]张双成,叶世榕,刘经南,等.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武汉大学学报·信息科学版,2009,34(3):280-283
    [35]A. Walpersdorf, M.-N. Bouin, O. Bock, E. Doerflinger. Assessment of GPS data for meteorological applications over Africa:Study of error sources and analysis of positioning accuracy[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2007,69:1312-1330
    [36]王小亚,朱文耀,严豪健等.地基GPS探测大气可降水量的初步结果[J].大气科学.1999,23(5):605~612
    [37]Witold Rohm, Jaroslaw Bosy. Local tomography troposphere model over mountains area[J]. Atmospheric Research,2009,93:777-783
    [38]宋淑丽.地基GPS网对水汽三维分布的监测及其在气象学中的应用[D].上海:中国科学院上海天文台,2004
    [39]宋淑丽,朱文耀,程宗颐,廖新浩.GPS信号斜路径方向水汽含量的计算方法[J].天文学报,2004,45(3):338~346
    [40]曹云昌.利用地基GPS资料反演大气参数及其四维变分同化试验研究[D].江苏:南京气象学院,2002
    [41]C. S. Gardner. Correction of laser tracking data for the effects of horizontal refractivity gradients [J]. Applied Optics.1977,16(9):2427-2432
    [42]许华冠.GPS资料分析中大气折射水平梯度的估计[J].中国科学院上海天文台年刊,1999,20:84-90
    [43]K. Kuyrzynska and A. Gabryszewska. Atmospheric Water Vapour Content Determined from Zenith Delay Assuming A Local Model of Troposphere[J]. Phys. Chem. Earth (A),2001,26(3):159-163
    [44]杨力.大气对GPS测量影响的理论研究[D].郑州:解放军信息工程大学,2001
    [45]俞慕耕.香港地区的水文气象特征[J].海洋通报,1997,16(3):41-48
    [46]Askne J,Nordius H.Estimation of tropospheric delay for microwaves from surface weather data.Radio Science,22:379-386.1987
    [47]Eanes R, Bettadpur S. The CSR3.0 global ocean tide model[J]. Center for space Research, Technical Memorandum,CSR-TM-95-06,1995
    [48]Wayan Suparta, Zainol Abidin Abdul Rashid, Mohd. Alauddin Mohd. Ali,Baharudin Yatim, Grahame J. Fraser. Observations of Antarctic precipitable water vapor and its response to the solar activity based on GPS sensing[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2008,70:1419-1447
    [49]Alessandro Bonforte, Alessandro Ferretti, Claudio Prati, Giuseppe Puglisi, Fabio Rocca. Calibration of atmospheric e*ects on SAR interferograms by GPS and local atmosphere models:/rst results[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2001,63:1343-1357
    [50]T. Pany. Measuring and modeling the slant wet delay with GPS and the ECMWF NWP model[J]. Physics and Chemistry of the Earth.,2002,27:347-354
    [51]G. Guerova, J.-M. Bettems, E. Brockmann, Ch. Matzler. Assimilation of the GPS-derived integrated water vapour (IWV)in the MeteoSwiss numerical weather prediction model——a first experiment[J]. Physics and Chemistry of the Earth,2004,29:177-186
    [52]Andre van der Hoeven*, Ramon F. Hanssen, Boudewijn Ambrosius. Tropospheric delay estimation and analysis using GPS and SAR interferometry[J]. Physics and Chemistry of the Earth,2002,27:385-390
    [53]S. de Haan, H. van der Marel. The influence on GPS estimates of NWP-derived mapping functions[J]. Physics and Chemistry of the Earth,2004,29:159-166
    [54]L.Cucurull, P. Sed6, D.Behrend, E.Cardellach, A.Rius. Integrating NWP products into the analysis of GPS observables[J]. Physics and Chemistry of the Earth,2002,27:377-383
    [55]T. Pany, P. Pesec and G. Stangl. Elimination of Tropospheric Path Delays in GPS Observations Numerical Weather Model[J]. Phys. Chem. Earth (A),2001,26(6-8):487-492.2001
    [56]Sridevi Jadea, M.S.M. Vijayan, V.K. Gaur, Tushar P. Prabhu, S.C. Sahu. Estimates of precipitable water vapour from GPS data over the Indian subcontinent[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2005,67:623-635
    [57]Michael Bender, Ralf Stosius, Florian Zus, Galina Dick, Jens Wickert, Armin Raabe. GNSS water vapour tomography-Expected improvements by combining GPS, GLONASS and Galileo observations[J]. ADVANCES IN SPACE RESEARCH,2010.
    [58]R. Pacione, E. Fionda, R. Ferrara, R. Lanotte, C. Sciarretta, F. Vespe. Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy[J]. Physics and Chemistry of the Earth,2002,27:309-316
    [59]J. Dousa. Evaluation of tropospheric parameters estimated in various routine GPS analysis[J]. Physics and Chemistry of the Earth,2004,29:167-175
    [60]Shuanggen Jin, O.F.Luo, J.Cho. Systematic errors between VLBI and GPS precipitable water vapor estimations from 5-year co-located measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2009,71:264-272
    [61]C. SureshRaju, KorakSaha, K.Parameswaran. Signature of atmospheric oscillations in GPS-measured tropospheric delay[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2009,71:1784-1793
    [62]G.A. Hajj, E.R. Kursinski, L.J. Romans, W.I. Bertiger, S.S. Leroy. A technical description of atmospheric sounding by GPS occultation [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2002,64:451-469
    [63]Johannes Boehm, Birgit Werl, and Harald Schuh. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data [J]. JGR,2006, 111(B02406), Doi:10.1029/2005JB003629
    [64]严豪健.大气折射的研究进展[J].世界科技研究与发展,2006,28(1),48-58
    [65]严豪健.中性大气折射映射函数和大气折射母函数方法[J].天文学进展,2000,18(2),104-113
    [66]严豪健.全球大气折射延迟映射函数的可能性问题[J].中国科学院上海天文台年刊,1999,20:61-70
    [67]曹云昌,方宗义,夏青等.地基GPS气象站网建设指南[M].北京:气象出版社,2007
    [68]丁晓光.对流层延迟改正在GPS数据处理中的应用与研究[D].西安:长安大学,2008
    [69]李浩军,王解先,胡丛伟.GPS对流层延迟的历元间差分分析[J].同济大学学报,2010,38(3):448-452
    [70]施展,孟详广,郭际明,刘东明.GPS精密单点定位中对流层延迟模型改正法与参数估计法的比较[J].测绘通报,2009年,6:9~11
    [71]朱庆林,吴振森,赵振维.单站地基非差GPS测量对流层天顶延迟.西安电子科技大学学报.2009,36(5):921-925
    [72]李盼,李星星,王磊,陈远.对流层湿延迟估计方法对PPP数据处理的影响.武汉大学学报.2010,35(7):850-853
    [73]聂建亮,张双城,王月莉,张玉芳.基于CORS网对流层信息的精密单点定位.大地测量与地球动力学.2010,30(2):91-94
    [74]王勇,焦健,曾琪明,刘严萍.基于不同地形的GPS对流层延迟插值方法研究.大地测量与地球动力学,2010,30(3):132-136
    [75]朱庆林,赵振维,吴振森.精密单点定位方法测量对流层天顶延迟的精度改善.武汉大学学报, 2009,34(9):1098-1101
    [76]陈招华,戴吾蛟.区域对流层延迟水平变化对GPS测量精度的影响.大地测量与地球动力学,2010,30(3):83~87
    [77]唐超华,李陶,施闯,张诗玉.天津地区CORS站天顶对流层延迟年周期变化研究.大地测量与地球动力学,2009,29(2):106~110
    [78]周旭华,吴斌,李军.高精度大地测量中的海潮位移改正[J].测绘学报,2001,30(4):327-330
    [79]张双成,叶世榕,刘经南,张斌.基于IGS超级跟踪站的近实时GPS气象研究及应用,测绘科学,2008,33(2):93~95
    [80]http://www-GPSg.mit.edu/-simon/gtgk/
    [81]http://sopac.ucsd.edu/cgi-bin/dbDataBySite.cgi
    [72]ftp://lox.ucsd.edu/pub/
    [83]ftp://everest.mit.edu/pub/GRIDS/
    [84]http://rses.anu.edu.au/geodynamics/GPS/atm_gamit/index.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700