用户名: 密码: 验证码:
基于灰色系统理论的压力容器安全运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内沿江和沿海石化企业加大了炼制中东高含硫原油的比例,国产原油的酸值和含硫量也呈上升趋势,各种介质环境加剧了炼化设备的腐蚀。在某炼油厂第一和第三常减压蒸馏装置设置电阻探针对腐蚀速率进行了测量,对原油的硫含量、盐含量、脱盐后的盐含量、酸值、塔顶产品槽中铁离子的变化、冷凝水的pH值等与腐蚀有关的因素进行了监测。采用灰色系统理论对影响腐蚀速率及其相关因素进行了分析,求出了绝对关联度、相对关联度和综合关联度,进行了优势分析。炼制胜利混合原油对腐蚀影响最大的因素是含酸量,炼制中东进口原油对腐蚀影响最大的因素是脱盐后的含盐量,最后对关联度计算结果和设备腐蚀的原因进行了分析。
     在常压蒸馏塔顶换热器入口分配管弯头处采用超声波定点测厚,弯头壁厚数列是准光滑序列,一次累加生成具有准指数规律。建立了GM(1,1)模型,对原始数据进行模拟的平均相对误差达到合格级别。通过对数据序列进行平移,对GM(1,1)模型进行改进提高了模型精度。建立DGM、Verhulst模型对摆动序列进行了模拟,建立GM(1,N)和GM(0,N)模型对腐蚀速率与相关因素的关系进行了分析,对未来可能的壁厚进行了区间预测。采用灰色系统理论对冲刷严重的部位进行寿命预测是可行的,有助于制定合理的检修周期,保障设备的安全。
     常减压装置塔顶换热器冲刷腐蚀严重,需要进行改造,考虑了采用普通管壳式换热器和螺旋折流板结构两种形式,换热管采用20号钢加装TH847涂料、20号钢渗铝、316L和双相钢等方案。在传热效率、制造费用、维护费用、安全程度、制造难度等改造目标下,采用灰色系统理论对方案进行了灰靶决策、灰色关联决策和灰色变权决策。灰色决策的结果表明采用同样的换热管螺旋折流板结构更优越。采用螺旋折流板结构和20号钢渗铝换热管的方案为最佳选择。
     螺旋折流板换热器的制造难度是一个很大的灰数,以两管程换热器为例,将一个周期的折流板分为四块,对管孔的排布方式进行研究分析,建立了数学模型,编制了数控加工程序。在MITSUBISHI操作系统的数控钻铣床上,实现了阶梯式螺旋折流板上孔的加工。采用先进制造技术实现了灰数的白化,降低了制造成本,提高了安全性。
More high-sulphur crude oil imported from Middle-east, the content of sulphur and acid in homemade oil is rising too, the corrosion is serious in refinery. Measured the corrosion pate with electric resistance probe, monitored sulfur value, salt value, salt value after desalt, acid value, iron ion value and pH value of cooling water. Carried on grey correlation analysis, calculated absolute, relative and synthetic degree of incidence, carried on predominance analysis too. For Shengli crude oil the main factor to the corrosion pate is acid value in crude oil, but for Middle-east oil the main factor is salt value after desalt.
     Measured the thickness of elbow by ultrasonic thickness meter, which is a quasi smooth sequence, accumulating generation operator is according to quasi exponent law. Established GM (1,1) model which passed error check is eligible. Adding a number to the sequence, then subtract it from the result, increased prediction precision. Used DGM and Verhulst model to simulate asway sequence, used GM (1, N) and GM (0, N) model to simulate corrosion and interrelated sequence, used GM (1, 1) model to predict the thickness in the future. Grey system model is feasible for eroding corrosion, can help for setting down overhaul period, and ensure safety.
     For exchangers rebuilding project, considered general tube-shell exchangers and helix- baffled structure, tube materials are 20 steel with TH847 coating, 20 steel aluminizing, 316L and dual phase steel. Considered heat transfer efficiency, manufacture fee, maintenance fee, safety and manufacture difficulty, carried on grey target decision, grey incidence decision and grey variable weight decision. Find that helix-baffled structure is better than common baffle structure; helix-baffled structure with 20 steel aluminizing tubes is the best preference plan.
     Fabricate difficulty is a prodigious grey number, aimed at helix-baffled exchangers with two courses in tube side, splitted one baffle into four parts, analyzed the tube holes’distributing, created mathematics model, compiled numerical controlled program with EIA code, realized numerical controlled process on Mitsubishi numerical controlled machine tool. This carried out the white number, lowered the cost, and ensured the security.
引文
[1]宋继红.中国压力容器安全形式与对策[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.12:9~14.
    [2]涂善东,轩福贞.高温承压设备结构完整性技术[J].压力容器,2005,22(11):39~47.
    [3] ST TU. New need of structural integrity technology for high temperature applications[A]. Environmental Effect on Fracture and Damage [C]. Hangzhou:FM 2004,Zhejiang University Press, 2004.
    [4] ST TU, P Segle and JM Gong. Strength design and life assessment of weldment subjected to high temperature Creep [J]. International Journal of Pressure Vessel and Piping, 1996, 66:171~186.
    [5] ST TU, PSegle,LA Samuelson. Some aspects of design of welded structures subjected to high temperature creep[C], High Temperature Service and Time Dependent Failure, ASME PVP- Vol. 262. Eds. RW Swindeman, Y Asada, New York: ASME, 1993, 27~34.
    [6]卢绮敏.石油工业中的腐蚀与防护[M].北京:化学工业出版社,2007.1:175~249.
    [7]傅玉华.石油化工设备腐蚀与防治[M].北京:机械工业出版社,1997.9:51~55.
    [8]任海滨.迈向21世纪的锅炉压力容器压力管道和特种设备安全科学技术[J].中国安全科学学报,2000,10(1):57~60.
    [9]陈钢,李学仁.我国特种承压设备安全科技攻关回顾与展望[R].特种设备安全国际论坛专题报告.北京:2005.11.
    [10]许淳淳.化学工业中的腐蚀与防护[M].北京:化学工业出版社,2001.9:324~438.
    [11]潘连声,王印海,黄春萼,等.我国对腐蚀控制技术的需求[J].全面腐蚀控制,2003,17(2):1~5.
    [12]魏安安,裴峻峰,刘雪东.我国在用压力容器安全现状及延寿技术进展[J].化工机械,2005,32(6):323~328.
    [13]黄靖国,刘小辉.常减压蒸馏装置的硫腐蚀问题及对策[J].石油化工腐蚀与防护,2002 ,19 (3):1~5.
    [14]孙玉明.从齐鲁石化公司炼油改造看我国炼油工业的发展[J].齐鲁石油化工,1999,27(4):287~291.
    [15]贾鹏林.高硫原油加工过程中的防腐蚀技术[J].石油化工腐蚀与防护,2001,18(5):1~3.
    [16]汤海涛,凌珑,王龙延.含硫原油加工过程中的硫转化规律[J].炼油设计,1999,29,(8):9~16.
    [17]梁自生.炼制高酸值原油的腐蚀监测[J].石油化工设备技术,2007,28(3):46~50.
    [18]胡洋,薛光亭.加工高酸值原油设备腐蚀与防护技术进展[J].石油化工腐蚀与防护,2004,21(4):5~8.
    [19]毕延进,虞志华.炼制进口原油常减压装置的腐蚀问题[J].石油化工腐蚀与防护,2003,20(1):5~10.
    [20]吴迪,王瑞旭.加工高硫高酸原油对胜利炼油厂装置运行的影响[J].齐鲁石油化工,2005,33(3):194~198.
    [21]中国石化股份公司科技开发部.高硫原油加工工艺设备及安全[M].北京:中国石化出版社,2001.8:152~158.
    [22]陈学东,蒋家羚,杨铁成,等.湿H2S环境下典型压力容器用钢应力腐蚀开裂门槛值的估算[J].压力容器, 2004,21(3):1~5.
    [23] NACE Standard RP0296-96.Guidline for detection repair and mitigation of cracking of resistance existing petroleum refinery vessels in wet H2S environment[S],1996.
    [24] Beavers JA, Koch GH, Limitations of the SSRT for SCC testing [J]. Corrosion. 1992, 48(8):256.
    [25] A.G. Miller. Review of limit loads of structures containing defects [J]. International Journal of Pressure Vessel and Piping,1988,32(1):197~327.
    [26] M.S. Cayard. Research report on characterization and monitoring of cracking in wet H2S service[J].WRC Bulletin,1994:396.
    [27] M.S. Cayard. Large scale wet hydrogen sulphur cracking performance:environment of metallurgical[J].Mechanical and Welding Variables Corrosion,1997,53(3):456~461.
    [28] C. T. Fuji. Stress corrosion-new approaches [J]. ASTM STP610,1976,213~225.
    [29] Pendse R O,Ritchie O. A study of fatigue crack propagation in prior hydrogen attacked pressure vessel steels[J].Metallurgical Transaction A,1985,16:1491~1502.
    [30] Eugene W,Jr. Copper alloys in the marine environment [J].IEEE OCEAN’75: 528~532.
    [31] Wu H S,Zhong Qunpeng. Assessment for integrity of structure containing defects [J]. International Journal of pressure Vessel and Piping,1998,75(4):343~346.
    [32] Bulough R,Green V R,Tomkins B. A review of methods and application of reliability analysis for structural integrity assessment of UK nuclear plant [J]. International Journal of pressure Vessel and Piping,1999,76(13):909~919.
    [33] Giribone R,I Valette B. Principle of failure probability assessment [J]. International Journal of pressure Vessel and Piping,2004,81(10):797~806.
    [34] K. Makhlouf, H. Sidhom, I. Triguia. Corrosion fatigue crack propagation of duplex stainless steel X6 CrNiMoCu25-6 in air and in artificial sea water [J]. International Journal of Fatigue,2003,25(4):167~179.
    [35] K.Sandanada, A.K.Vasudevan. Fatigue crack growth mechanism in steels [J]. International Journal of Fatigue, 2000,25(5):89~91.
    [36] Jin X,Zhong Qunpeng. A Probabilistic fracture mechanics assessment method based on the R6 procedure [J]. International Journal of pressure Vessel and Piping,1997,73(2):161~163.
    [37]骆红云,张玉波,钟鹏群.国产压力容器用钢的概率失效评定曲线[J].北京航空航天大学学报,2006,32(4):450~454.
    [38]李培宁.世界各国缺陷评定规范的发展[R].第五届全国压力容器学术会议专题报告集.南京,2001.9:25~35.
    [39]李培宁,徐宏. ASME IWB-3650压力容器缺陷评定规范介绍[J].压力容器, 1993, 10(6): 517~521.
    [40]李培宁.进一步完善我国含缺陷压力容器安全评定标准的若干问题[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.12:24~36.
    [41] Ainsworth R A. R6-Revision4: 2001, Assessment of structure contains defect[S]. British Energy Generation Ltd. Amendment, 2000.
    [42]张艳丽.英国含缺陷压力容器结构完整性评定技术的新进展[A].第五届全国压力容器学术会议论文集[C].南京:中国机械工程学会压力容器分会,2001.9:436~439.
    [43]国家质量技术监督局.压力容器安全技术监察规程[S].北京:中国劳动社会保障出版社,1999.10:62~66.
    [44]傅惠民,马学荣.压力容器寿命控制方法[J].机械强度,2004,26(5):506~509.
    [45] Fu Huimin,Qian Ruoli. Methods for nondestructive inspection reliability and controllinglives [J]. Journal of Aerospace Power,1994,9(3):227~232.
    [46]郑津洋.我国承压设备学的研究现状和优先研究领域[J].石油机械,2005,36(3):21~24.
    [47]关卫和,阎长周,陈文虎.高温环境下压力容器与管道在线超声波检测技术[J].压力容器,2002,19(8):1~4.
    [48]关卫和,阎长周,陈文虎.高温环境下超声波检测技术[J].压力容器,2004,21(2): 1~4.
    [49]侯素霞,罗积军,徐军.基于声发射技术的压力容器应力腐蚀检测研究[J].腐蚀科学与防护技术,2006,18(3):220~222.
    [50]陈刚.在役压力管道缺陷检测与安全评估关键技术研究进展[R].第五届全国压力容器学术会议专题报告集.南京:中国机械工程学会压力容器分会,2001.9:51~57.
    [51] ASME B31.8s. Managing System Integrity of Gas Pipelines[S].
    [52] American Petroleum Institute. Risk-based Inspection Base Resource Document API 581[S]. First Edition, 2000.5.
    [53]陈学东,王冰,杨铁成.基于风险的检测(RBI)在中国石化装置中的应用[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.10:37~47.
    [54]陈学东,王冰,关卫和,等.基于风险的检测(RBI)在中国石化企业的实践及若干问题讨论[J].压力容器,2004,21(8):39~45.
    [55]陈学东,杨铁成,王冰,等.基于风险的检测(RBI)在实践中若干问题讨论[J].压力容器,2005,22(7):36~44.
    [56]国家质量监督检验检疫总局.关于开展基于风险的检验(RBI)技术试点应用工作的通知[Z].国质检特[2006]198号,2006.5.
    [57]顾望平.风险检验技术在茂名石化的应用[J].安全健康和环境.2004,4(8): 36~38.
    [58]郝相民,曲豫,江安合,等.定量RBI技术在国内炼油装置上的成功应用[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.10:683~692
    [59]曲豫,江安合,高明超. RBI技术应用于石化装置腐蚀机理普查的实践和探讨[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.10:693~698
    [60]陈学东,王冰,关卫和,等.我国石化企业在用压力容器与容器使用现状和缺陷状况分析及失效预防对策[J].压力容器,2003,20(2):39~45.
    [61]张亦良,王晶,张伟.硫化氢环境中低周疲劳裂纹扩展速率da/dN的研究[J].压力容器,2006,23(2):12~17.
    [62] Zhang Yiliang, Wang Jing, Shan Xiaoping. Critical crack sizes of CNG cylinder steel in H2S environment[A], 2004 International Symposium on Safety Science and Technology (2004ISSST)[C],Shanghai China, 2004.10:25~28
    [63] P.C. Riccardella,S. Yukawa. Twenty years of fracture mechanics and flaw evaluation application in the ASME code [J]. International Journal of pressure Vessel Technology,1991,vol.113:145~153.
    [64]汪醇,孙正毅,沈士明.长期高温服役后炉管的寿命预测[J].压力容器,2006,23(2):19~22.
    [65] EFC Publications No.16, Guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in oil and gas production [M]. Reprinted with Corrections,1998.
    [66] Shih T.T. Clark W.C.An Evaluation of environment-enhanced fatigue crack growth rate testing as an accelerated static load corrosion test [A]. Environment Sensitive Fracture: Evaluation and Comparison of Test Methods[C].1984:325~340.
    [67] Barsom.J.M. Effect of cyclic stress form on corrosion-fatigue crack propagation below KISCC in a high yield strength steel [J]. National Association of Corrosion Engineers. 1972: 424~436.
    [68] Kim Y H, Speaker S M, Wei R.P.. Development of fatigue and crack propagation design and analysis methodology in a corrosive environment for typical mechanically-fastened joints [J]. Rep.No.NADC-83126,1983,1:2~3.
    [69] K. Makhlouf, H. Sidhom, I. Triguia, C.Braham. Corrosion fatigue crack propagation of a duplex stainless steel X6 Cr Ni Mo Cu 25-6 in air and in artificial sea water [J]. International Journal of Fatigue, 2003, 25(4): 167~179.
    [70] Staehle RW. SCC and hydrogen embitterment of Fe-based alloy [J]. New York,1997.8.
    [71] Devasentaphathi A, Rajia V S. Affection of externally andded Molyb-date on Repassivation and SCC of Type 304 Stainless Steel in HCL Solution [J]. Corrosion.1996.52;243.
    [72] Etzhak D, Elias O. Behavior of type 304 and 316L austenitic stainless steel in 55 lithium bromide heavy brine environments[J].Corrosion.1994,50: 131
    [73] Pawel SJ. Corrosion of nickel-based alloys in acidified lithium chloride solution [J]. Corrosion.1993, 49:929.
    [74] Fang KT. Average design and average design table[M], Beijing, Science Press, 1994.
    [75]范志超,蒋家羚.16MnR中温环境下应力控制的低周疲劳行为研究(二)[J].压力容器. 2002,19(12):1~3.
    [76]范志超,蒋家羚.16MnR中温环境下应力控制的低周疲劳行为研究(一)[J].压力容器. 2002,19(11):1~4.
    [77]范志超,金志江,蒋家羚.16MnR钢在硝酸盐环境下应力腐蚀性能试验研究[J].压力容器.2003,20(5):20~22.
    [78]范志超,蒋家羚.16MnR钢中温低周疲劳行为研究[J].浙江大学学报(工学版). 2004,38(9):1190~1195.
    [79]杨铁成,陈凌,范志超,等.1.25Cr0.5Mo钢高温疲劳蠕变交互作用的寿命预测[J].压力容器,2005,22(9):8~13.
    [80]陈凌,蒋家羚,范志超,等.低周疲劳寿命预测的能量模型探讨[J].金属学报,2006,42(2):195~201.
    [81]范志超,蒋家羚,陈学东. 16MnR钢疲劳循环与蠕变交互作用损伤力学模型[J].浙江大学学报(工学版),2006,40(2):317~322.
    [82]范志超,陈学东,陈凌.基于延性耗竭理论的疲劳蠕变寿命预测方法[J].金属学报,2006,42(4):415~420.
    [83]胡久韶,程四祥,王冰,等. SPV50Q钢在湿H2S环境下抗应力腐蚀性能试验研究[J].压力容器,2005,22(11):18~19.
    [84]陈学东,蒋家羚,杨铁成,等.湿H2S环境下典型压力容器用钢应力腐蚀开裂门槛值的估算[J].压力容器,2004,21(3):1~5.
    [85]纪冬梅,周昌玉. 07MnNiCrMoVDR在硫化氢溶液中的腐蚀疲劳裂纹扩展速率数学模型[J].压力容器,2003,20(8):1~3, 52.
    [86]熊庆人,庄传晶,冯耀荣.三种输送管疲劳裂纹扩展特性研究[J].机械工程材料,2000, 24(2):34~36.
    [87]郑贤斌,陈国明.在役埋地油气管道腐蚀评估与维修决策模型[A].第六届全国压力容器学术会议-压力容器先进技术精选集[C].北京:机械工业出版社,2005.10:584~588.
    [88]陈国明,方华灿,潘东民.近海在役管道安全可靠性评估技术研究[J].石油工业技术监督,2004,(10):5~9.
    [89]刘小辉.茂名分公司焦化装置腐蚀与防护概况[J].石油化工腐蚀与防护,2001,18(5):20~22.
    [90]刘小辉.加工高硫原油的腐蚀与防护对策(一)[J].石油化工设备技术,2005,26(5):49~52.
    [91]刘小辉.加工高硫原油的腐蚀与防护对策(二)[J].石油化工设备技术,2005,26(6):52~55.
    [92]洛阳石化工程公司.加工高硫原油重点装置的主要设备和管道设计选材导则编制说明.高硫原油加工工艺设备及安全[M].北京:2001.8:152~158.
    [93]姚国欣,刘伯华.21世纪的炼油技术和炼油厂[J].炼油设计,2001,31(2): 1~7.
    [94]刘小辉.加工高硫原油的腐蚀与防护对策(三)[J].石油化工设备技术,2005,27(1):45~48.
    [95]陈玉华. X70管线钢在役焊接性研究[D].中国石油大学博士学位论文,东营:2006.3.
    [96]冉箭声,王维星.堵漏装置及堵漏剂在不停产堵漏施工中的应用[J].石油机械,1999,27(2):26~27.
    [97]邓聚龙.灰色预测与灰决策[M].武汉:华中理工大学出版社,2002.
    [98] Deng Julong, David K.W. Chaos in grey model (1, N) [J]. The Journal of Grey System, 1996, 8(1):1~10.
    [99] Liu Sifeng. Grey forecast of drought and inundation in henna province [J]. The Journal of Grey System,1994, 6(4):42791~288.
    [100]杨德伟,赵小明,张爱艳.灰色关联法在集输站系统效能评价中的应用[J].中国石油大学学报(自然科学版),2007, 31(4):98~101.
    [101]邓化凌,王勇,宋云京.某一循环流化床锅炉II级过热器管材失效分析[J].中国石油大学学报(自然科学版),2006,30(5):84-87.
    [102]胡愈,许红莲.现代农村物流与其主要影响因子的灰色关联度分析[J].湖南大学学报(自然科学版),2007,34(12):18~22.
    [103] Liu Sifeng, Dang Yaoguo. The position of the linear programming with grey parameters [J]. Advance in System Science and Application,1996,3(1):371~377.
    [104]王清印,赵秀恒. C型关联分析的概念及性质[J].华中理工大学学报(自然科学版), 1999,27(3):24~28.
    [105]王清印,郭立田.广义关联分析方法研究[J].华中科技大学学报(自然科学版),2005,33(8):32~36.
    [106] Liu sifeng, Deng Julong. The range suitable for GM(1,1) model[J]. The Journal of Grey System,1999,11(1):131~138.
    [107]唐伟勤,肖新平.灰关联分析在复杂系统多层次评估中的应用[J].武汉理工大学学报,2004,28(2):36~40.
    [108]党耀国,刘思峰,刘斌.多指标区间数关联决策模型的研究[J].南京航空航天大学学报,2004,26(3):26~31.
    [109]刘思峰,郭天榜,党耀国.灰色系统理论及应用[M].北京:科学出版社,1999.10:40~77.
    [110]张德义.含硫原油加工技术[M].北京:中国石化出版社,2003.7:26~63.
    [111]侯祥麟.中国炼油技术[M].北京:中国石化出版社,2001.7:7~46.
    [112]胡洋,付士义.曹雪峰.孤岛高硫高酸原油腐蚀性分析[J].齐鲁石油化工,2006 , 34 ( 2 ):130~132.
    [113] American society for testing and materials. Annual book of ASTM standards [M]. Vol.5.01, 1997:562~563.
    [114]田松柏.活性硫及其在中东原油中的分布[J].石油学报(石油加工),2000,16(3):9~14.
    [115]黄靖国,刘小辉.常减压蒸馏装置的硫腐蚀问题及对策[J].石油化工腐蚀与防护,2002 ,19 (3):1-5.
    [116]李志强,柯伟.炼油厂环烷酸腐蚀与进展[J].石油化工腐蚀与防护,1999,2(16):1~3.
    [117] Piehl R L. Naphthenic acid corrosion in crude distillation units [J]. Corrosion,1987,25(6):196~201.
    [118] Lee H,Wood L K. Naphthenic acid corrosion in refinery setting[J].Corrosion,1993,33(9):631~640.
    [119]柯伟.炼油工业中腐蚀研究的进展[A].中石化化学工程与设备技术进步工作会议论文集[C],南京,1996.10.
    [120] Slavcheva E,Shone B,Turnbuil A. Factors controlling naphthenic acid corrosion [J]. Corrosion,1998,54(11):922~928.
    [121] Mao K,Mottraml R D. Transinglation of naphthenic acids[J].US:5741925,1998.
    [122]胡安定.石油化工设备维护检修技术[M],北京:中国石化出版社,2007.1.
    [123]顾望平,刘小辉.加工进口高硫原油生产装置腐蚀防护技术[J].石油化工腐蚀与防护,2001,18(4):1-16.
    [124] Craig HL. Naphthenic acid corrosion in a refinery [J]. Corrosion,1995,33(3):12~20.
    [125] Helle H P,Bonnette L. Guideline for corrosion control in crude distillers [M]. Holland:New plantation,1993:21.
    [126]张深.常减压装置的扩能改造[J].齐鲁石油化工,1999,29(12):29~31.
    [127]莫少明.装置二年一修的实践与向三年一修过渡的探索[J].齐鲁石油化工, 2000, 28(4):321~323.
    [128] HG20582-1998.钢制压力容器强度计算规定[S].国家石油和化学工业局,1998.3.1.
    [129] GB/T19624-2004.在用含缺陷压力容器安全评定[S].国家质量监督检验检疫总局、国家标准化管理委员会,北京:中国标准出版社,2004.10.
    [130] H.K. Versteeg, W. Malalasekera. An introduction of computational fluid dynamics: the finite volume method[M]. Wiley, New York,1995.
    [131] J.D.Anderson. Computational fluid dynamics: the basics with applications [M]. McGrawHill, 1995,Tsinghua press,2002.
    [132] M. B. Abbott, D. R. Bassco. Computational fluid dynamics: an introduction for engineers [M]. Longman scientific and technical, Harlow, England, 1989.
    [133]谷其发.加工孤岛高硫高含酸原油的腐蚀与防护[J].石油化工腐蚀与防护,1996, 13 (3):10~16.
    [134]李庆梅,丛培振,刘明辉.炼油厂常压蒸馏工艺防腐蚀优化[J].腐蚀与防护,2004,25(5):219~220.
    [135]郭金喜.换热器专用钢管08Cr2AlMo的性能及应用[J].化工机械,2003,30(1):34~39.
    [136]黄占凯,郭春燕,刘春生.新型环烷酸腐蚀缓蚀剂的合成及缓蚀性能研究[J].石油炼制与化工,2005,36(11):63~65.
    [137]杨世平.换热管用新钢种0Cr18AlMo的开发应用[J].压力容器,2000,18(1):32~33.
    [138]李志伟,高丽慧.耐H2S腐蚀换热器管束制作与应用[J].齐鲁石油化工, 2003 , 3 1 ( 1 ) : 5 7~5 9.
    [139]吴欣强,敬和民,郑玉贵.渗Al碳钢在高温精制环烷酸介质中的腐蚀行为[J].腐蚀科学与防护技术,2002,14(1):1~6.
    [140]高红利,洪锡刚.中东含硫原油炼制设备的腐蚀分析及防护[J].机械开发,1999(3):23~26.
    [141]余存烨.石化换热器防腐蚀涂装与镀覆技术及其进展[J].腐蚀与防护,2001,22(12):537-541.
    [142]王秋旺,罗来勤,曾敏,等.交错螺旋折流板管壳式换热器壳侧传热与阻力性能[J].化工学报,2005,56(4):598-601.
    [143] GB151-1999.管壳式换热器[S].国家技术监督局,1999.2.
    [144]兰州石油机械研究所主编.换热器[M].北京:烃加工出版社,1986:241~246.
    [145]曹纬.国外新型换热器介绍[J].化学工程,2000,28(6):50~52.
    [146]杨杰辉.螺旋折流板换热器[P].中国专利:97242036.3,1998-05-11.
    [147]宋小平,裴志中.一种改进型螺旋折流板换热器[P].中国专利:02240238.1,2002-04-23.
    [148]宋小平.螺旋折流板列管换热器[J].石油化工设备技术,2002,1:35~36.
    [149]陈亚平,李应斌,王世虎.梯式折流板换热器构想[J].石油化工设备,2001,30(6):23~25.
    [150]金跃,王学,李明义.连续型螺旋折流板式换热器的制造[J].炼油与化工,2004,15(3):37~38.
    [151]陆恩锡,邓先和,赵晓曦.两种不同管束的螺旋折流板换热器的性能对比[J].石油炼制与化工,2002,33(8):52~55.
    [152]邓斌,吴扬,陶文铨.螺旋折流板换热器壳侧流动的数值模拟[A].中国工程热物理学会学术会议论文集[C],济南,2003:862~865.
    [153]王秋望,罗来勤,曾敏,等.交错折流板换热器传热与阻力性能的实验研究[A].中国工程热物理学会学术会议论文集[C],济南,2003,1079~1081.
    [154]王良,罗来勤,王秋望,等.螺旋折流板换热器中阻流板对换热及沿程压降的影响[A].中国工程热物理学会学术会议论文集[C],济南,2003:538~541.
    [155]朱冬生,蒋翔,陆应生.螺旋折流板低翅片管油换热器应用研究[A].2004年全国化工石化装备国产化暨设备管理技术交流会议论文集[C],广州,2004:94~96.
    [156]张少维,周荣兰,桑芝富.折流板间距对换热器性能影响的数值研究[J].南京工业大学学报(自然科学版),2005,27(3):65~68.
    [157]杨军,陈保东,孙成家.螺旋与弓形折流板换热器性能对比及螺旋角优化[J].辽宁石油化工大学学报. 2005,25(2):61~63.
    [158]王树立,彭杰,赵志勇.螺旋折流板换热器流动特性研究[A].中国工程热物理学会传热传质学术会议论文集[C],济南,2000:439~441.
    [159]彭杰,鄢复春,李卓.螺旋折流板换热器流动特性研究[J].石油化工高等学校学报,2001,14(1):71~75.
    [160]乔海星,于军.螺旋壳列管式换热器[A].第五届全国压力容器学术会议论文集[C].合肥,2001:263~264.
    [161]吴国辉,黄渭堂,孙中宁.断续螺旋折流板在管壳式换热器中的应用[J].应用科技. 2005,32(4):45~48.
    [162]孙成家,杨军,陈保东.不同折流板换热器的传热与流阻性能对比[J].节能技术. 2005,23(1):59~61.
    [163]陈世醒,张振华.一种特殊形式的螺旋折流板换热器[J].辽宁石油化工大学学报. 2005,25(1):61~63.
    [164]清川盛雄. MITSUBISHI三菱CNC控制器MELDAS300系列[M3A]程序设计手册.1991,9.
    [165]《实用数控加工技术》编委会.实用数控加工技术[M].北京:兵器工业出版社,1995:746~761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700