用户名: 密码: 验证码:
小支管插套焊高周疲劳失效机理与延寿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小支管插套焊主要用在核电站主管与支管的连接上,插套焊管道里面经常流动着腐蚀性液体,而流动的液体又容易产生空穴现象并使管道发生简谐振动,小支管插套焊在振动和腐蚀的作用下特别容易高周疲劳失效;且焊根处尤为严重。本文针对耐腐蚀的304L不锈钢制备的插套焊焊接接头,进行了振动疲劳试验研究,分析其高周疲劳失效机理与影响因素,并提出相应的延寿技术。具体如下:
     本文用振动台进行疲劳试验,其振动模式与实际相符;但也存在两个实施问题,一是进行疲劳试验时振动台不能像液压伺服试验机一样直接施加应力,二是如何监控试样是否失效。本文基于材料力学和机械振动学理论,推导了悬臂梁振动条件下插套焊接头应力的计算公式,明确了各个参数对应力的影响,使试样能在预设的交变应力下进行疲劳试验。
     针对原始设计插套焊焊接接头的高周疲劳试验结果表明,在高应力条件下焊接接头倾向于在焊趾处开裂,在低应力条件下倾向于在焊根处失效。对疲劳试样的失效机理分析表明,径向间距、焊脚尺寸和焊趾处夹角能影响插套焊接头的疲劳性能,并且增加焊根熔深能改善插套焊接头的疲劳性能。
     基于预制坡口能提高焊根熔深的思路,研究了预制3mm和5mm坡口对插套焊疲劳性能的影响。研究结果表明,加开坡口后,一方面插套焊接头的阻尼增大,提高了插套焊的抗振动能力;另一方面,随着坡口深度增加,在振动疲劳载荷下,虽然焊根处的应力降低幅度很小,但由于峰值应力超过了材料的屈服强度,其塑性应变值显著降低,即焊根处的塑性损伤随着坡口深度的增加逐渐降低,从而提高了焊根处的抗疲劳裂纹萌生能力。因此,加开坡口能够显著提高插套焊焊根处的高周疲劳性能,大幅延长疲劳寿命。
     另外,由于加开坡口增加了焊趾处的焊接残余应力,在提高低应力条件下焊根处疲劳性能的同时,降低了高应力条件下焊趾处的疲劳性能。由于插套焊正常服役的振动条件为低应力下的高周疲劳,因此加开坡口能够显著提高插套焊接头的高周疲劳寿命。
The small bore piping socket weld is mainly used to the connection of the leaderpipe and the branch pipe in the nuclear power plants. In the socket welding pipe thecorrosive liquid flow and induce easily cavitations which result in the harmonicvibration of pipe. In the conditions of vibration and corrosion, the socket welds jointsfrequently present high-cycle fatigue failure; especially in the root of socket weld.Due to their factors, the304L stainless steel which has a better performance incorrosion resistance was selected as examples of vibration fatigue testing. Themechanism and factors of high-cycle fatigue failure of socket weld are studied deeply,and propose the prolonging life technology. The research work and results are listed asfollow:
     The specimens of socket weld were tested in the vibration table which canimitate the actual vibration environment. However, the vibration fatigue testing usingshaker table exist two problems. One is that the shaker table cannot impose stress likethe hydraulic servo testing machine; the other is how to monitor whether thespecimens run normally. The formula of stress calculation is induced by the theory ofmechanics and machine vibration, the fatigue testing was conducted by the changingof parameters which can influence stress.
     The socket weld joint of initial design was conducted to investigate thehigh-cycle fatigue property, and the test results show that failures tend to originate toeat higher stress while for the case of lower stress failures tend to occur at the root. Theresearch results present that the radial gap, the size of fillet weld and the flank angleof weld toe can affect the fatigue property and the higher penetration depth canimprove the fatigue property.
     The groove was used to increase the penetration depth, and the specimens with3mm and5mm grooves were conducted to investigate the effect on the fatigueproperty. The research results show that the groove can increase the damping, whichcan improve the property of vibration resistance; the stress amplitude of rootdecreases a little with increasing penetration depth under the vibration fatigue load;however, the groove can decrease obviously the plastic strain due to the stressamplitude of root exceeding the yield stress, it means that the plastic damage of rootdecrease gradually with increasing the penetration depth which can improve theresistance performance of fatigue crack initiation. Hence, the groove can improve markedly the property of high-cycle fatigue, and prolong obviously the fatigue life.
     In addition, the groove can improve the fatigue life of root on the conditions oflower stress while can decrease the fatigue property of toe at higher stress owing toincreasing the residual stress of toe. The socket weld subjects usually to the conditionsof lower stress and high-cycle fatigue, so the specimen with groove can improveobviously the high-cycle fatigue life of weld joint.
引文
[1] EPRI, Vibration fatigue of small bore socket-welded, EPRI TR-1074551997.
    [2] Choi Y.H., Choi S.Y., Safety evaluation of socket weld integrity in nuclear piping,Key Engineering Materials,2004,270-273:1725-1730.
    [3] Choi Y.H., Choi S.Y., Socket weld integrity in nuclear piping under fatigueloading condition, Nuclear Engineering and Design,2007,237:213-218.
    [4] Choi Y.H., Choi S.Y., Assessment of socket weld integrity in pipings, Journal ofLoss Prevention in the Process Industries,2009,22:850-853.
    [5] Riccardella P.C., Pan S.H., Sullivan M. et al., Vibration fatigue testing of socketwelds, ASME PVP,1998,360:453-463.
    [6] Yamashita T., Hattori T., Iida K.et al., Effects of residual stress on fatigue strengthof small-diameter welded pipe joint, ASME Journal of Pressure VesselTechnology,1997,119:428-434.
    [7] EPRI, EPRI fatigue management handbook, EPRI TR-1045341994.
    [8] Gosselin S.R. Proposed ASME section XI philosophy related to operating plantfatigue protection, WRC Progress Report.1994.
    [9] Higuchi M., Nakagawa A., Iida K. et al., Experimental study on fatigue strength ofsmall-diameter socket-welded pipe joints, ASME Journal of Pressure VesselTechnology,1998,120:149-156.
    [10] Vecchio R.S, Fatigue evaluation of socket welded piping in a nuclear power plant,ASME PVP,1996,338:25-29.
    [11] OPDE Database, OECD piping failure data exchange (OPDE) project,2002.
    [12] Bengt L., Jovica R., OPDE-The international pipe failure data exchange project,Nuclear Engineering and Design,2008,238:2115-2123.
    [13] ASME, ASME boiler and pressure vessel code, section III, Subsection NB,1998.
    [14] Huo L., Wang D., Zhang Y., Investigation of the fatigue behaviour of the weldedjoints treated by TIG dressing and ultrasonic peening under variable-amplitudeload. International Journal of Fatigue,2005,27(1):95-101.
    [15] Ramalho A., Ferreira J., Branco C., Fatigue behaviour of T welded jointsrehabilitated by tungsten inert gas and plasma dressing, Materials& Design,2011,32(10):4705-4713.
    [16] Yang X., Zhou J., Ling X., Study on plastic damage of AISI304stainless steelinduced by ultrasonic impact treatment, Materials& Design,2012,36(0):477-481.
    [17] Ghahremani K., Walbridge S., Fatigue testing and analysis of peened highwaybridge welds under in-service variable amplitude loading conditions, InternationalJournal of Fatigue,2011,33(3):300-312.
    [18] EPRI, Vibration fatigue testing of socket welds, EPRI TR-1138901999.
    [19] Coules H.E., Experimental measurement of biaxial thermal stress fields causedby arc welding, Journal of Materials Processing Technology,2012,212(4):962-968.
    [20] Smith M.C., Accurate prediction of residual stress in stainless steel welds,Computational Materials Science,2012,54(0):312-328.
    [21] Xu W., Microstructure and mechanical properties of weld-bonded and resistancespot welded magnesium-to-steel dissimilar joints, Materials Science andEngineering: A,2012,537(0):11-24.
    [22] Chahardehi A., Brennan F.P., Steuwer A., The effect of residual stresses arisingfrom laser shock peening on fatigue crack growth, Engineering FractureMechanics,2010,77(11):2033-2039.
    [23] James M.N, Residual stress influences on structural reliability, EngineeringFailure Analysis,2011,18(8):1909-1920.
    [24] Soady K.A., The effect of shot peening on notched low cycle fatigue, MaterialsScience and Engineering: A,2011,528(29-30):8579-8588.
    [25] Acevedo C., Nussbaumer A., Effect of tensile residual stresses on fatigue crackgrowth and S-N curves in tubular joints loaded in compression, InternationalJournal of Fatigue,2012,36(1):171-180.
    [26] Dalaei K., Karlsson B., Svensson L.E., Stability of residual stresses created byshot peening of pearlitic steel and their influence on fatigue behavior, ProcediaEngineering,2010,2(1):613-622.
    [27] Guo Y.B., Warren A.W., Hashimoto F., The basic relationships between residualstress, white layer, and fatigue life of hard turned and ground surfaces in rollingcontact, CIRP Journal of Manufacturing Science and Technology,2010,2(2):129-134.
    [28] James M.N., Shot-peening of steam turbine blades: Residual stresses and theirmodification by fatigue cycling, Procedia Engineering,2010,2(1):441-451.
    [29] Jang C., Effects of microstructure and residual stress on fatigue crack growth ofstainless steel narrow gap welds, Materials& Design,2010,31(4):1862-1870.
    [30] Stinville J.C., Plasma nitriding of316L austenitic stainless steel: Experimentalinvestigation of fatigue life and surface evolution, Surface and CoatingsTechnology,2010,204(12–13):1947-1951.
    [31] ASME, Class1components, ASME boiler and pressure vessel code Sec. III NB,2001.
    [32] Higuchi M., Fatigue strength of socket welded pipe joints, ASME PVP,1995.
    [33] Livieri P., Lazzarin P., Fatigue strength of steel and aluminium welded jointsbased on generalised stress intensity factors and local strain energy values,International Journal of Fracture,2005,133(3):247-276
    [34] Kainuma S., Mori T., A fatigue strength evaluation method for load-carryingfillet welded cruciform joints, International Journal of Fatigue,2006,28(8):864-872.
    [35] Li X.Y., Finite element analysis of the effect of weld geometry and loadcondition on fatigue strength of lap joint, International Journal of PressureVessels and Piping,2001,78(9):591-597.
    [36] Poutiainen I., Marquis G., A fatigue assessment method based on weld stress,International Journal of Fatigue,2006,28(9):1037-1046.
    [37] Kosteski N., Packer J.A., Welded Tee-to-HSS connections, Journal of StructuralEngineering,2003,129(2):151-159.
    [38] Lee C.H., Effect of weld geometry on the fatigue life of non-load-carrying filletwelded cruciform joints, Engineering Failure Analysis,2009,16(3):849-855.
    [39] Baptista R., Infante V., Branco C.M., Study of the fatigue behavior in weldedjoints of stainless steels treated by weld toe grinding and subjected to salt watercorrosion, International Journal of Fatigue,2008,30(3):453-462.
    [40] Bowness D., Lee M.., Prediction of weld toe magnification factors forsemi-elliptical cracks in T–butt joints, International Journal of Fatigue,2000,22(5):369-387.
    [41] Higuchi M., Fatigue curves and fatigue design criteria for carbon and low alloysteels in high-temperature water, ASME PVP.1999.
    [42] Higuchi M., A study on fatigue strength reduction factor for small diametersocket welded pipe Joints, ASME PVP.1996.338-1.
    [43] Higuchi M., Effects of weld defects at root on rotating bending fatigue strengthof small diameter socket welded pipe joints, ASME PVP.1996.338-1.
    [44] Akiniwa Y., Miyamoto N., Tsuru H., et al., Notch effect on fatigue strengthreduction of bearing steel in the very high cycle regime, International Journal ofFatigue,2006,28(11):1555-1565.
    [45] Sathiya P., Panneerselvam K., Soundararajan R., Optimal design for laser beambutt welding process parameter using artificial neural networks and geneticalgorithm for super austenitic stainless steel, Optics& Laser Technology,2012,44(6):1905-1914.
    [46] Young M.C., Tsay L. W., Shin C. S. et al., The effect of short time post-weldheat treatment on the fatigue crack growth of2205duplex stainless steel welds,International Journal of Fatigue,2007,29(12):2155-2162.
    [47] Michler T., Toughness and hydrogen compatibility of austenitic stainless steelwelds at cryogenic temperatures, International Journal of Hydrogen Energy,2007,32(16):4081-4088.
    [48] Kokawa H., Shimada M., Michiuchi M. et al., Arrest of weld-decay in304austenitic stainless steel by twin-induced grain boundary engineering, ActaMaterialia,2007,55(16):5401-5407.
    [49] Berretta JR., Rossi W., David M. et al., Pulsed Nd:YAG laser welding of AISI304to AISI420stainless steels, Optics and Lasers in Engineering,2007,45(9):960-966.
    [50] Sun Y.F., Fujii H., Takaki N. et al., Microstructure and mechanical properties ofmild steel joints prepared by a flat friction stir spot welding technique, Materials& Design,2012,37(0):384-392.
    [51] Wan X.L., Wang H.H., Cheng L. et al., The formation mechanisms ofinterlocked microstructures in low-carbon high-strength steel weld metals,Materials Characterization,2012,67(0):41-51.
    [52] Mitra A., Rajan B.V., Puthiyavinayagam P. et al., Design and development ofthick plate concept for rotatable plugs and technology development for futureIndian FBR, Nuclear Engineering and Design,2012,246(0):245-255.
    [53] Jamasri R., Ilman M.N., Soekrisno R. et al., Corrosion fatigue behavior ofresistance spot welded dissimilar metal welds between carbon steel and austeniticstainless steel with different thickness, Procedia Engineering,2011,10(0):649-654.
    [54] Hou J., Peng Q., Takeda Y. et al., Microstructure and stress corrosion cracking ofthe fusion boundary region in an alloy182-A533B low alloy steel dissimilar weldjoint, Corrosion Science,2010,52(12):3949-3954.
    [55] Jaske C.E., Fatigue strength reduction factors for welds in pressure vessels andpiping, Journal of Pressure Vessel Technology,2000,122(3):297-304.
    [56] Smith J.K., Vibrational fatigue failures in short cantilevered piping with socketwelded fittings, Pressure Vessels and Piping Codes and Standards,1996,338(1):21-24.
    [57] Vecchio R.S., Fatigue evaluation of socket welded piping in a nuclear powerplant, Pressure Vessels and Piping Codes and Standards,1996,338(1):25-41.
    [58] Liu Z.G., A study on fatigue failures and design methods of piping welded joints[M], North Carolina State University,1998.
    [59] Higuchi M., Iida K., Fatigue strength correction factors for carbon and low-alloysteels in oxygen-containing high-temperature water, Nuclear Engineering Design,1991,129:293-306.
    [60] Chopra O.K., Shack W.J., Evaluation of effects of LWR coolant environmentsonfatigue life of carbon and low-alloy steels, Effects of the Environment on theInitiation of Crack Growth, ASTM STP1298, American Society for Testing andMaterials, Philadelphia,1997,247-266.
    [61] Chopra O.K., Shack W.J., Fatigue crack initiation in carbon and low-alloy steelsin light water reactor environments-mechanism and prediction, ASME PVP,1998,374:155-168.
    [62] Tanaka I., Goto N., Otaka M. et al., High cycle fatigue strength evaluationmethod of a socket-welded joint, ASME PVP,1998,360:471-475.
    [63] Itoh T., Sakane M., Ohnami M., Socie, D.F., Nonproportional low cycle fatiguecriterion for type304stainless steel, Journal of Engineering Materials andTechnology,1995,117(3):285-292.
    [64] Abid M., Siddique M., Numerical simulation to study the effect of tack welds androot gap on welding deformations and residual stresses of a pipe-flange joint,International Journal of Pressure Vessels and Piping,2005,82(11):860-871.
    [65] Berge S., Eide O.I., Residual stress and stress interaction in fatigue testing ofwelded joints, American Society for Testing and Materials,1982,115-131.
    [66] Li M., An Experimental and finite element analysis of temperature and stressfields in girth welded304L stainless steel pipes:[D], Oregon Garduate Instituteof Science and Technology,1995.
    [67] Beaney E.M., Response of pressurized straight pipes to seismic excitation,CEGB, Berkeley Nuclear Laboratories, Report No.TPRD/B/0826/R86,1986.
    [68] Beaney E.M., The response and failure of pipes with stress concentrations underseismic loading, CEGB, Berkeley Nuclear Laboratories, ReportNo.RD/B/6050/R88,1988.
    [69] Corona E., Kyriakides S., An experimental investigation of the degradation andbuckling of circular tubes under cyclic bending and external pressure,Thin-Walled Structures,1991,22:229-263.
    [70] Yamashita T., Hattori T., Lida K. et al., Effects of residual stress on fatiguestrength of small diameter welded pipe joint, Journal of Pressure VesselTechnology,1997,119:428-434.
    [71] Yahiaoui K., Moreton D.N., Moffat D.G., Reponse and damping of fabricatedbranch pipe junctions subjected to internal pressure and simulated seismicbending, ASME Journal of Pressure Vessel Technology,1995,117:156-161.
    [72] Moreton D.N., Yahiaoui K., Moffat D.G., Onset of ratcheting in pressurizedpiping elbows subjected to in-plane bending moments, International Journal ofPressure Vessel and Piping,1996,68:73-79.
    [73] Chen X., Zhao S. M, Evaluation of fatigue damage at welded tube joint undercyclic pressure using surface hardness measurement, Engineering FailureAnalysis,2005,12(4):616-622.
    [74] Joseph A., Rai S. K., Jayakumar T. et al., Evaluation of residual stresses indissimilar weld joints, International Journal of Pressure Vessels and Piping,2005,82(9):700-705.
    [75] Chen X., Jin D., and Kim K. S., Fatigue life prediction of type304stainless steelunder sequential biaxial loading, International Journal of Fatigue,2006,28(3):289-299.
    [76] Rahman S.M., Hassan T., and Corona E., Evaluation of cyclic plasticity modelsin ratcheting simulation of straight pipes under cyclic bending and steady internalpressure, International Journal of Plasticity,2008,24(10):1756-1791.
    [77] Chen G., Shan S.C., Chen X., et al., Ratcheting and fatigue properties of thehigh-nitrogen steel X13CrMnMoN18-14-3under cyclic loading, ComputationalMaterials Science,2009,46(3):572-578.
    [78] Ogawa K., Deng D., Kiyoshima S. et al., Investigations on welding residualstresses in penetration nozzles by means of3D thermal elastic plastic FEM andexperiment, Computational Materials Science,2009,45(4):1031-1042.
    [79] Deng D., Kiyoshima S., Ogawa K. et al., Predicting welding residual stresses in adissimilar metal girth welded pipe using3D finite element model with asimplified heat source, Nuclear Engineering and Design,2011,241(1):46-54.
    [80] Nguyen T.N., Wahab M.A., The effect of weld geometry and residual stresses onthe fatigue of welded joints under combined loading, Journal of MaterialsProcessing Technology,1998,77:201-208.
    [81] Torres H., An evaluation of shot peening, Residual Stress and Stress Relaxationon the Fatigue Life of AISI4340Steel, International Journal of Fatigue,2002,24:877-886.
    [82] Zhuang W.Z., Halford G.R., Investigation of residual stress relaxation undercyclic Load, International Journal of Fatigue,2001,23:31-37.
    [83] Abigail E., Influence of residual stress on the initiation of fatigue cracks atwelded piping joints:[M], North Carolina State University,2004.
    [84] Cheng P. Influence of residual stress and heat affected zone on fatigue failure ofweld piping joints:[D], North Carolina State University,2009.
    [85] Lu X., Influence of residual stress on fatigue failure of welded joints:[D], NorthCarolina State University,2002.
    [86] Bari S., Hassan T., Anatomy of coupled constitutive models for ratchetingsimulation, International Journal of Plasticity,2000,16(3–4):381-409.
    [87] Rahman S.M., Hassan T., Corona E., Evaluation of cyclic plasticity models inratcheting simulation of straight pipes under cyclic bending and steady internalpressure, International Journal of Plasticity,2008,24(10):1756-1791.
    [88] Bari S., Hassan T., An advancement in cyclic plasticity modeling for multiaxialratcheting simulation, International Journal of Plasticity,2002,18(7):873-894.
    [89] Hassan T., Zhu Y., Matzen V.C., Improved ratcheting analysis of pipingcomponents, International Journal of Pressure Vessels and Piping,1998,75(8):643-652.
    [90] Hassan T., Taleb L., Krishna S., Influence of non-proportional loading onratcheting responses and simulations by two recent cyclic plasticity models,International Journal of Plasticity,2008,24(10):1863-1889.
    [91] Bari S., Hassan T., Kinematic hardening rules in uncoupled modeling formultiaxial ratcheting simulation, International Journal of Plasticity,2001,17(7):885-905.
    [92] Krishna S., Hassan T., Ben I., et al., Macro versus micro-scale constitutivemodels in simulating proportional and nonproportional cyclic and ratchetingresponses of stainless steel304, International Journal of Plasticity,2009,25(10):1910-1949.
    [93] Hopkins D., Benac D., Investigation of fatigue-induced socket-welded jointfailures for small-bore piping used in power plants, Journal of Failure Analysisand Prevention,2001,1(2):71-82.
    [94] Kulak G.L., Baker K.A., Fatigue strength of a groove weld on steel backing,Journal of Constructional Steel Research,1989,12(3–4):261-278.
    [95] McCracken S., Fatigue strength of socket welds repaired by structural weldoverlay: Reference ASME Section XI Code Case N-666, ASME ConferenceProceedings,2005,2005(4191X):917-926.
    [96]高永毅,苏志霄,焦群英等,残余应力对构件固有频率影响的讨论,机械强度,2002,24(2):289~292.
    [97]杨志勇,李秋胜,魏文晖,影响结构阻尼的部分因素分析,工程力学,2001,增刊:834~837.
    [98] Xiu J.J., Jing H.Y., Xu L.Y. et al., Effects of radial gap and penetration depth onthe vibration fatigue behavior of304L stainless steel piping with socket weld,Materials Science and Technology,2012,28(7):850-856.
    [99] Xiu J.J., Jing H.Y., Xu L.Y. et al., Effect of groove on socket welds under thecondition of vibration fatigue, Journal of Nuclear Material,2013,433(1-3):10-16.
    [100]田锡唐,焊接结构[M],北京:机械工业出版社,1982.
    [101] Lindgren L.E., Karlsson L., Deformations and stresses in welding of shellstructures, International Journal for Numerical Methods in Engineering,1988,25(2):635-655
    [102] Ca as J., Picón R., Pariís F., et al., A simplified numerical analysis of residualstresses in aluminum welded plates, Computers& Structures,1996,58(1):59-69
    [103] Wilkening W.W., Snow J.L., Analysis of welding-induced residual stresses withthe ADINA system, Computers&Structures,1993,47(4-5),767-786.
    [104] Rosenthal D., Mathematical theory of heat distribution during welding andcutting, Welding Journal Research Supplement,1941,220-234.
    [105] Westby L., Temperature distribution in the workpiece by welding, Departmentof Metallurgy and Metals Working:[D], The technical University,1993.
    [106] Pavelic V., Tanbakuchi R., Uyehara O. A. et al., Experimental and computedtemperature histories in cas tungsten-arc welding of thin plates, Welding Journal,1968,48(7):295-305.
    [107] Friedman E., Thermomechanical analysis of the welding process using the finiteelement method, Journal of Pressure Vessel Technology,1975,97(3):206-213.
    [108] Goldak J.A., Chakravarti A.P., Bibby M.J., A new finite element model forwelding heat sources, Metall. Trans. Bulletin,1984,15:587-600.
    [109] Goldak J.A., Modelling thermal stresses and distortions in welds, Recent Trendsin Welding Science and Technology,1986,71-82.
    [110] Tsai C.L., Lee S.G., Shim Y.L., Experimental verification of modelingtechniques for thermal-related welding problems, Heat Transfer in MaterialsProcessing,1992,224:9-17.
    [111] Chang W.S., Na S.J., A study on the prediction of the laser weld shape withvarying heat source equations and the thermal distortion of a small structure inmicro-joining, Journal of Materials Processing Technology,2002,120(1-3):208-214.
    [112] Carmingnani C., Mares R., Toselli G., Transient finite element analysis of deeppenetration laser welding process in a singlepass butt welded thick steel plate,Computer Methods in Applied Mechanics and Engineering,1999,179(3):197-214.
    [113] Duranton P., Devaux J., Robin V., et al,3D modelling of multipass welding ofa316L stainless steel pipe, Journal of Materials Processing Technology,2004,153-154:457-463.
    [114] Goldak J., Chakravarti A. P., Bibby M., A new finite element model forwelding heat sources, Metallurgical Transactions B,1984,15B(2):299-305.
    [115] Tekriwal P., Mazumder J., Finite element analysis of three-dimensionaltransient heat transfer in GMA welding, Welding Journal,1988,67(5):150-156.
    [116] Tsai N.S., Eagar T.W., Distribution of the heat and current fluxes in gas tungstenarcs, Metallurgical Transactions,1985,16B(12):257-262.
    [117] Hashmi M., Residual stresses in the structures coated by a high velocityoxy-fuel technology, Journal of Materials Processing Technology,1998,75(3):81-86.
    [118] Wang H.S., The alignment error of the hole-drilling method, ExperimentalMechanics,1979,1(5):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700