用户名: 密码: 验证码:
不同基底的染料敏化太阳能电池的制备及其结构与性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye-sensitized solar cells,DSSC)由于其相对低廉的成本和较高的光电转化效率,引起了人们的极大兴趣。但是传统玻璃基DSSC质量重,不能弯曲等缺陷限制了DSSC的应用范围。因此,如何在质量轻、柔性基底上制备光阳极,成为该领域的关键之一。另外,光阳极通常所使用的TiO2纳米粒子和钉联吡啶类染料对入射光的利用率较低,因此提高光阳极的光捕获效率、拓展光谱响应范围也是提高DSSC性能的另一关键问题。为此,本论文开展了在不同柔性基底上制备光阳极和提高光阳极的光捕获效率、拓展光谱响应范围的研究。主要实验现象和研究结论归纳如下:
     1.以导电塑料(ITO-PET)为柔性基底,发展了向P25浆料添加钛酸正丁(?)(TBOT)胶粘剂或TiO2小粒子“纳米胶”等方法低温(120℃)制备塑料基光阳极。结果表明:1)TBOT在P25浆料中的含量越大,膜电极内P25纳米粒子间的联接性越好。当浆料中TBOT/P25质量比为0.17时,制备的塑料基电池的效率达到了3.94%。2)以非水热法制备的TiO2小粒子(粒径<10nm)作为P25浆料的“纳米胶”可增强P25纳米粒子间的联接,并提高染料吸附量,但同时减小了膜内孔径和电解质扩散速率。当TiO2小粒子在膜内含量为29wt%时,制备的FTO玻璃基和ITO塑料基电池的效率分别为3.53%和2.71%。上述两种不含有机粘结剂的P25浆料的制备方法,具有操作简便、成本低廉、膜内粒子间联接良好、电池效率较高等优点,为塑料基电池的规模化生产提供了一条可资借鉴的途径。
     2.以导电塑料(ITO-PET)为柔性光阳极基底,以海胆状TiO2分等级结构微球作为电极材料制备浆料,低温(150℃)制备了塑料基光阳极,并采用新型离子液体(DMPII)基无碘单质的准固态电解质组装电池。结果表明:1)溶剂热法制备产物为具有高比表面积(~97m2g-1)的海胆状TiO2分等级结构微球,该微球由纳米粒子(<20nm)和一维纳米带聚集而成。2)TiO2微球不仅可提供充分的染料吸附面积,而且膜内较大的孔径也有利于准固态电解质的渗透,所构建的准固态柔性电池效率达4.32%,优于同等条件下制备的P25基电池效率,为新型、高效和廉价的塑料基电池的关键材料的探索提供了一条新的思路。
     3.以钛片为柔性基底,首次采用水热法和膜转移法相结合的方法制备了具有高比表而积的超细TiO2纳米管自组织膜光阳极。结果表明:1)采用水热法在Ti片表面制备了厚约12μm,具有较高比表面积的超细TiO2纳米管自组织膜。使用膜转移法将该Ti02纳米管膜制备了TiO2纳米管膜/Ti基柔性光阳极。2)超细TiO2纳米管自组织膜不仅具有超细的管径(<10nm)和较大的比表面积(~100m2g-1)可以吸附充足的染料,而且其一维纳米结构可减少电子复合,组装的Ti02纳米管膜/Ti基电池效率达6.23%,优于P25膜/Ti基电池效率(3.36%)。上述结果为制备高效金属基电池提供了一条可供借鉴的途径。
     4.以廉价的纸张为柔性基底低温(250℃)制备纸基光阳极。首次采用离子液体基无碘准固态电解质和透明对电极组装了准固态纸基电池。结果表明:1)使用简单的溶液沉积法即可在纸张上沉积纳米Ni导电层,获得的柔性Ni/纸基面的电阻(<1Ω sq-1)远低于导电玻璃和导电塑料的面电阻。2)水热合成了粒径约为9nm的Ti02小粒子(STP),并将该STP小粒子添加到不含有机胶粘剂的P25浆料中;该浆料和无碘准固态电解质保证了膜电极的粒子联接,避免了碘单质对纸基的侵蚀。所制备的纸基准固态电池效率达2.90%。纸基准固态DSSC的研发成功为探索大幅度降低DSSC制作成本提供了一条的新思路,对推动DSSC的规模化生产具有重要的实际意义。
     5.为提高电池的光捕获效率,制备了一些新颖的光散射材料。结果表明:1)采用水热法可制备宽20-80nm,长200-400nm的一维梭形TiO2纳米棒:采用化学沉积法可制备由直径约300nm,长约3μm的铅笔状ZnO纳米棒组成的ZnO微米花。2)以梭形TiO2纳米棒作为光散射材料可有效地提高纳米TiO2基电池的光电化学性能。TiO2纳米棒主要起到光散射作用,提高了膜电极的光捕获效率;且其一维结构有利于降低电子复合。当纳米棒的含量为10wt%时得到了4.68%的电池效率,与不含纳米棒的电池相比,效率提高了66.5%。3)将ZnO微米花作为ZnO纳米粒子膜光阳极的单独的散射层有效地提高了纳米ZnO基DSSC的光捕获效率,并有利于电子寿命的延长,将电池效率由2.32%提高到3.18%。以上结果对DSSC的结构设计与优化具有一定的理论指导意义。
     6.从扩展光谱响应范围出发,以有机染料DH-44和非对称酞菁锌Zn-tri-PcNc-1为染料对玻璃基TiO2膜电极进行共敏化,并组装共敏化DSSC。结果表明:1)DH-44和Zn-tri-PcNc-1分别在可见光区和近红外区有较强烈的光谱响应,利用其吸收光谱匹配互补的特性可实现全色段光谱吸收,提高电池的光捕获效率。2)采用两种染料共敏化的电池的光电转化的有效值范围可延伸到近红外区,且共敏化电池的效率(6.61%)要高于单染料DH-44敏化(5.16%)和Zn-tri-PcNc-1敏化(2.38%)的电池的效率,显示了该两类染料共敏化在拓展电池光谱响应范围和效率方面的优越性,为替代价格昂贵的钌联吡啶类染料和制备宽光潜响应、高效、廉价和环境友好的DSSC提供了一些新的思路。
Dye-sensitized solar cells (DSSC) have attracted much attention due to their relatively low cost and high conversion efficiency;however, the traditionally used conductive glass substrates limit their applications because of rigid and heavy properties. Therefore, it is a key issue to prepare photoanodes of DSSC on flexible and light-weight substrates. On the other hand, TiO2nanoparticles and Ru-bipyridine dye, which are mostly used in DSSC, have low light-harvesting and narrow spectral response. Increasing light-harvesting efficiency and broadening spectral response are also important for the improvement of DSSC. Thus, we carried out investigation into fabrication of the photoanodes of DSSC on different flexible substrates, and increasing light-harvesting efficiency and broadening spectral response of the photoanodes. The main contents and conclusion are as follows:
     1. Flexible DSSCs are prepared on ITO-PET at low temperature (120℃) by adding TBOT and nanoglue to P25paste.(1) The amount of TBOT added to P25paste is critical for the performance of flexible DSSC. The nanoparticle interconnections will be enhanced with increasing amount of TBOT. After optimization, when mass ratio of TBOT/P25in the paste is0.17, the electrode has the best performance and an efficiency of3.94%is obtained.(2) Small TiO2nanoparticles (diameter<10nm) derived from non-hydrothermal method can enhance P25interconnection, increase dye absorption, decrease the pore size and the rate of electrolyte diffusion in the film. After optimization the small TiO2nanoparticles should be29wt%in the film, and efficiencis of3.53%and2.71%are obtained on FTO glass and ITO-PET substrates respectively. The above two preparations of binder-free P25paste have merits of simpleness, low-cost, good particle interconnections and relatively high efficiency. It is expected these methods can provide new routes for large-scale DSSCs based on plastic substrates.
     2Flexible DSSCs is prepared on ITO-PET at low temperature (150℃) by using sea urchin-like hierarchical TiO2microspheres as the paste and a novel iodine-free, quasi-solid state electrolyte based on ionic liquid DMPII.(1) Sea urchin-like hierarchical TiO2spheres, which are composed of TiO2nanoparticles and nanoribbons with high surface area (~97m2g-1) and good particle interconnection, are prepared by solvothermal method.(2) The TiO2spheres can supply sufficient area for dye absorption and reduce electron recombination, and the micro-pores in the film are favorable for the diffusion of quasi-solid state electrolyte. The TiO2spheres based flexible DSSC achieves efficiency of4.32%, which is better than P25nanoparticles based one.
     3. TiO2nanotube film is prepared on the surface of Ti foil by combining hydrothermal and transfer methods.(1) The diameter of TiO2nanotubes is less than10nm, and the nanotubes are tangled to form a porous film with thickness of~12μm. TiO2nanotube/Ti flexible photoanode is fabricated by transferring method.(2) The synthesized TiO2nanotubes can not only supply sufficient area for dye absorption, but also reduce electron recombination due to one-dimensional nanostructure. TiO2nanotube/Ti electrode obtains an efficiency of6.23%, which is higher than P25/Ti electrode. The above results can offer a reference for preparation of metal based DSSCs with high performance.
     4. Quasi-solid state DSSC on Ni/paper substrate is fabricated using binder-free TiO2paste and iodine-free quasi-solid state electrolyte.(1) Conductive Ni naoparticle layer is coated on flexible paper substrate by a simple solution deposition method.The sheet resistance of prepared Ni/paper substrate is lower (<1Ω sq-1), which is favorable for decrease of serial resistance of DSSC.(2) Small TiO2nanoparticles (diameter~9nm) are synthesized by hydrothermal method, and added to binder-free P25paste. The binder-free paste and iodine-free quasi-solid electrolyte can make good nanoparticle interconnections and avoid corrosion to the paper substrate. After250℃heat treatment, an efficiency of2.90%can be obtained by the Ni/paper based DSSC. The application of paper in DSSC can lower the cost of the cell significantly with maintaining the flexibility. It is important for broadening the area of DSSC application and the relative large scale production.
     5. To increase the light harvesting efficiency of DSSCs, some novel scattering materials are prepared.(I) One dimensional fusiform TIO2nanorods with width of20-80nm, length of200-400nm can be obtained by hydrothermal method. Three dimensional ZnO micro-flowers with diameter of-300nm, which are composed of pencil-like ZnO nanorods with length of~3μm,are synthesized and solution deposition method.(2) Due to the large size, TiO2nanorods have strong scattering effect and can increase the optical path in the film, leading to the enhancement of light-harvesting efficiency. And the one dimensional structure of TiO2nanorods can offer a direct path for the electron transfer, decrease electron recombination.However, adding TiO2nanorods will result in the decrease of surface area and dye absorption. After optimization, TiO2nanorods should be10wt%in the film electrode, and4.68%efficiency can be achieved, which is66.5%higher than that of electrode without TiO2nanorods.(3) ZnO micro-flowers are coated on ZnO nanoparticle film electrode and used as scattering layer for the DSSC. Because of the scattering effect of ZnO micro-flowers, the light absorption and light-harvesting efficiency of ZnO electrode increase significantly. The overall conversion efficiency of ZnO electrode is enhanced from2.32%to3.18%. I he above one and three dimensional nano-semiconductors can give more options of scattering materials for DSSCs.
     6. To expand the spectral response of DSSCs, TiO2film on FTO-glass substrate is cosensitized by stepwise method using metal-free organic dye DH-44and zine phthalocyaninc dye Zn-tri-PcNc-1.(1) Due to the matched spectral response of these two dyes, the spectral response of cosensitized photoanode is broadened, resulting in increased light-harvesting and conversion efficiency.(2) The cosensitized elctrode obtains an efficiency of6.61%with expanding the spectral response to near-infrared region, which is higher than the single dye DH-44sensitized one (5.16%) and Zn-tri-PcNc-1sensitized one (2.38%), showing significant advantages of cosensitization. This research offers a new route to prepare DSSCs with broad spectral response, low-cost and high efficiency.
引文
[1]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-739.
    [2]S. Ho, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Photovolt:Res. Appi,2006,14,589-601.
    [3]H. C. Weerasinghe, F. Huang, Y.-B. Cheng, Fabrication of flexible dye sensitized solar cells on plastic substrates, Nuno Energy,2013,2,174-189.
    [4]A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson. Dye-Sensitized Solar Cells, Chem. Rev., 2010,110,6595-6663.
    [5]J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi,P. Wang, S. M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. E. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance, Prog. Photovolt:Res. Appl.,2007,15,1-18.
    [6]S. Ho, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, Control of dark current in photoelectrochemical (TiO2/I--I-3(-)) and dye-sensitized solar cells, Chem. Commun.,2005,4351-4353.
    [7]H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates, Nano Lett.,2001,1, 97-100.
    [8]H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, A new method to make dye-sensitized nanocrystalline solar cells at room temperature, J. Photochem. Photobiol, A,2001,145, 107-112.
    [9]T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiOs photoelectrodes, Chem. Commun., 2007,4767-4769.
    [10]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%, Sol. Energy Mater. Sol. Cells,2010, 94,812-816.
    [11]M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles. Low-temperature fabrication of dye-sensitizedsolar cells by transfer of composite porous layers, Nat Mater,2005,4,607-611.
    [12]P.-Y. Hsu, H.-F. Lee, S.-M. Yang, Y.-T. Chua, Y.-L. Tung, J.-J. Kai, Highly Efficient Quasi-solid State Flexible Dye-sensitized Solar Cells Using a Compression Method and Light-confined Effect for Preparation of TiO? Photoelectrodes, Procedia Engineering,2012,36,439-445.
    [13]G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg, A. Hagfeldt, Optimization of dye-sensitized solar cells prepared by compression method, J. Photochem. Photobiol., A,2002,148,11-15.
    [14]S. Senthilarasu, T. A. N. Peiris, J. Garcia-Canadas, K. G. U. Wijayantha, Preparation of Nanocrystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells:Influence of Mechanical Compression, J. Phys. Chem. C,2012,116,19053-19061.
    [15]L. Yang, L. Wu, M. Wu, G. Xin, H. Lin, T. Ma, High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique, Electrochem. Commun.,2010,12,1000-1003.
    [16]X. Liu, L. Wang, Z. Xue, B. Liu, Efficient flexible dye-sensitized solar cells fabricated by transferring photoanode with a buffer layer, RSCAdv.,2012,2,6393-6396.
    [17]J. Halme, J. Saarinen, P. Lund, Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates, Sol. Energy Mater. Sol. Cells,2006,90,887-899.
    [18]Y. Li, D.-K. Lee, J. Y. Kim, B. Kim, N.-G. Park, K. Kim, J.-H. Shin, I.-S. Choi, M. J. Ko. Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes, Energ Environ Sci,2012,5,8950-8957.
    [19]C.-R. Ke, L.-C. Chen, J.-M. Ting, Photoanodes Consisting of Mesoporous Anatase TiO2 Beads with Various Sizes for High-Efficiency Flexible Dye-Sensitized Solar Cells,J. Phys. Chem. C,2012,116, 2600-2607.
    [20]F. Huang, D. Chen, L. Cao. R. A. Caruso, Y.-B. Cheng, Flexible dye-sensitized solar cells containing multiple dyes in discrete layers, Energ Environ Sci,2011,4,2803-2806.
    [21]L. Wang, Z. Xue, X. Liu, B. Liu, Transfer of asymmetric free-standing TiO2 nanowire films for high efficiency flexible dye-sensitized solar cells, RSC Adv.,2012,2,7656-7659.
    [22]X. Yin, B. Wang, M. He, T. He, Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells, Nano Res.,2012,5,1-10.
    [23]H.-W. Chen, C.-Y. Lin, Y.-H. Lai, J.-G. Chen, C.-C. Wang, C.-W. Hu, C.-Y. Hsu, R. Vittal, K.-C. Ho, Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell,J. Power Sources,2011,196,4859-4864.
    [24]S. Chu, D. Li, P.-C. Chang, J. Lu, Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays, Nanoscale Research Letters,2010,6,1-4.
    [25]D. Zhang, T. Yoshida, K. Furuta, H. Minoura, Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, J. Photochem. PhotobioL, A,2004,164,159-166.
    [26]C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, D. L. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode, Appl. Phys. Lett.,2008, 92,143101-143103.
    [27]L. Zhao, J. Yu, J. Fan, P. Zhai, S. Wang,Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method,Electrochem. Commun.,2009,11,2052-2055.
    [28]Z. Xue, W. Zhang, X. Yin, Y. Cheng, L. Wang, B. Liu, Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique. RSC Adv.,2012.2,7074-7080.
    [29]X. Yin, Z. Xue. L. Wang, Y. Cheng, B. Liu, High-Performance Plastic Dye-sensitized Solar Cells Based on Low-Cost Commercial P25 TiO2 and Organic Dye, ACS Appl. Mater. Interfaces,2012,4, 1709-1715.
    [30]L.-C. Chen. J.-M. Ting,Y.-L. Lee, M.-H. Hon, A binder-free process for making all-plastic substrate flexible dye-sensitized solar cells having a gel electrolyte.J. Mater. Chem.,2012,22,5596-5601.
    [31]J.-H. Yum, S.-S. Kim, D.-Y. Kim, Y.-E. Sung, Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,J. Photochem. Photobiol., A.2005,173,1-6.
    [32]W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions,J. Power Sources,2011,196,3683-3687.
    [33]H.-W. Chen, C.-P. Liang,H.-S. Huang, J.-G. Chen, R. Vittal, C.-Y. Lin, K. C. W. Wu, K.-C. Ho, Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells,Chem. Commun.,2011,47, 8346-8348.
    [34]H.-W. Chen,Y.-T. Liao, J.-G. Chen, K. C. W. Wu, K.-C. Ho, Fabrication and characterization of plastic-based flexible dye-sensitized solar cells consisting of crystalline mesoporous titania nanoparticles as photoanodes.J. Mater. Chem.,2011,21,17511-17518.
    [35]A. Vomiero, V. Galstyan, A. Braga, I. Concina, M. Brisotto, E. Bontempi, G. Sberveglieri, Flexible dye sensitized solar cells using TiO2 nanotubes, Energ Environ Sci,2011,4,3408-3413.
    [36]H. Lee, D. Hwang, S. M. Jo, D. Kim, Y. Seo, D. Y. Kim, Low-Temperature Fabrication of TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process. ACS Appl. Mater. Interfaces,2012,4,3308-3315.
    [37]F. Hu, Y. Xia, Z. Guan, X. Yin, T. He, Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells, Electrochim. Acta,2012,69,97-101.
    [38]N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, Chemical Sintering of Nanoparticles:A Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO2 Films, Adv. Mater.,2005,17,2349-2353.
    [39]X. Liu, Y. Luo, H. Li, Y. Fan, Z. Yu, Y. Lin, L. Chen, Q. Meng, Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells, Chem. Commim.,2007,2847-2849.
    [40]H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, Y. B. Cheng, Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells, J. Photochem. Photobiol, A,2010,213,30-36.
    [41]H. C. Weerasinghe, G. V. Franks, J. D. Plessis, G. P. Simon, Y.-B. Cheng, Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells, J. Mater. Chem.,2010,20,9954-9961.
    [42]C.-R. Ke, J.-M. Ting, Anatase TiO2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells, J. Power Sources,2012,208,316-321.
    [43]D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells, Adv. Funct. Mater,2006,16, 1228-1234.
    [44]T. Miyasaka, Y. Kijitori, M. Ikegami, Plastic Dye-sensitized Photovoltaic Cells and Modules Based on Low-temperature Preparation of Mesoscopic Titania Electrodes, Electrochemistry,2007,75,2-12.
    [45]T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania, J. Electrochem. Soc.,2007, 154.A455-A461.
    [46]K.-M. Lee, S.-J. Wu, C.-Y. Chen, C.-G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K.-C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer, J. Mater. Chem.,2009,19,5009-5015.
    [47]X. Li, H. Lin, J. Li, X. Li, B. Cui, L. Zhang, A Numerical Simulation and Impedance Study of the Electron Transport and Recombination in Binder-Free TiO2 Film for Flexible Dye-Sensitized Solar Cells, J. Phys. Chem. C,2008,112,13744-13753.
    [48]P. Zhang, C. Wu, Y. Han, T. Jin, B. Chi, J. Pu, L. Jian, Low-Temperature Preparation of Hierarchical Structure TiO2 for Flexible Dye-Sensitized Solar Cell, J. Am. Ceram. Soc.,2012,95,1372-1377.
    [49]X. Li, H. Lin, J. Li, N. Wang, C. Lin, L. Zhang, Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells, J. Photochem. Photobiol., A,2008,195, 247-253.
    [50]Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells, Electrochim. Acta,2010,55,4573-4578.
    [51]W. Chen, Y. Qiu, S. Yang, A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2010,12,9494-9501.
    [52]A. Pang, C. Chen, L. Chen, W. Liu, M. Wei, Flexible dye-sensitized ZnO quantum dots solar cells, RSC Adv.,2012,2,9565-9570.
    [53]K. Fan, T. Peng, B. Chai, J. Chen, K. Dai. Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochim. Acta,2010,55,5239-5244.
    [54]M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Sol. Energy Mater. Sol. Cells,2006,90,2881-2893.
    [55]V. Vijayakumar, A. Du Pasquier, D. P. Birnie lii, Electrical and optical studies of flexible stainless steel mesh electrodes for dye sensitized solar cells, Sol. Energy Mater. Sol. Cells,2011,95,2120-2125.
    [56]K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa, The superiority of Ti plate as the substrate of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,2007,91,1176-1181.
    [57]S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun.,2006,4004-4006.
    [58]L.-Y. Lin, C.-P. Lee, R. Vittal, K.-C. Ho, Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode,J. Power Sources,2010,195,4344-4349.
    [59]L.-Y. Lin, P.-C. Nien, C.-P. Lee, K.-W. Tsai, M.-H. Yeh, R. Vittal, K.-C. Ho, Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells,J. Phys. Chem. C,2010,114,21808-21815.
    [60]L.-Y. Lin, C.-P. Lee, K.-W. Tsai, M.-H. Yeh, C.-Y. Chen, R. Vittal, C.-G. Wu, K.-C. Ho, Low-temperature flexible Ti/TiO2 photoanode for dye-sensitized solar cells with binder-free TiO2 paste. Prog. Photovolt:Res. Appl.,2012,20,181-190.
    [61]C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, J.-M. Wu, Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates,J. Mater. Chem.,2011.21, 5114-5119.
    [62]J. An, W. Guo, T. Ma, Enhanced Photoconversion Efficiency of All-Flexible Dye-Sensitized Solar Cells Based on aTi Substrate with TiO2 Nanoforest Underlayer, Small,2012,8,3427-3431.
    [63]W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochim. Acta,2009,54, 4467-4472.
    [64]V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David,M. Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal.,1999, 27.629-637.
    [65]P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale,2010,2,45-59.
    [66]J. M. Macak, H. Tsuchiya, A. Ghicov,P. Schmuki,Dye-sensitized anodic TiO2 nanotubes, Eledrochem. Commun.,2005,7,1133-1137.
    [67]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays, Nano Lett.,2006,7, 69-74.
    [68]D. Kuang, J. r. m. Brillet, P. Chen, M. Takata, S. Uchida,H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells, Acs Nano,2008,2,1113-1116.
    [69]J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays:Transport, Trapping, and Transfer of Electrons,J.Am. Chem. Sot: 2008,130.13364-13372.
    [70]K. Zhu, T. B. Vinzant, N. R. Neale, A. J. Frank. Removing structural disorder from oriented TiO2 nanotube arrays:Reducing the dimensionality of transport and recombination in dye-sensitized solar cells, Nano Lett.,2007.7.3739-3746.
    [71]C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. C,2008,112,19151-19157.
    [72]L.-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E. W.-G. Diau, Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells, J. Mater. Chem.,2010,20,2753-2758.
    [73]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts, Small,2007,3,300-304.
    [74]S. Wang, J. Zhang, S. Chen, H. Yang, Y. Lin, X. Xiao, X. Zhou, X. Li, Conversion enhancement of flexible dye-sensitized solar cells based on TiO2 nanotube arrays with TiO2 nanoparticles by electrophoretic deposition, Electrochim. Acta,2011,56,6184-6188.
    [75]J.-G. Chen, C.-Y. Chen, C.-G. Wu, C.-Y. Lin, Y.-H. Lai, C.-C. Wang, H.-W. Chen, R. Vittal, K.-C. Ho, An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays, J. Mater. Chem.,2010,20,7201-7207.
    [76]Y.-H. Chen, K.-C. Huang, J.-G. Chen, R. Vittal, K.-C. Ho, Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells, Electrochim. Acta,2011,56,7999-8004.
    [77]J. E. Boercker, E. Enache-Pommer, E. S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells, Nanotechnology,2008,19,095604-095614.
    [78]J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells, Energ Environ Sci,2012,5,5750-5757.
    [79]R.-H. Tao, J.-M. Wu, H.-X. Xue, X.-M. Song, X. Pan, X.-Q. Fang, X.-D. Fang, S.-Y. Dai, A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells, J. Power Sources,2010,195,2989-2995.
    [80]D. Kim, K. Lee, P. Roy, B.1. Birajdar, E. Spiecker, P. Schmuki, Formation of a Non-Thickness-Limited Titanium Dioxide Mesosponge and its Use in Dye-Sensitized Solar Cells, Angew. Chem.,2009, 121,9490-9493.
    [81]B.-X. Lei, Q.-P. Luo, X.-Y. Yu, W.-Q. Wu, C.-Y. Su, D.-B. Kuang, Hierarchical TiO2 flowers built from TiO2 nanotubes for efficient Pt-free based flexible dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2012,14,13175-13179.
    [82]Y.-H. Lai, C.-Y. Lin, H.-W. Chen, J.-G. Chen, C.-W. Kung, R. Vittal, K.-C. Ho, Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell, J. Mater. Chem.,2010,20, 9379-9385.
    [83]L. Y. Lin, M. H. Yeh, C. P. Lee, C. Y. Chou, K. C. Ho, Flexible Dye-Sensitized Solar Cells with One-Dimensional ZnO Nanorods as Electron Collection Centers in Photoanodes, Electrochim. Acta, 2013,88,421-428.
    [84]Z. Liu, V. Subramania, M. Misra, Vertically Oriented TiO2 Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells,J. Phys.Chem. C,2009,113,14028-14033.
    [85]Y. Wang, H. Yang, Y. Liu, H. Wang, H. Shen, J. Yan, H. Xu,The use of Ti meshes with self-organized TiO2 nanotubes as photoanodes of all-Ti dye-sensitized solar cells, Prog. Photovolt:Res. Appl.,2010, 18,285-290.
    [86]W. He, J. J. Qiu, F. W. Zhuge, X. M. Li, J. H. Lee, Y. D. Kim. H. K. Kim, Y. H. Hwang, Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells, Nanotechnology,2012,23, 225602-225607.
    [87]D. Zou, D. Wang, Z. Chu, Z. Lv, X. Fan, Fiber-shaped flexible solar cells, Coord. Chem. Rev.,2010, 254,1169-1178.
    [88]Z. Liu, M. Misra, Dye-Sensitized Photovoltaic Wires Using Highly Ordered TiO2 Nanotube Arrays, Acs Nano,2010,4,2196-2200.
    [89]Z. Lv, J. Yu, H. Wu, J. Shang, D. Wang, S. Hou, Y. Fu. K. Wu, D. Zou, Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array, Nanoscale,2012,4, 1248-1253.
    [90]Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang, C. Zhang, D. Zou, TCO-Free, Flexible, and Bifacial Dye-Sensitized Solar Cell Based on Low-Cost Metal Wires, Adv. Energy Mater.,2012,2,37-41.
    [91]S. Zhang, C. Ji, Z. Bian, R. Liu, X. Xia, D. Yun, L. Zhang, C. Huang, A. Cao, Single-Wire Dye-Sensitized Solar Cells Wrapped by Carbon Nanotube Film Electrodes, Nano Lett.,2011,11. 3383-3387.
    [92]M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate,Sol. Energy Mater Sol. Cells,2006,90,574-581.
    [93]H.G. Yun,Y. Jim, J. Kim. B. S. Bae, M. G. Kang, Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells, Appl. Phys. Lett.,2008,93,133311-133313.
    [94]Y. Jun, J. Kim, M. G. Kang, A study of stainless steel-based dye-sensitized solar cells and modules. Sol. Energy Mater. Sol. Cells.2007.91,779-784.
    [95]J. H. Park, Y. Jun,H. G. Yun, S. Y. Lee, M. G. Kang, Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate,J. Electrochem. Soc.,2008,155, F145-F149.
    [96]C. Bonilha,J. E. Benedetti, A. F. Nogueira, A. D. Goncalves,Transparent Conducting Oxide-Free Dye-Sensitized Solar Cells Based Solely on Flexible Foils, Ind. Eng. Chem. Res.,2012,51, 9700-9703.
    [97]X. Fan, F. Z. Wang,Z. Z. Chu, L. Chen, C. Zhang, D. C. Zou, Conductive mesh based flexible dye-sensitized solar cells, Appl. Phys. Lett.,2007,90,073501-073503.
    [98]X. W. Huang, P. Shen, B. Zhao, X. M. Feng, S. H. Jiang, H. J. Chen, H. Li, S. T. Tan. Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,2010,94, 1005-1010.
    [99]Z. Li, Y. Zhou, C. Bao, G. Xue. J. Zhang, J. Liu, T. Yu, Z. Zou, Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells, Nanoscale,2012,4.3490-3494.
    [100]H. Dai, Y. Zhou, Q. Liu, Z. Li, C. Bao, T. Yu, Z. Zhou, Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells, Nanoscale,2012,4,5454-5460.
    [101]X. Fan,Z. Z. Chu, F. Z. Wang, C. Zhang, L. Chen, Y. W. Tang, D. C. Zou, Wire-Shaped Flexible Dye-sensitized Solar Cells. Adv. Muter.,2008,20,592-595.
    [102]X. Fan. Z. Z. Chu, L. Chen, C. Zhang,F. Z. Wang, Y. W. Tang, J. L. Sun, D. C. Zou, Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide, Appl. Phys. Lett.,2008,92, 113510-113513.
    [103]W. Wang, Q. Zhao, H. Li, H. Wu, D. Zou, D. Yu, Transparent, Double-Sided, ITO-Free, Flexible Dye-Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays, Adv. Funct. Mater.,2012,22, 2775-2782.
    [104]L. Heng, X. Wang, N. Yang, J. Zhai, M. Wan, L. Jiang, p-n-Junction-Based Flexible Dye-Sensitized Solar Cells, Adv. Funct. Mater,2010,20,266-271.
    [105]L. Nyholm, G. Nystrom, A. Mihranyan, M. Str(?)mme, Toward Flexible Polymer and Paper-Based Energy Storage Devices, Adv. Mater.,2011,23,3751-3769.
    [106]L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. U. S. A.,2009,106,21490-21494.
    [107]B. Wang, L. L. Kerr, Dye sensitized solar cells on paper substrates, Sol. Energy Mater. Sol. Cells, 2011,95,2531-2535.
    [108]S. I. Cha, Y. Kim, K. H. Hwang, Y.-J. Shin, S. H. Seo, D. Y. Lee, Dye-sensitized solar cells on glass paper:TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure, Energ Environ Sci,2012,5,6071-6075.
    [109]W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z. L. Wang, Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells, J. Am. Chem. Soc.,2012,134, 4437.4441.
    [110]Q. Zhang, D. Myers. J. Lan. S. A. Jeneklie, G. Cao, Applications of light scattering in dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2012,14,14982-14998.
    [111]C. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, C. Gratzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc.,1997,80,3157-3171.
    [112]Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 2004,248,1381-1389.
    [113]S. H. Kang, J.-Y. Kim, H. S. Kim, H.-D. Koh, J.-S. Lee, Y.-E. Sung, Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell, J. Photochem. Photobiol, A,2008,200,294-300.
    [114]L. Yang, Y. Lin, J. Jia, X. Xiao, X. Li, X. Zhou, Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres, J. Power Sources,2008,182, 370-376.
    [115]C. Li, G. W. Kattawar, P. Yang, Effects of surface roughness on light scattering by small particles, J. Quant. Spectrosc. Radial. Transfer,2004,89,123-131.
    [116]T. Nousiainen, K. Muinonen, Surface-roughness effects on single-scattering properties of wavelength-scale particles, J. Quant. Spectrosc. Radiat. Transfer,2007,106,389-397.
    [117]S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, Scattering spherical voids in nano-crystalline TiO2-enhancement of efficiency in dye-sensitized solar cells, Chem. Commun.,2005, 2011-2013.
    [118]G. Yang, J. Zhang, P. Wang, Q. Sun, J. Zheng, Y. Zhu, Light scattering enhanced photoanodes for dye-sensitized solar cells prepared by carbon spheres/TiO2 nanoparticle composites,Current Applied Physics,2011,11,376-381.
    [119]K. Fan, W. Zhang, T. Peng. J. Chen, F. Yang, Application of TiO2 Fusiform Nanorods for Dye-Sensitized Solar Cells with Significantly Improved Efficiency,J. Phys. Chem. C,2011,115, 17213-17219.
    [120]J. Yu, J. Fan, K. Lv, Anatase TiO2 nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale,2010,2,2144-2149.
    [121]B. Tan, Y. Wu, Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites,J. Phys. Chem.B,2006,110,15932-15938.
    [122]C. J. Lin, W. Y. Yu, S. H. Chien, Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells, Appl. Phys. Lett.,2007,91,
    [123]K.-H. Jung, J. S. Hong, R. Vittal, K.-J. Kim, Enhanced Photocurrent of Dye-Sensitized Solar Cells by Modification of TiO2 with Carbon Nanotubes, Chem. Lett.,2002,31.864-865.
    [124]Y.-Z. Zheng, X. Tao,L.-X. Wang, H. Xu, Q. Hou, W.-L. Zhou, J.-F. Chen, Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells, Chem. Mater,2009,22,928-934.
    [125]T. Umeyama, H. Imahori, Carbon nanotube-modified electrodes for solar energy conversion, Energ Environ Sci,2008,1,120-133.
    [126]S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,2006,90,1176-1188.
    1127] S. Ito, T. N. Murakami. P. Comte, P. Liska,C. Gratzel, M. K. Nazeeruddin. M. Gratzel,Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films,2008,516,4613-4619.
    [128]F. Huang,D. Chen, X. L. Zhang,R. A. Caruso, Y.-B. Cheng,Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells, Adv. Funct. Mater.,2010,20,1301-1305.
    [129]G. Zhu, L. Pan, J. Yang, X. Liu, H. Sun, Z. Sun, Electrospun nest-shaped TiO2 structures as a scattering layer for dye sensitized solar cells,J. Mater. Chem.,2012,22.24326-24329.
    [130]Z.-H. Liu, X.-J. Su, G-L. Hou, S. Bi, Z. Xiao, H.-P. Jia, Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod-aggregate light-scattering layer,J. Power Sources,2012, 218.280-285.
    [131]M. Pazoki, N. Taghavinia, Y. Abdi, F. Tajabadi, G. Boschloo, A. Hagfeldt, CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells, RSC Adv.,2012,2,12278-12285.
    [132]H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N.-G. Park, Size-dependent scattering efficiency in dye-sensitized solar cell,Inorg. Chim. Acta,2008,361,677-683.
    [133]K. Nakayama, T. Kubo, Y. Nishikitani, Electrophorctically Deposited TiO2 Nanotube Light-Scattering Layers of Dye-Sensitized Solar Cells, Jpn. J. Appl. Phys.,2008,47,6610-6614.
    [134]M. Kimura, H. Nomoto, N. Masaki, S. Mori, Dye Molecules for Simple Co-Sensiti/ation Process: Fabrication of Mixed-Dye-Sensitized Solar Cells. Angewandte Chemie International Edition,2012,51, 4371-4374.
    [135]P. J. Holliman, M. Mohsen, A. Counell, M. L. Davies, K. Al-Salihi, M. B. Pitak, G. J. Tizzard, S..1. Coles, R. W. Harrington, W. Clegg, C. Serpa, O. H. Fontes, C. Charbonneau, M. J. Carnie, Ultra-fast co-sensitization and tri-sensitization of dye-sensitized solar cells with N719,SQ1 and triarylamine dyes,J. Mater. Chem.,2012,22,13318-13327.
    [136]K.-M. Lee, Y.-C. Hsu, M. Ikegami, T. Miyasaka, K. R. Justin Thomas, J. T. Lin, K.-C. Ho, Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells,J.Power Sources, 2011.196,2416-2421.
    [137]J.-J. Cid, J.-H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Martinez-Ferrero, E. Palomares, J. Ko, M. Gratzel, T. Torres, Molecular Cosensitization for Efficient Panchromatic Dye-Sensitized Solar Cells, Angewandte Chemie International Edition,2007,46,8358-8362.
    [138]M. D. Brown, P. Parkinson, T. Torres, H. Miura, L. M. Herz, H. J. Snaith, Surface Energy Relay Between Cosensitized Molecules in Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C,2011, 115,23204-23208.
    [139]D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells, Langmuir,2007,23,10906-10909.
    [140]C.-M. Lan, H.-P. Wu, T.-Y. Pan, C.-W. Chang, W.-S. Chao, C.-T. Chen, C.-L. Wang, C.-Y. Lin, E. W.-G. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells, Energ Environ Sci,2012,5,6460-6464.
    [141]L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, S. K. Batabyal, K. Nonomura, M. Gratzel, S. G. Mhaisalkar, A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2012,14,16182-16186.
    [142]S.-Q. Fan, C. Kim, B. Fang, K.-X. Liao, G.-J. Yang, C.-J. Li, J.-J. Kim, J. Ko, Improved Efficiency of over 10% in Dye-Sensitized Solar Cells with a Ruthenium Complex and an Organic Dye Heterogeneously Positioning on a Single TiO2 Electrode,J. Phys. Chem. C,2011,115,7747-7754.
    [143]B. E. Hardin, A. Sellinger, T. Moehl, R. Humphry-Baker, J.-E. Moser, P. Wang, S. M. Zakeeruddin, M. Gratzel, M. D. McGehee, Energy and Hole Transfer between Dyes Attached to Titania in Cosensitized Dye-Sensitized Solar Cells, J. Am. Chem. Soc.,2011, 133,10662-10667.
    [1]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Pholovolt:Res. Appl,2006,14,589-601.
    [2]N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, Chemical Sintering of Nanoparticles:A Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO2 Films, Adv. Mater.,2005,17,2349-2353.
    [3]H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, A new method to make dye-sensitized nanocrystalline solar cells at room temperature.J. Photochem. Photbiol., A,2001,145, 107-112.
    [4]H. Lindstrom,A.Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A.Hagfeldt, A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates, Nano Lett., 2001,1, 97-100.
    [5]M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles,Low-temperature fabrication of dye-sensitizedsolar cells by transfer of composite porous layers, Nat Mater, 2005, 4, 607-611.
    [6]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%, Sol. Energy Metier. Sol. Cells, 2010,94,812-816.
    [7]D. S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells, Adv. Funct.Mater.,2006,16, 1228-1234.
    [8]K.-M. Lee, S.-J.Wu, C.-Y. Chen,C.-G. Wu, M. lkegami, K. Miyoshi, T. Miyasaka,K.-C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer,J. Mater. Chem.,2009, 19, 5009-5015.
    [9]T. Miyasaka, Y. Kijitori, M. Ikegami, Plastic Dye-sensitized Photovoltaic Cells and Modules Based on Low-temperature Preparation of Mesoscopic Titania Electrodes, Electrochemistry, 2007, 75, 2-12.
    [10]T. Miyasaka, M. lkegami, Y. Kijitori, Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania,J.Electrochem. Soc., 2007, 154,A455-A461.
    [11]P. Zhang,C. Wu, Y. Han, T. Jin, B. Chi,J. Pu. L. Jian. Low-Temperature Preparation of Hierarchical Structure TiO2 for Flexible Dye-Sensitized Solar Cell,J. Am. Ceram. Soc., 2012, 95, 1372-1377.
    [12]X. Li, H. Lin, J. B. Li, N. Wang,C. F. Lin, L. Z. Zhang,Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells,J. Pholochem. Photobiol., A, 2008,195, 247-253.
    [13]X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang,A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells, J.Phys.Chem. C, 2008,112,13744-13753.
    [14]Z. S. Wang, H. Kawauchi, T. Kashima,H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,Coord. Chem. Rev., 2004,248, 1381-1389.
    [15]B. Vijayan, N. M.Dimitrijevic, T. Rajh, K.Gray,Effect of Calcination Temperature on the Photocataiytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes, J.Phys. Chem. C, 2010, 114,12994-13002.
    [16]D.S.Zhang, J. A Downing, F. J. Knorr, J. L. McHale,Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.J. Phys. Chem. B, 2006, 110,21890-21898.
    [17]A. Du Pasquier, An approach to laminated flexible Dye sensitized solar cells, Electrochim. Ada,2007, 52, 7469-7474.
    [18]N. G. Park, J. van de Lagemaat, A. J. Frank. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,J Phys. Chem. B,2000, 104, 8989-8994.
    [19]J. Bisquert,A. Zaban,M. Greenshtein, I. Mora-Sero, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method,J. Am. Chem. Soc.,2004,126, 13550-13559.
    [20]A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, Chemphyschem,2003,4,859-864.
    [21]Q. Wang, J. E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B,2005,109,14945-14953.
    [22]M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, The Influence of Charge Transport and Recombination on the Performance of Dye-Sensitized Solar Cells, Chemphyschem, 2009,10,290-299.
    [23]J. W. Ondersma, T. W. Hamann, Impedance Investigation of Dye-Sensitized Solar Cells Employing Outer-Sphere Redox Shuttles, J. Phys. Chem. C,2010,114,638-645.
    [24]Y. Kijitori, M. Ikegami, T. Miyasaka, Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes, Chem. Lett.,2007,36,190-191.
    [25]J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,1998,54,265-275.
    [26]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochim. Acta,2002, 47,4213-4225.
    [1]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Photovolt:Res. Appl,2006,14,589-601.
    [2]N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, Chemical Sintering of Nanoparticles:A Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO2 Films, Adv. Mater.,2005,17,2349-2353.
    [3]H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, A new method to make dye-sensitized nanocrystalline solar cells at room temperature, J. Photochem. Photobiol., A,2001,145, 107-112.
    [4]H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates, Nano Lett.,2001,1, 97-100.
    [5]M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Low-temperature fabrication of dye-sensitizedsolar cells by transfer of composite porous layers, Nat Mater,2005,4,607-611.
    [6]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%, Sol. Energy Mater. Sol. Cells, 2010,94,812-816.
    [7]Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells, Electrochim. Acta,2010,55,4573-4578.
    [8]W. Chen, Y. Qiu, S. Yang, A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2010,12,9494-9501.
    [9]K. Fan, C. Gong, T. Peng, J. Chen, J. Xia, A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature, Nanoscale,2011,3, 3900-3906.
    [10]X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang, A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells, J. Phys. Chem. C,2008,112,13744-13753.
    [11]T. Miyasaka, Y. Kijitori, M. Ikegami, Plastic dye-sensitized photovoltaic cells and modules based on low-temperature preparation of mesoscopic titania electrodes, Electrochemistry,2007,75,2-12.
    [12]T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania,J. Electrochem. Soc.,2007, 154,A455-A461.
    [13]Y. Li, W. Lee, D. K. Lee, K. Kim. N. G. Park, M. J. Ko. Pure anatase TiO2 "nanoglue":An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells. Appl. Phys. Lett.,2011.98.103301.
    [14]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochim. Acta,2002, 47,4213-4225.
    [15]J. Bisquert, A. Zaban, M. Greenshtein. I. Mora-Sero, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.J. Am. Chem.Soc.,2004,126. 13550-13559.
    [16]A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, Cheniphyschem,2003,4,859-864.
    [17]P. J. Cameron, L. M. Peter, S. I lore,How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?,J. Phys. Chem. B,2005,109,930-936.
    [1]T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic-substrate DSSC with validated conversion efficiency of 7.6%, Sol. Energy Maier. Sol. Cells,2010,94,812-816.
    [2]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Photovolt:Res. Appl.,2006,14,589-601.
    [3]M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Sol. Energy Mater. Sol. Cells,2006,90,574-581.
    [4]H. G. Yun, Y. Jun, J. Kim, B. S. Bae, M. G. Kang, Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells, Appl. Phys. Lett.,2008,93,133311-133313.
    [5]X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films,2005,472,242-245.
    [6]T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, Properties of several types of novel counter electrodes for dye-sensitized solar cells, J. Electroanal. Chem.,2004,574,77-83.
    [7]S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2photoanode, Chem. Commun.,2006,4004-4006.
    [8]K. Fan, T. Y. Peng, B. Chai, J. N. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible DSSCs, Electrochim. Acta,2010,55,5239-5244.
    [9]M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Sol. Energy Mater. Sol. Cells,2006,90,2881-2893.
    [10]H. G. Yun, B. S. Bae, M. G. Kang, A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells, Adv. Energy Mater.,2011,1,337-342.
    [11]J. Y. Liao, B. X. Lei, Y. F. Wang, J. M. Liu, C. Y. Su, D. B. Kuang, Hydrothermal Fabrication of Quasi- One-Dimensional Single-Crystalline Anatase TiO2 Nanostructures on FTO Glass and Their Applications in Dye-Sensitized Solar Cells. Chemistry-a European Journal, 2011,17,1352-1357.
    [12]H. Park, W. R. Kim, H. T. Jeong, J. J. Lee, H. G. Kim, W. Y. Choi, Fabrication of DSSCs by transplanting highly ordered TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells, 2011,95, 184-189.
    [13]J. J. Qiu, F. W. Zhuge, K. Lou, X. M. Li, X. D. Gao, X. Y. Gan, W. D. Yu, H. K. Kim, Y.H.Hwang, A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells,J.Mater.Chem.,2011,21, 5062-5068.
    [14]J. J. Qiu, F. W. Zhuge, X. M.Li, X. D. Gao, X. Y. Gan, W. D. Yu, Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells, Adv. Mater., 2011, 23, 1330-1334.
    [15]M.Myahkostupov, M. Zamkov, F. N. Castellano, Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes,Energ Environ Sci,2011, 4, 998-1010.
    [16]J. Y. Kim, J. H. Noh, K. Zhu. A. F. Halverson,N. R. Neale, S. Park, K. S. Hong, A. J. Frank, General Strategy for Fabricating Transparent TiO2 Nanotube Arrays for Dye-Sensitized Photoelectrodes: Illumination Geometry and Transport Properties, Acs Nano, 2011, 5, 2647-2656.
    [17]T. S. Kang, A. P. Smith, B. E. Taylor, M F. Durstock, Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Lett., 2009, 9, 601-606.
    [18]P. Schmuki, J. M. Macak, M. Zlamal, J. Krysa, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007, 3, 300-304.
    [19]P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: Synthesis and Applications, Angew.Chem.-Int. Ed., 2011.50,2904-2939.
    [20]B. X. Lei, J. Y. Liao,R. Zhang, J. Wang, C. Y. Su, D. B. Kuang, Ordered Crystalline TiO2 Nanotube Arrays on Transparent FTO Glass for Efficient DSSCs,J. Phys. Chem. C, 2010,114,15228-15233.
    [21]K. Shankar,G. K. Mor,H.E. Prakasam,S.Yoriya, M. Paulose,O. K.Varghese,C. A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 mu m in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnologv,2007, 18, 1-11.
    [22]K. Zhu, T. B. Vinzant, N. R. Neale, A. J. Frank, Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells, Nano Lett., 2007, 7, 3739-3746.
    [23]N. G. Park. J. van de Lagemaat, A. J. Frank. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,J.Phys. Chem. B, 2000,104,8989-8994.
    [24]C. Barbe, F. Arendse,P. Comte, M. Jirousek, F. Lenzmann,V. Shklover, C. Gratzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,J.Am.Ceram. Soc.,1997, 80,3157-3171.
    [25]Q. Wang, S. I to, M. Gratzel, F. Fabregat-Santiago,I.Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency DSSCs,J. Phys. Chem. B. 2006, 110,25210-25221.
    [26]N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, Y. J. Shin, Chemical Sintering of Nanoparticles: A Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO2 Films,Adv. Mater., 2005, 17,2349-2353.
    [27]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of DSSCs operated under open-circuit, Electroehim. Acta,2002, 47,4213-4225.
    [28]E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Gratzel, J. E. Moser, Enhanced Electron Collection Efficiency in DSSCs Based on Nanostructured TiO2 Hollow Fibers,Nano Lett., 2010, 10,1632-1638.
    [1]J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. E. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance, Prog. Photovolt:Res. Appl.,2007,15,1-18.
    [2]Y. H. Chen, K. C. Huang, J. G. Chen, R. Vittal, K. C. Ho, Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells, Electrochim. Acta,2011,56,7999-8004.
    [3]K. Fan, T. Y. Peng, B. Chai, J. N. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochim. Acta,2010,55, 5239-5244.
    [4]D. C. Zou, D. Wang, Z. Z. Chu, Z. B. Lv, X. Fan, Fiber-shaped flexible solar cells, Coord. Chem. Rev., 2010,254,1169-1178.
    [5]X. Fan, Z. Z. Chu, F. Z. Wang, C. Zhang, L. Chen, Y. W. Tang, D. C. Zou, Wire-Shaped Flexible Dye-sensitized Solar Cells, Adv. Mater.,2008,20,592-595.
    [6]H. G. Yun, B. S. Bae, M. G. Kang, A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye-Sensitized Solar Cells, Adv. Energy Mater,2011,1,337-342.
    [7]L. Nyholm, G. Nystrom, A. Mihranyan, M. Stramme, Toward Flexible Polymer and Paper-Based Energy Storage Devices, Adv. Mater.,2011,23,3751-3769.
    [8]L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, Proc. Nail. Acad. Sei. U. S. A.,2009,106,21490-21494.
    [9]B. Wang, L. L. Kerr, Dye sensitized solar cells on paper substrates, Sol. Energy Mater. Sol. Cells,2011, 95,2531-2535.
    [10]T. Tsunoda, T. Okabe, H. Honma, Influence of the complexing agents on the thickness uniformity of electroless nickel plating in deep-recessed trenches,J. Electrochem. Soc.,2004,151, C610-C613.
    [11]X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang, A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells, J. Phys. Chem. C,2008,112,13744-13753.
    [121 S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun.,2006,4004-4006.
    [13]J. Chen, T. Peng, K. Fan, J. Xia, Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt,J. Mater. Chem.,2011,21,16448-16452.
    [14]T. Miyasaka, Y. Kijitori, M. Ikegami, Plastic Dye-sensitized Photovoltaic Cells and Modules Based on Low-temperature Preparation of Mesoscopic Titania Electrodes, Electrochemistry,2007,75,2-12.
    [15]T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania,J. Electrochem. Soc.,2007, 154, A455-A461.
    [16]D. Zhao, T. Y. Peng, L. L. Lu, P. Cai, P. Jiang, Z. Q. Bian, Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles,J.Phys.Chem. C.,2008,112,8486-8494.
    [17]A. Cravino, P. Schilinsky, C. J. Brabec, Characterization of organic solar cells:the importance of device layout, Adv. Funct. Mater,2007,17,3906-3910.
    [18]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska,M. Gratzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phvs. Chem. B,2003,107,8981-8987.
    [1]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Photovolt:Res. Appl.,2006,14,589-601.
    [2]S. Ito, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells, Chem. Commun.,2005,4351-4353.
    [3]B. Tan, Y. Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites, J. Phys. Chem. B,2006,110,15932-15938.
    [4]J. C. Lee, T. G. Kim, W. Lee, S. H. Han, Y. M. Sung, Growth of CdS Nanorod-Coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications, Crystal Growth & Design,2009,9,4519-4523.
    [5]M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, F. M. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism, J. Am. Chem. Soc.,2004,126, 14943-14949.
    [6]M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, C. A. Grimes, Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes, Nanotechnology,2006,21, 1446-1448.
    [7]I. C. Flores, J. N. de Freitas, C. Longo, M. A. De Paoli, H. Winnischofer, A. F. Nogueira, Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte, J. Photochem. Photobioi, A,2007,189,153-160.
    [8]Q. W. Chen, D. S. Xu, Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells, J. Phys. Chem. C,2009,113,6310-6314.
    [9]C. J. Lin. W. Y. Yu, S. H. Chien, Rough conical-shaped TiO2-nanotube arrays for flexible backilluminated dye-sensitized solar cells, Appl. Phys. Lett.,2008,93,
    [10]H. Kokubo, B. Ding, T. Naka, H. Tsuchihira, S. Shiratori, Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells, Nanotechnology,2007,18,165604-165609.
    [11]P. Joshi, L. F. Zhang, D. Davoux, Z. T. Zhu, D. Galipeau, H. Fong, Q. Q. Qiao, Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency, Energ Environ Sci,2010,3,1507-1510.
    [12]S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells,2006,90,1176-1188.
    [13]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Progress in Photovoltaics, 2007,15,603-612.
    [14]K. Shin, Y. Jun, J. H. Moon, J. H. Park, Observation of Positive Effects of Freestanding Scattering Film in Dye-Sensitized Solar Cells, ACSAppl. Mater. Interfaces,2010,2,288-291.
    [15]L. Lu, R. Li, T. Peng, K. Fan, K. Dai, Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells, Renewable Energy,2011,36, 3386-3393.
    [16]B. Weintraub, Z. Z. Zhou, Y. H. Li, Y. L. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale,2010,2,1573-1587.
    [17]J. B. Han, F. R. Fan, C. Xu, S. S. Lin, M. Wei, X. Duan, Z. L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices, Nunotechnology,2010,21,
    [18]Y. Z. Zheng, X. Tao, Q. A. Hou, D. T. Wang, W. L. Zhou, J. F. Chen, Iodine-Doped ZnO Nanocrystalline Aggregates for Improved Dye-Sensitized Solar Cells, Chem. Mater,2011,23,3-5.
    [19]C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, D. B. Kuang, Sonochemical Preparation of Hierarchical ZnO Hollow Spheres for Efficient Dye-Sensitized Solar Cells, Chemistry-a European Journal,2010,16.8757-8761.
    [20]W. Chen, Y. C. Qiu, S. H. Yang, A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells, Phys. Chem. Chem. Phys.,2010,12,9494-9501.
    [21]S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, H. J. Sung, Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett.,2011,11,666-671.
    [22]Y.-Z. Zheng, X. Tao, L.-X. Wang, H. Xu, Q. Hou, W.-L. Zhou, J.-F. Chen, Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells, Chem, Mater,2009.22,928-934.
    [23]J. N. Nian, H. S. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B,2006,110,4193-4198.
    [24]L. Lu, R. Li, K. Fan, T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Solar Energy,2010,84,844-853.
    [25]U. N. Maiti, S. Maiti, S. Goswami. D. Sarkar, K. K. Chattopadhyay, Room temperature deposition of ultra sharp ZnO nanospike arrays on metallic, non-metallic and flexible carbon fabrics:Efficient field emitters, Crystengcomm,2011,13,1976-1983.
    [26]T. Ghoshal, S. Kar, J. Ghatak, S. Chaudhuri, ZnO nanocones:Solvothermal synthesis and photoluminescence properties,Mater. Res. Bull,43.2228-2238.
    [27]X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui,L. Z. Zhang, A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells. J. Phys. Chem. C,2008,112.13744-13753.
    [28]T. Murakami, N.,S. Ito. Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Gratzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. J. Eleclrochem. Soc.,2006,153, A2255-A2261.
    [29]T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells, J. Electrochem. Soc.,2005,152, E68-E73.
    [30]A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements, Chemphyschem,2003,4,859-864.
    [31]J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method, J. Am. Chem. Soc.,2004,126, 13550-13559.
    [32]K. Fan, T. Y. Peng, B. Chai, J. N. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochim. Acta,2010,55, 5239-5244.
    [1]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Gratzel, Photovoltaic characterization of dye-sensitized solar cells:effect of device masking on conversion efficiency, Prog. Photovolt:Res. Appl.,2006,14,589-601.
    [2]L. Alibabaei, J. H. Kim, M. Wang, N. Pootrakulchote, J. Teuscher, D. Di Censo, R. Humphry-Baker, J. E. Moser, Y. J. Yu, K. Y. Kay, S. M. Zakeeruddin, M. Gratzel, Molecular design of metal-free D-[small pi]-A substituted sensitizers for dye-sensitized solar cells, Energ Environ Sci,2010,3, 1757-1764.
    [3]A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 2010,110,6595-6663.
    [4]S. Mori, M. Nagata, Y. Nakahata, K. Yasuta, R. Goto, M. Kimura, M. Taya, Enhancement of Incident Photon-to-Current Conversion Efficiency for Phthalocyanine-Sensitized Solar Cells by 3D Molecular Structuralization, J. Am. Chem. Soc.,2010,132,4054-4055.
    [5]M. Garcia-Iglesias, J.-H. Yum, R. Humphry-Baker, S. M. Zakeeruddin, P. Pechy, P. Vazquez, E. Palomares, M. Gratzel, M. K. Nazeeruddin, T. Torres, Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability, Chemical Science,2011,2, 1145-1150.
    [6]J.-J. Cid, M. Garcia-Iglesias, J.-H. Yum, A. Forneli, J. Albero, E. Martinez-Ferrero, P. Vazquez, M. Gratzel, M. K. Nazeeruddin, E. Palomares, T. Torres, Structure-Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells, Chemistry-A European Journal,2009,15,5130-5137.
    [7]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin,E. W.-G. Diau,C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science,2011,334,629-634.
    [8]T. Duan, K. Fan, C. Zhong, T. Peng, J. Qin, X. Chen, New organic dyes containing tert-Butyl-capped N-Arylcarbazole moiety for Dye-sensitized solar cells, RSC Adv.,2012,2,7081-7086.
    [9]T. Duan, K. Fan, Y. Fu, C. Zhong, X. Chen, T. Peng, J. Qin, Triphenylamine-based organic dyes containing a 1,2,3-triazole bridge for dye-sensitized solar cells via a 'Click' reaction, Dyes Pigments, 2012,94,28-33.
    [10]Q. Li, L. Lu, C. Zhong, J. Huang, Q. Huang, J. Shi, X. Jin, T. Peng, J. Qin, Z. Li, New Pyrrole-Based Organic Dyes for Dye-Sensitized Solar Cells:Convenient Syntheses and High Efficiency,Chemistry-A European Journal,2009,15,9664-9668.
    [11]L. Yu, X. Zhou, Y. Yin, Y. Liu, R. Li, T. Peng, Highly Asymmetric Tribenzonaphtho-Condensed Porphyrazinatozinc Complex:An Efficient Near-IR Sensitizer for Dye-Sensitized Solar Cells, ChemPlusChem,2012,77,1022-1027.
    [12]P. J. Holliman, M. Mohsen, A. Connell, M. L. Davies, K. Al-Salihi, M. B. Pitak, G. J. Tizzard, S. J. Coles, R. W. Harrington, W. Clegg, C. Serpa, O. H. Fontes, C. Charbonneau, M. J. Carnie, Ultra-fast co-sensitization and tri-sensitization of dye-sensitized solar cells with N719, SQ1 and triarylamine dyes,J. Mater. Chem.,2012,22,13318-13327.
    [13]H.-P. Wu, Z.-W. Ou. T.-Y. Pan,C.-M. Lan, W.-K. Huang, H.-W. Lee, N. M. Reddy, C.-T. Chen, W.-S. Chao, C.-Y. Yeh, E. W.-G. Diau, Molecular engineering of cocktail co-sensitization for efficient panchromatic porphyrin-sensitized solar cells, Energ Environ Sci,2012,5,9843-9848.
    [14]C.-M. Lan, H.-P. Wu, T.-Y. Pan,C.-W. Chang, W.-S.Chao, C.-T. Chen, C.-L. Wang,C.-Y. Lin,E. W.-G. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells, Energ Environ Sci,2012,5,6460-6464.
    [15]B. E. Hardin, A. Sellinger, T. Mochl, R. Humphry-Baker, J.-E. Moser, P. Wang, S. M. Zakeeruddin, M. Gratzel, M. D. McGehee, Energy and Hole Transfer between Dyes Attached to Titania in Cosensitizcd Dye-Sensitized Solar Cells,J. Am. Chem. Soc.,2011,133,10662-10667.
    [16]T. Duan, K. Fan, C. Zhong, X. Chen, T. Peng, J. Qin. A new class of organic dyes containing β-substituted 2,2'-bithiophenene unit as a π-linker for dye-sensitized solar cells:Structural modification for understanding relationship of structure and photovoltaic performances,J. Power Sources,2013,234.23-30.
    [17]M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, M. Gratzel, A swift dye uptake procedure for dye sensitized solar cells, Chem. Commun.,2003,1456-1457.
    [18]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochim. Acta,2002, 47,4213-4225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700