用户名: 密码: 验证码:
植物绝缘油中特征气体及油纸吸湿特性与纳米粒子分散稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物绝缘油是一种高燃点、环保型液体电介质,具有良好的绝缘性能,已在配电变压器中应用多年。由于植物绝缘油与矿物绝缘油的理化性能不同,变压器电、热故障下植物绝缘油中溶解气体产生机制与植物油纸绝缘吸湿特性与矿物绝缘油的具有显著差异,纳米粒子在植物绝缘油中的分散方法也不同于在矿物绝缘油中的方法。随着植物绝缘油的推广应用,需要对上述问题进行深入系统的研究,从而为植物绝缘油电力变压器的设计、制造和运行维护提供实验数据、数学模型和技术规范。
     作者针对上述问题,开展了变压器典型故障下植物绝缘油中特征气体与植物油纸绝缘吸湿特性的研究工作,同时对纳米植物绝缘油及其稳定性进行理论分析与试验研究。论文包括以下主要内容:
     ①对变压器典型过热和电性故障下的植物绝缘油中溶解气体特性进行了试验研究,分析并提出了典型故障下的植物绝缘油中特征气体。在变压器典型故障的模拟实验中,设计了低温、中温和高温等三种过热故障与油纸绝缘击穿及局部放电等电性故障的模拟试验方法,采用IEC三比值法和杜威三角形法对典型故障下的油中特征气体进行了分析。结果表明:在典型故障下,植物绝缘油与矿物绝缘油中的特征气体具有显著差异,IEC三比值法与杜威三角形法的分析准则不适合于植物绝缘油中溶解气体分析。
     ②研究了植物油纸绝缘水分扩散特性,根据费克(Fick)第二扩散定律,提出了植物油纸绝缘水分扩散数学模型。通过植物油纸绝缘水分扩散试验,对植物绝缘油与绝缘纸之间的水分扩散系数进行了测量,根据测量结果,对植物油纸绝缘中水分动态分布进行了仿真,分析了温度、绝缘纸厚度和初始水分浓度等因素对平衡时间的影响,并与矿物油纸绝缘油的仿真结果进行了对比。同时,提出了分析植物油纸绝缘水分扩散的二维红外光谱法,研究了水分在植物油纸绝缘中的扩散行为,并与植物油纸绝缘水分扩散试验结果进行了对比分析。结果表明:水分从植物绝缘油向绝缘纸的扩散速率约为从矿物绝缘油向绝缘纸扩散速率的一半。
     ③采用直接法和间接法对植物油纸绝缘中水分平衡关系进行了研究,提出并建立了基于分段函数的油纸绝缘水分平衡数学模型。通过油纸绝缘水分平衡试验,采用直接法和间接法获得了植物油纸绝缘水分平衡曲线,与矿物油纸绝缘中水分平衡曲线进行了对比分析,通过数据拟合建立了表征植物油纸绝缘水分平衡特性的分段函数。与传统油纸绝缘水分平衡数学模型相比,分段函数数学模型能够更准确地表征油纸绝缘水分平衡特性。
     ④研究了植物油纸绝缘在吸湿情况下的击穿特性与介电性能,测试了不同水分情况下的植物绝缘油及其油纸绝缘的工频击穿电压、介电常数和介质损耗等性能参数,并通过老化试验,研究了初始水分含量对植物油纸绝缘的老化性能的影响规律,测试了植物油纸绝缘老化过程中植物绝缘油的工频击穿电压、油酸值、油中糠醛浓度以及绝缘纸聚合度等参数,揭示了初始水分含量对植物油纸绝缘老化的影响规律。结果表明:水分对植物油纸绝缘击穿特性、介电性能以及老化性能的影响与对矿物油纸绝缘的影响具有显著差异,植物绝缘油使绝缘纸保持较低的水分含量,延缓了绝缘纸的老化速率。
     ⑤采用共沉淀法与油酸及油酸钠表面改性法,制备出Fe_3O_4纳米粒子改性植物绝缘油,研究了纳米粒子在植物绝缘油中的分散稳定性,分析了表面活性剂含量、包覆时机、加料方式、搅拌时间等参数对纳米粒子在植物绝缘油中的分散稳定性的影响规律;同时,研究了纳米植物绝缘油的在标准雷电冲击电压下击穿性能,建立了植物绝缘油中纳米粒子的极化和充电动力学模型,对油中空间电荷对植物绝缘油在雷电冲击电压下击穿特性的影响进行了分析。研究结果表明,加料方式、搅拌时间和表面活性剂的包覆时机对纳米粒子在油中的分散稳定性有着极大的影响,纳米粒子能够显著提高植物绝缘油在正负极性雷电冲击电压下的击穿性能。
     上述研究工作,为植物绝缘油电力变压器的设计、制造和运行维护提供了理论支撑和试验依据,对植物绝缘油以及纳米植物绝缘油在电力变压器中的应用具有重要的参考价值。
Vegetable insulating oils are environment-friendly and fire-resistant liquiddielectrics with good insulation properties, and have been used in distributiontransformers for many years. Because the physical and chemical properties of vegetableinsulating oil are different from those of mineral oil, the gases dissolved in vegetable oilunder typical thermal and electrical faults differ from those in mineral oil,as well as themoisture-absorption characteristics and the dispersion of nanoparticles. With the widespreading application of vegetable insulating oil, the problems above are vital to thedesign, manufacture, operation and maintenance of vegetable oil filled transformers.
     Therefore, dissolved gas analysis in vegetable insulating oil under typical faults,the moisture diffusion and equilibrium characteristics of vegetable oil-paper insulationand vegetable oil based nanofluid are studied. The main contents are as follows:
     ①The dissolved gases in vegetable insulating oil under the typical faults areobtained,and the key gas is proposed. In the simulated typical faults experiment, testingequipment and testing method for thermal faults and electrical faults are designed. IECthree ratios and Duval triangle diagnostic method are utilized to analyze the dissolvedgases in vegetable insulating oil under the typical faults. The results show that the keygas under typical thermal faults in mineral oil is different from that in vegetableinsulating oil is C2H6, IEC three ratio method and Duval triangle diagnostic method arenot suitable for the fault of vegetable insulating oil.
     ②The moisture diffusion characteristics between vegetable insulating oil andinsulating paper are studied. According to Fick’s second diffusion law, the model formoisture diffusion in vegetable oil-paper insulation is proposed and the moisturediffusion coefficient between vegetable oil and paper is obtained from experiment. Thedynamic moisture distribution in the vegetable oil-paper system is simulated.Temperature, thickness of paper and initial moisture content are considered to be thefactors influencing the equilibrium time constant, which are also compared with theminimal oil-paper system. In addition, a2D infrared spectrum method is used to studythe moisture diffusion in vegetable oil-paper system. The experiment and analysisresults show that the diffusion rate of moisture in vegetable oil-paper insulation is abouthalf of that in mineral oil-paper insulation.
     ③The moisture distribution equilibrium in vegetable oil-paper insulation is studiedand a new mathematical model for the moisture distribution equilibrium is proposed.The moisture equilibrium curves of vegetable oil-paper insulation are obtained by bothdirect and indirect methods. Meanwhile, the results of vegetable oil-paper insulation arecompared with that of the minimal oil-paper. According to the moisture equilibriumcurve, the mathematical model for the moisture distribution equilibrium is set up bydata fitting and approximate methods, and the corresponding parameters are given. Themodel can accurately describe the oil-paper moisture equilibrium curve after verified.
     ④The influence of moisture on the breakdown and dielectric properties ofvegetable insulating oil are studied. Aging experiment of in vegetable oil-paperinsulation with different initial moisture content are carried out, aging parameters suchas breakdown voltage of oil, acid value, furfural concentration and DP of paper aretested. Experiment results indicate that the impact of moisture content on the breakdown,dielectric and aging properties of vegetable insulating oil differs greatly from that ofmineral oil. Vegetable insulating oil has higher moisture absorption ability than mineraloil and makes the insulating paper drier, thus delaying the aging rate of insulating paper.
     ⑤.The vegetable oil based Fe_3O_4nanofluid are prepared by the co-precipitationmethod and modified by the oleic acid and sodium oleate. The dispersion stability of themodified nanoparticles in vegetable insulating oil is studied. The impulse breakdowncharacteristic of vegetable oil based nanofluid are investigated, the polarization andcharging dynamics model of nanoparticles in vegetable oil are proposed, space chargesaffecting the breakdown performance of nanofluid are subsequently analyzed. Theexperiment results show that feeding mode, stirring time and surfactant coating timehave a great impact on the dispersion stability of the modified nanoparticles invegetable insulating oil, and nanoparticles can significantly improve both the positiveand negative lightning impulse breakdown voltage of vegetable insulating oil.
     The above work offers the theory and experiment basis for the design,manafacturing, operation and maintenance of vegetable insulating oil filled powertransformer, which has important reference value for the application of the vegetableinsulating oil and vegetable insulating oil based nanofluid in the power transformer.
引文
[1]王继龙,衣家文.变压器油的选择[J].变压器.2005.42(4).27-28.
    [2]李新森.电器用油[M].烃加工出版社.1988.
    [3] T. O. Rouse Mineral insulating oil in transformers [J]. IEEE Electrical Insulation Magazine,1998.14(3):6-16.
    [4]田雷,白云玲,钟建江.微生物降解有机污染物的研究进展[J].工业微生物.2000.30(2):46-50.
    [5] T. V. Oommen, C. C. Claiborne, J. T. Mullen. Biodegradable electrical insulation fluids[C].Proceedings of Electrical Insulation Conference,1997:465-468.
    [6] T. V. Oommen. Vegetable oils for liquid-filled transformers [J]. IEEE Electrical InsulationMagazine.2002,18(1):6-11.
    [7] C. P. McShane. Natural and synthetic ester dielectric fluids: their relative environmental, firesafety, and electrical performance[C]. Industrial and Commercial Power Systems TechnicalConference,1999:1-8.
    [8] C. C. Claiborne, E. J. Walsh, T. V. Oommen. An agriculturally based biodegradable dielectricfluid [C]. Transmission and Distribution Conference, New Orleans,1999:876-881.
    [9]李剑,孙才新,李晓虎.植物绝缘油电气性能及油-纸绝缘寿命预测[C].中国电机工程学会年会,2006.11.
    [10] T. V. Oommen, C. C. Claiborne, E. J. Walsh, J. P. Baker. A new vegetable oil basedtransformer fluid: development and verification [C]. IEEE Conference on Electrical InsulationDielectrics Phenomena (CEIDP),2000:308-312.
    [11] C. P. McShane, K. J. Rapp, J. L. Corkran, G. A. Gauger, J. Luksich. Aging of paper insulationin natural ester dielectric fluid [C]. IEEE Transmission and distribution conference andexposition,2001,2:675-679.
    [12] L. Yang, R. Liao, S. Caixin, M. Zhu. Influence of vegetable oil on the thermal aging oftransformer paper and its mechanism [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2011,18(3).692-700.
    [13]刘玉兰.植物油脂生产与综合利用[M].中国轻工业出版社.1999.
    [14]陈永楠.油脂生产技术[M].北京:化学工业出版杜.1993.
    [15]操敦奎,许维宗,阮国方.变压器运行维护与故障分析处理[M].北京:中国电力出版社.2008.
    [16]操敦奎.变压器油中气体分析诊断与故障检查[M].北京:中国电力出版社.2005.
    [17] V. Segal, A. Hjortsberg, A. Rabinovich, D. Nattrass, K. Raj. AC (60Hz) and impulsebreakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles[C]. IEEE Conference Record of the International Symposium on Electrical Insulation,7th-10thJun.1998:619-622.
    [18] M. Chiesa, S. K. Das. Experimental investigation of the dielectric and cooling performance ofcolloidal suspensions in insulating media [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2009,335(1-3):88-97.
    [19]李晓虎,李剑,孙才新,杜军.植物油中提取的环保液体绝缘材料[J].重庆大学学报:自然科学版,2005,28(001):36-41
    [20] C. P. McShane. Vegetable-oil-based dielectric coolants [J]. IEEE Industry ApplicationsMagazine,2002,8(3):34-41.
    [21] P. Thomas, S. Sridhar, K. R. Krishnaswamy. Dielectric liquid from vegetable origin-Indianbeech oil[C]. International Symposium on Electrical Insulating Materials,1995:507-510.
    [22] A. A. Abdelmalik, J. C. Fothergill, S. J. Dodd, A. P. Abbott, R. C. Harris. Effect of side chainson the dielectric properties of alkyl esters derived from palm kernel oil[C]. IEEE InternationalConference on Dielectric Liquids (ICDL),2011:1-4.
    [23] M. Amaah, S. M.Islam, S. Chami, G. Ienco. Analyses of electro-chemical characteristics ofvegetable oils as an alternative source to mineral oil-based dielectric fluid[C]. IEEEInternational Conference on Dielectric Liquids (ICDL),2005:365-368.
    [24] R. Badent, M. Hemmer, A. J. Schwab. Inhibited rape-seed oil as substitute for mineral oils [C].IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP),2002:268-271.
    [25] R. Badent, K. Kist, B. Ruggemeier, W. Zierhut, A. J. Schwab. Dielectric characteristics ofrape-seed oil [C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP),1998,(2):456-459.
    [26]李剑,党剑亮,杨丽君,张捷,江淘沙.三种植物绝缘油的理化与电气性能的比较[J].重庆大学学报:自然科学版.2007.30(9):42-45.
    [27] X. Li, J. Li, C. Sun. Properties of transgenic rapeseed oil based dielectric liquid[C]. IEEEProceedings of the SoutheastCon,2006:81-84.
    [28] ENVIROTEMP FR3TM FLUID. Bulletin00092-Product Information,2001.
    [29] T. V. Oommen, C. C. Claiborne, E. J. Walsh. Introduction of a new fully biodegradabledielectric fluid[C]. IEEE Textile, Fiber and Film Industry Technical Conference,1998:1-3.
    [30] IEEE Guide for Acceptance and Maintenance of Natural Ester Fluids in Transformers[S]. IEEEStd C57.147-2008, New York, USA,2008.
    [31] K. J. Rapp, C. P.McShane, J. Luksich. Interaction mechanisms of natural ester dielectric fluidand Kraft paper[C]. IEEE International Conference on Dielectric Liquids (ICDL),2005:393-396.
    [32] M. Hemmer, R. Badent, A. J. Schwab. Electrical properties of rape-seed oil[C]. IEEEConference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico,2002:83-86.
    [33] D. Martin, Z. D. Wang. A comparative study of the impact of moisture on the dielectriccapability of esters for large power transformers[C]. IEEE Conference on Electrical Insulationand Dielectric Phenomena (CEIDP),2006:409-412.
    [34] C. Sun, J. Li, X. Li, S. Grzybowski. Electric properties of vegetable oil-based dielectric liquidand lifetime estimation of the oil-paper insulation[C]. IEEE Conference on Electrical Insulationand Dielectric Phenomena (CEIDP), USA,2006:680-683.
    [35] K. J. Rapp, C. P. McShane, J. Vandermaar, D. Vukovic, S. Tenbohlen. Long gap breakdown ofnatural ester fluid[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena,USA,2010:104-107.
    [36] R. Badent, Y. Julliard, K. Kist, A. J. Schwab. Behaviour of rape-seed-oils under impulsevoltages[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP),1999,2:638-641.
    [37] R. Badent, M. Hemmer, U. Konekamp, Y. Julliard, A. J. Schwab. Streamer inception fieldstrengths in rape-seed oils[C]. IEEE Conference on Electrical Insulation and DielectricPhenomena (CEIDP),2000,1:272-275.
    [38] C. T. Duy, O. Lesaint, N. Bonifaci, A. Denat, Y. Bertrand. High voltage breakdown andpre-breakdown properties in rape-seed insulating oil[C]. IEEE Conference on ElectricalInsulation and Dielectric Phenomena (CEIDP),2007:624-626.
    [39] J. Li, S. Grzybowski, Y. Sun, X. Chen. Dielectric properties of rapeseed oil paper insulation[C].IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Canada,2007,10:500-503.
    [40] J. Fabre, A. Pichon. Deteriorating processes and products of paper in oil[C].1960InternationalConference on Large High Voltage Electric System (CIGRE), Paris, France, Paper137,1960.
    [41] A. M. Emsley, G. C. Stevens. Review of chemical indicators of degradation of cellulosicelectrical paper insulation in oil-filled transformers [C]. IEE Proceedings-Science,Measurement and Technology,1994,(141):324-334.
    [42] L. E. Lundgaard, W. Hansen, D. Linhjell, T. J. Painter. Aging of oil-impregnated paper inpower transformers. IEEE Transactions on Power Delivery [J],2004,19(1):230-239.
    [43] A. M. Emsley, X. Xiao, R. J. Heywood, M. Ali. Degradation of cellulosic insulation in powertransformers. Part3: Effects of oxygen and water on ageing in oil [J]. IEE Proceedings: Science,Measurement and Technology,2000,147(3):115-119.
    [44] IEEE Guide For Acceptance and Maintenance of Insulating Oil in Equipment. C57.106-2002,New York: IEEE.2002.
    [45] S. Tenbohlen, M. Koch. Aging performance and moisture solubility of vegetable oils for powertransformers [J]. IEEE Transactions on Power Delivery,2010,25(2):825-830.
    [46] V. G. Aralkellian, I. Fofana. Water in Oil-Filled, High-Voltage Equipment, Part I: States,Solubility, and Equilibrium in Insulating Materials [J]. IEEE Electrical Insulation Magazine,2007,23(4):15-27.
    [47] E. Mladenov, S. Staykov, G. Cholakov. Water saturation limit of transformer oils [J]. IEEEElectrical Insulation Magazine,2009,25(1):23-30.
    [48] L. R. Lewand, Laboratory evaluation of several synthetic and agricultural-based dielectricliquids[C]. Proceedings of the86th Annual International Conference of Doble Clients, DobleEngineering Company, Watertown, MA, USA,2001.
    [49] T. V. Oommen. Moisture Equilibrium Charts for Insulation Drying Practice [J]. IEEETransaction on Power Apparatus and Systems,1984,103(10):3063-3067.
    [50] Y. Du, M. Zahn, B. C. Lesieutre, A. V. Mamishev, S. R. Lindgren. Moisture equilibrium intransformer paper-oil systems [J]. IEEE Electrical Insulation Magazine,1999,15(1):11-20.
    [51] P. J. Griffin, C. M. Bruce, J. D. Christie. Comparison of water equilibrium in silicone andmineral oil transformers [C], Fifty-Fifth Annual International Conference of Doble ClientsMinutes,1988:10-91.
    [52] M. Koch, S. Tenbohlen, T. Stirl. Diagnostic Application of Moisture Equilibrium for PowerTransformers [J]. IEEE Transactions on Power Delivery,2010,25(4):2574-2581.
    [53] R. B. Jadav, T. K. Saha, C. Ekanayake. Understanding moisture diffusion process inoil-impregnated pressboard insulation of transformer[C]. IEEE Power and Energy SocietyGeneral Meeting,2011:1-8.
    [54] B. García, J. C. Burgos, A. M. Alonso, J. Sanz. A moisture-in-oil model for power transformermonitoring-Part I: theoretical foundation [J]. IEEE Transactions on Power Delivery,2005,20(2):1417-1422.
    [55] B. Garcia, J. C. Burgos, á. M. Alonso, J Sanz. A moisture-in-oil model for power transformermonitoring-Part II: Experimental Verification [J]. IEEE Transactions on Power Delivery,2005,20(2):1423-1429.
    [56] A. F. Howe. Diffusion of moisture through power-transformer insulation[C]. IEE Proceedingsof the Institution of Electrical Engineers,1978.125(10):978-986.
    [57] W. W. Guidi, H. P. Fullerton. Mathematical Model for Prediction of Moisture Take up andRemoval in Large Power Transformers [C]. IEEE Winter Power Meeting,1974:242-244.
    [58] S. D. Foss, L. Savio. Mathematical and experimental analysis of the field drying of powertransformer insulation [J]. IEEE Transactions on Power Delivery,1993,8(4):1820-1828.
    [59] L. J. Zhou, G. N. Wu, J. Liu. Modeling of transient moisture equilibrium in oil-paper insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(3):872-878.
    [60] T. K. Saha, M. Darveniza, Z. T. Yao, DJT Hill, G. Yeung. Investigating the effects of oxidationand thermal degradation on electrical and chemical properties of power transformersinsulation[J]. IEEE Transactions on Power Delivery,1999,14(4):1359-1367.
    [61] Burton P. J., Graham J., Hall A. C., Laver J. A., Oliver A. J. Recent developments by CEGB toimprove the prediction and monitoring of transformer performance[C]. International Council onLarge Electric Systems (CIGRE), Paris, France.1984.
    [62]尚勇,钱政,杨敏中,严璋.高电压设备绝缘老化及状态维修的实现[J].高电压技术.1999.25(3):40-42.
    [63] M. C. Lessard, L. Van Nifterik, M. Masse, J. F. Penneau, R. Grob. Thermal aging study ofinsulating papers used in power transformers[C]. IEEE Conference on Electrical Insulation andDielectric Phenomena (CEIDP). Millbrae, CA, USA,1996:854-859.
    [64] P. Cygan, Laghari J. R. Models for insulation aging under electrical and thermal multistress [J].IEEE Transactions on Electrical Insulation,1990,25(5):923-934.
    [65] A. M. Emsley. The kinetics and mechanisms of degradation of cellulosic insulation in powertransformers [J]. Polymer Degradation and Stability,1994,44(3):343-349.
    [66] X. Zou, T. Uesaka, N. Gurnagul. Prediction of paper permanence by accelerated aging I.Kinetic analysis of the aging process [J]. Cellulose,1996,3(1):243-267.
    [67]杨丽君,廖瑞金,孙会刚,孙才新,向彬.变压器油纸绝缘热老化特性及特征量研究[J].电工技术学报.2009,(008):27-33.
    [68] G. K. Frimpong, T. V. Oommen, R. Asano. A survey of aging characteristics of celluloseinsulation in natural ester and mineral oil [J]. IEEE Electrical Insulation Magazine,2011,27(5):36-48.
    [69] L. Ian. Hosier, A.S. Vaughan, F. A. Montjen. Ageing of biodegradable oils for high voltageinsulation systems [C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2006:481-484.
    [70] K. J. Rapp, J. Luksich. Review of Kraft paper/natural ester fluid insulation system aging [C].IEEE International Conference on Dielectric Liquids(ICDL),2011:1-4.
    [71] C. P. McShane, J. L. Corkran, K. J. Rapp, J. Luksich. Aging of paper insulation retrofilled withnatural ester dielectric fluid [C]. IEEE Conference on Electrical Insulation and DielectricPhenomena (CEIDP),2003:124-127.
    [72] L. E. Lundgaard, W. Hansen, S. Ingebrigtsen. Ageing of mineral oil impregnated cellulose byacid catalysis [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(2):540-546.
    [73]李晓虎,李剑,孙才新,党剑亮,李勇.植物油-纸绝缘的电老化寿命试验研究[J].中国电机工程学报.2007.27(9):18-22.
    [74] M. Duval. Calculation of DGA limit values and sampling intervals in transformers in service [J].IEEE Electrical Insulation Magazine,2008,24(5):7-13.
    [75] R. Phadungthin, E. Chaidee, J. Haema, T. Suwanasri. Analysis of insulating oil to evaluate thecondition of power transformer [C]. IEEE International Conference on ElectricalEngineering/Electronics Computer Telecommunications and Information Technology(ECTI-CON),2010:108-111.
    [76] A. R. Marulanda, M. A. Artigas, A. F. Gavidia, Labarca, N. Paz. Study of the vegetal oil as asubstitute for mineral oils in distribution transformer[C]. IEEE Transmission and DistributionConference and Exposition, Latin America,2008:1-6.
    [77] D. Martin, N. Lelekakis, V. Davydov, Y. Odarenko. Preliminary results for dissolved gas levelsin a vegetable oil-filled power transformer [J]. IEEE Electrical Insulation Magazine,2010,26(5):41-48.
    [78] D. Martin, N. Lelekakis, W. Guo, Y. Odarenko. Further studies of a vegetable-oil-filled powertransformer [J]. IEEE Electrical Insulation Magazine,2011,27(5):6-13.
    [79] N. A. Muhamad, B. T. Phung, T. R. Blackburn, K. X. Lai. Dissolved gas analysis of faults inbiodegradable oil transformer insulating systems [C]. IEEE International Conference onCondition Monitoring and Diagnosis,2008:663-666.
    [80] N. A. Muhamad, B. T. Phung, T.R. Blackburn. Dissolved gas analysis (DGA) of arcing faultsin biodegradable oil insulation systems [C]. International symposium on electrical insulatingmaterials (ISEIM), Yokkaichi, Japan,2008:24–27.
    [81] N. A. Muhamad, B. T. Phung, T. R. Blackburn. Dissolved gas analysis (DGA) of partialdischarge fault in bio-degradable transformer insulation oil[C]. Universities Power EngineeringConference,2007, pp1-6.
    [82] N. A. Muhamad, B. T. Phung, T. R. Blackburn. Dissolved gas analysis for common transformerfaults in soy seed-based oil [J]. IET Electric Power Applications,2011,5(1):133-142.
    [83] Z. Wang, I. Cotton, S. Northcote. Dissolved gas analysis of alternative fluids for powertransformers [J]. IEEE Electrical Insulation Magazine,2007,23(5):5-14.
    [84] L. Yang, R. Liao, C. Sun, H. Sun. Influence of natural ester on thermal aging characteristics ofoil–paper in power transformers [J]. European Transactions on Electrical Power,2010,20(8):1223-1236.
    [85] T. Suzuki, M. Takagi. Oil Impregnation in Transformer Boards (1) Measurement ofImpregnation Depth and Internal Pressure [J]. IEEE Transactions on Electrical Insulation,1984,(4):340-343.
    [86] T. Suzuki, M. Takagi. Oil Impregnation in Transformer Boards (2) Theoretical Analysis ofChanges in Impregnation Depth [J]. IEEE Transactions on Electrical Insulation,1984,(4):344-349.
    [87] J. Dai, Z. D. Wang, P. Dyer, A. W. Darwin, I. James. Investigation of the impregnation ofcellulosic insulations by ester fluids[C]. IEEE Conference on Electrical Insulation andDielectric Phenomena (CEIDP),2007:588-591.
    [88] J. Dai, Z. D. Wang. A Comparison of the Impregnation of Cellulose Insulation by Ester andMineral oil [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(2):374-381.
    [89]邹平,李剑,孙才新,陈晓陵,廖瑞金,张召涛.植物绝缘油纸浸渍模型与试验研究[J].中国电机工程学报.2011,31(25):125-131.
    [90] B. Berkovski, V. Bashtovoy. Magnetic fluids and applications handbook [M]. Magnetic Fluidsand Applications Handbook.1996.
    [91] K. D. Kim, S. S. Kim, Y. H. Choa, H. T. Kim. Formation and Surface Modification of Fe3O4Nanoparticles by Co-precipitation and Sol-gel Method [J]. Journal of Industrial andEngineering Chemistry,2007,13(7):1137-1141.
    [92] R. Hong, T. Pan, J. Qian, H. Li. Synthesis and surface modification of ZnO nanoparticles[J].Chemical Engineering Journal,2006,119(2):71-81.
    [93] Kamruzzaman Selim K. M., Ha Y. S., Kim S. J., Chang Y., Kim T. J., Ho Lee G., Kang I. K.Surface modification of magnetite nanoparticles using lactobionic acid and their interactionwith hepatocytes [J]. Biomaterials,2007,28(4):710-716.
    [94] A. B. Bourlinos, A. Bakandritsos, V. Georgakilas, D. Petridis. Surface modification of ultrafinemagnetic iron oxide particles [J]. Chemistry of materials,2002,14(8):3226-3228.
    [95] M. S. Tokumoto, S. H. Pulcinelli, C. V. Santilli, V. Briois. Catalysis and temperaturedependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared bythe sol-gel route [J]. The Journal of Physical Chemistry B,2003,107(2):568-574.
    [96] Takada T., Hayase Y., Tanaka Y. Space charge trapping in electrical potential well caused bypermanent and induced dipoles for LDPE/MgO nanocomposite [J]. IEEE Transactions onDielectrics and Electrical Insulation,2008,15(1):152-160.
    [97]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2001.
    [98]周远翔,王云杉,田冀焕,沙彦超,姜鑫鑫,高胜友,孙清华,聂琼.纳米改性变压器油的破坏特性[J].高电压技术,2010,(5):1155-1159.
    [99] C. Choi, H. S. Yoo, J. M. Oh. Preparation and heat transfer properties ofnanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants [J]. CurrentApplied Physics,2008,8(6):710-712.
    [100] P. Zou, J. Li, C. SUN, Z. T. Zhang, R. LIAO. Dielectric Properties and ElectrodynamicProcess of Natural Ester-Based Insulating Nanofluid [J]. Modern Physics Letters B,2011,25(25):2021.
    [101] Y. Du, Y. Lv, C. Li, M. Chen, J. Zhou, X. Li, Y. Zhou, Y. Tu. Effect of electron shallow trapon breakdown performance of transformer oil-based nanofluids [J]. Journal of AppliedPhysics,2011,110(10):104104.
    [102] Y. Du, Y. Lv, F. Wang, X. Li, C. Li. Effect of TiO2nanoparticles on the breakdown strengthof transformer oil[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena(CEIDP),2010:1-4.
    [103] J. G. Hwang, M. Zahn, F. M. O Sullivan, L. A. A. Pettersson, O. Hjortstam, R. Liu. Effectsof nanoparticle charging on streamer development in transformer oil-based nanofluids [J].Journal of Applied Physics,2010,107(1):14310.
    [104] J. G. Hwang, M. Zahn, F. M. O Sullivan, Pettersson L. A. A., Hjortstam O., Liu R. Electronscavenging by conductive nanoparticles in oil insulated power transformers[C]. ElectrostaticsJoint Conference,2009:1-12.
    [105] E. V. Timofeeva, M. R. Moravek, D. Singh. Improving the heat transfer efficiency ofsynthetic oil with silica nanoparticles [J]. Journal of colloid and interface science,2011,364(1):71-79.
    [106] Oommen T. V., Claiborne C. C. Electrical transformers containing electrical insulation fluidscomprising high oleic acid oil compositions [P]. Google Patents.
    [107] Cannon G. S., Honary L. A. T. Soybean based transformer oil and transmission line fluid [P].Google Patents.
    [108]日本开发出用植物油做绝缘油的变压器[J].中国电力.2002,(9):95.
    [109]韩建新,路艳艳. AE帕瓦:为电力带来绿色能量[J].电力系统装备.2009,(9).
    [110]韩金华,张伟正,向俊儒,李剑,张召涛.一种新型植物绝缘油配电变压器[C].中国电机工程学会高电压专委会2011年会.
    [111] Mineral oil-impregnated electrical equipment in service-guide to the interpretation ofdissolved and free gases analysis, IEC Std.60599,1969.
    [112] M. Duval. Dissolved gas analysis: It can save your transformer [J]. IEEE Electrical InsulationMagazine,1989,5(6):22-27.
    [113] J. W. Alencar, P. B. Alves, A. A. Craveiro. Pyrolysis of tropical vegetable oils. Journal ofAgricultural and Food Chemistry [J].1983,31(6):1268-1270.
    [114] A. W. Schwab, G. J. Dykstra, E. Selke, S. C. Sorenson, E. H. Pryde. Diesel fuel from thermaldecomposition of soybean oil [J]. Journal of the American Oil Chemists' Society,1988,65(11):1781-1786.
    [115] J. Crank. The mathematics of diffusion [M]. Clarendon press Oxford.1979.
    [116] P. Griffin, V. Sokolov, B. Vanin. Moisture equilibrium and moisture migration withintransformer insulation system [C]. Doble Client Conference, Boston,1999:1-23.
    [117] M. Liu, P. Wu, Y. Ding, G. Chen, S. Li. Two-dimensional (2D) ATR-FTIR spectroscopicstudy on water diffusion in cured epoxy resins[J]. Macromolecules,2002,35(14):5500-5507.
    [118] Y. Peng, P. Wu, Y. Yang. Two-dimensional infrared correlation spectroscopy as a probe ofsequential events in the diffusion process of water in poly (ε-caprolactone)[J]. The Journalof chemical physics,2003,119:8075-8079.
    [119] Y. Peng, P. Wu, H. W. Siesler. Two-dimensional/ATR infrared correlation spectroscopicstudy on water diffusion in a poly (ε-caprolactone) matrix [J]. Biomacromolecules,2003,4(4):1041-1044.
    [120] V. G. Arakelian, I. Fofana. Water in oil-filled high-voltage equipment part II: water contentas physicochemical tools for insulation condition diagnostic [J]. IEEE Electrical InsulationMagazine,2007,23(5):15-24.
    [121] K. L. Kato, R. E. Cameron. A review of the relationship between thermally-acceleratedageing of paper and hornification[J]. Cellulose,1999,6(1):23-40.
    [122] H. P. Gasser, C. Krause, T. Prevost. Water absorption of cellulosic insulating materials usedin power transformers[C]. IEEE International Conference on Solid Dielectrics (ICSD),2007:289-293.
    [123] Jeffries R.25—THE SORPTION OF WATER BY CELLULOSE AND EIGHT OTHERTEXTILE POLYMERS. Journal of the Textile Institute Transactions,1960,51(9):339-340.
    [124] I. Fofana, H. Borsi, E. Gockenbach. Fundamental investigations on some transformer liquidsunder various outdoor conditions [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2001,8(6):1040-1047.
    [125] R. J. Heywood, G. C. Stevens, C. Ferguson, A. M. Emsley. Life assessment of cable paperusing slow thermal ramp methods[J]. Thermochimica acta,1999,332(2):189-195.
    [126] A. M. Emsley, Ali M., Heywood R. J. A size exclusion chromatography study of cellulosedegradation [J]. Polymer,2000,41(24):8513-8521.
    [127]罗运柏.绝缘与润滑材料化学[M].武汉大学出版社.2005.
    [128] CIGRE T. F. D1.01.10: Aging of cellulose in mineral-oil insulated transformers, Brochure.
    [129] L. E. Lundgaard, W. Hansen, S. Ingebrigtsen, D. Linhjell, M. Dahlund. Aging of Kraft paperby acid catalyzed hydrolysis[C]. Dielectric Liquids,2005:381-384.
    [130] S. Ingebrigtsen, M. Dahlund, W. Hansen, D. Linhjell, L. E. Lundgaard. Solubility ofcarboxylic acids in paper (Kraft)-oil insulation systems[C]. Electrical Insulation andDielectric Phenomena,2004:253-257.
    [131] R. M. Morais, W. A. Mannheimer, M. Carballeira, N J. C. oualhaguet. Furfural analysis forassessing degradation of thermally upgraded papers in transformer insulation [J]. IEEETransactions on Dielectrics and Electrical Insulation,1999,6(2):159-163.
    [132] C. P. McShane, K. J. Rapp, J. L. Corkran, G. A. Gauger, J. Luksich. Aging of Kraft paper innatural ester dielectric fluid[C]. IEEE International Conference on Dielectric Liquids (ICDL),2002:173-177.
    [133] A. J. Kachler, I. Hohlein. Aging of cellulose at transformer service temperatures. Part1:Influence of type of oil and air on the degree of polymerization of pressboard, dissolvedgases, and furanic compounds in oil [J]. IEEE Electrical Insulation Magazine,2005,21(2):15-21.
    [134]张银燕,尹衍升,张金升,马来鹏.纳米Fe3O4磁性液体稳定性的研究[J].化学物理学报.2004,17(1):83-86.
    [135] Q. Liu, Z. D. Wang. Streamer characteristic and breakdown in synthetic and natural estertransformer liquids under standard lightning impulse voltage [J]. IEEE Transactions onDielectrics and Electrical Insulation,2011,18(1):285-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700