用户名: 密码: 验证码:
角倍蚜瘿内世代种群动态及寄主植物对蚜虫刺激的光合和脱落酸响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角倍是角倍蚜Schlechtendalia chinensi(sBell)寄生在漆树科盐肤木Rhus chinensis Mill复叶叶翅上而形成的一种虫瘿,是角倍蚜与盐肤木之间相互作用、相互适应而达到的一种平衡,然而目前,有关两者之间协同进化的研究比较少。本文主要以角倍蚜、盐肤木以及角倍为研究对象,通过对角倍生长发育动态、寄主植物生理代谢变化动态、瘿内蚜虫种群动态的研究,初步弄清了角倍生长发育与蚜虫数量之间的关系、蚜虫种群密度与其翅型分化之间的关系、瘿内世代各蚜型在触角感器方面的差异、以及盐肤木对角倍蚜刺激的生理响应,为虫瘿生长发育影响因素及有翅蚜产生机制的研究奠定了一定的基础,同时,也为角倍蚜与其寄主植物盐肤木之间协同进化的研究提供了有力的证据。主要结论如下:
     (1)角倍生长发育及角倍蚜瘿内世代种群动态的研究
     研究发现,角倍的生长发育存在4个阶段:第一次缓慢生长期、快速生长期、第二次缓慢生长期和缩减期。角倍的体积和表面积于7月底才开始快速增长,10月期间达到最高值,其变化趋势与瘿内蚜虫种群数量的变化趋势比较一致。10月角倍成熟爆裂时,倍内蚜虫数量可由1头增至成千上万头。角倍蚜的种群动态变化较明显,干母虫型于5月下旬至6月上旬开始产第一代无翅干雌,7月初即出现第二代无翅干雌,8月底时,倍内即可见翅芽明显的第三代有翅干雌若蚜,但数量较少,不及蚜虫总数的1%。10月初,倍内开始出现有翅干雌的成蚜。角倍内蚜虫种群密度及拥挤度的变化可能引发了有翅蚜的产生。在所测的8个虫瘿形态指标中,虫瘿的体积最能反映干母的适应度。
     (2)角倍蚜瘿内世代各蚜型触角感器的超微结构研究
     本研究利用扫描电镜对角倍蚜各蚜型触角感器的超微结构、类型、分布及数量进行了比较分析。结果表明,角倍蚜的触角上具有毛形感器、原生感觉圈、感觉突及次生感觉圈4种类型的感器,但各蚜型触角感器的种类和数量均不同。各蚜型触角感器的差异可能与蚜虫的生境、取食、迁移及寄主选择等行为有关。
     (3)角倍形成过程中,寄主植物对蚜虫刺激的光合、营养和脱落酸的响应
     比较分析了角倍、有倍叶和无倍叶三组织中叶绿素、脱落酸和氨基酸3个生理指标的变化。研究表明,角倍含有叶绿素a,叶绿素b,虽然角倍的叶绿素含量明显低于叶片的叶绿素含量,叶绿素变化规律与寄主植物的叶片基本一致,说明角倍具有一定的光合作用能力,是一种变态叶。
     角倍中脱落酸含量显著低于寄主植物的叶片,在角倍形成过程中,角倍的脱落酸变化与寄主植物脱落酸变化基本一致,呈单峰曲线,脱落酸有阻遏赤霉酸及细胞分裂素促进生长的作用;与叶子的衰老、果实的脱落等有关。角倍中脱落酸含量低,可能是由于角倍蚜释放的某种物质抑制了角倍内脱落酸的合成,角倍中脱落酸含量低于叶片中脱落酸的含量,干扰了叶翅的正常生长,形成了变态叶,没有脱落酸的抑制,叶翅无节制的生长,所以形成了虫瘿的奇特形状。角倍中脱落酸含量上升是抑制虫瘿生长的信号,是角倍成熟先兆,这种信号传递给角倍蚜虫,使蚜虫产生有翅蚜,为虫瘿破裂而作迁飞准备。
     角倍,生长角倍的寄主植物叶片和没有生长角倍的寄主植物叶片的氨基酸组成相同,均含有17种相同的氨基酸,但各自所含氨基酸的数量不同,生长角倍的寄主植物叶片氨基酸含量高于没有生长角倍的寄主植物叶片的氨基酸含量,而角倍中氨基酸的含量明显低于叶片,这说明寄主植物受蚜虫刺激后,叶片的氨基酸含量增加,形成“营养源库”,再将营养分配给生长需求的角倍。这一结果支持“源库假说”。
     (4)角倍中一种炭疽菌病害初报
     在对角倍生长发育及倍内蚜虫种群动态的研究过程中,笔者从角倍中分离得到一种病原菌,描述了该病原菌对角倍的危害状况,并对该病原菌进行了形态学和分子生物学鉴定,确认该菌为胶孢炭疽菌Colletorichum gloeosporioides(Penz.)Sacc,分类上隶属于半知菌门Deuteromycotina、腔孢纲Coelomycetes、黑盘孢目Melanconiales、炭疽菌属Colletotrichum。
Horned gallnut is induced by Schlechtendalia chinensis (Bell) on the leaflets of itsprimary host Rhus chinensis Mill, and is also the result of a close relationship between S.chinensis and its host plant R. Chinensis, and reflects their long-term coevolution. But thereis a few of researches about their coevolution relationship. This paper mainly regards S.Chinensis, R. Chinensis, and horned gallnut as the research object. By the studies about thedynamic growth of horned gallnut, physiological changes of R. Chinensis, clone dynamics ofS. Chinensis and their honeydew excretion, we have preliminarily understood the relationshipbetween gall development and aphids clone size, the relationship between aphid density andwing dimorphism, the differences of galling aphid in antennal sensilla and honeydew excretion,and R. Chinensis' response to S. Chinensis'stimulation. This research have laid thegroundwork for future research on the mechanisms of gall formation and wing dimorphism,and also provided powerful evidence for coevolution researches between S. chinensis and R.Chinensis. The main conclusions are as follows:
     (1) The study on gall development and clone dynamics of the galling aphid S. chinensis
     We found that: Gall-size changes occurred in four stages: a first slow growth period, a fastgrowth period, a second slow growth period and a growth reduction period. Gall volume andsurface area increased abruptly towards the end of July, peaking during October, in parallelwith an increase in aphid clone size, from one individual to more than10000aphids per gall.Clear changes were seen in the clone dynamics of S. chinensis. Fundatrix began to producefirst-generation apterous fundatrigenia during late May to early June. Second-generationapterous fundatrigenia appeared at the start of July. Alate fundatrigeniae with wing pads firstappeared at the end of August, but accounted for <1%of the individuals in the galls. Adultalate fundatrigeniae first appeared at the start of October. Abrupt changes in aphid density and crowding might trigger the induction of alate morphs in the galls. Of the eight gall propertiesthat we recorded, gall volume was the most accurate measure of gall fitness.
     (2) Comparison and analysis of the antennal sensilla of morphs of the galling aphid
     Using scanning electron microscopy, we compared and analyzed the ultrastructure, type,distribution and number of antennal sensilla of morphs of the aphid S. chinensis. The resultsshowed that S. chinensis has four types of antennal sensillum: trichoid sensilla, primaryrhinaria, sensory projections and secondary rhinaria, which varied in their distribution andappearance on the antenna of the different morphs. We suggest that these differences detectedare related to the habitat of the particular morph, its main form of behavior (e.g. Feeding,migration, and host selection).
     (3) Host Plant photosynthetic, nutrition and ABA response to aphid stimulation duringhorned gallnut development
     We studied the changes of amino acid, chlorophyll and abscisic acid in horned gallnuts(HG), leaves with galls (LWG) and leaves without galls (LNG) throughout the period of galldevelopment. The result showed that there were chlorophyll a and b in HG. Although thechlorophyll content in HG was obviously lower than that in leaves, both chlorophyll changregularities were basically the same. That showed HG had a certain capacity of photosynthesis,and was a kind of metamorphosed leaf.
     The chang of abscisic acid content in HG was a single-peak curve which was graduallyincreased and declined at the late stage of gall development. The abscisic acid content in HGwas obviously lower than that in leaves of R. Chinensis during the process of gall development.Abscisic acid have effects of inhibiting growth promotion induced by gibberellic acid andcytokinin, and is related to leaf senescence, fruit abscission etc. The low content of abscisicacid in HG was probably due to a substance which was released by S. Chinensis and thissubstance inhibited the abscisic acid synthesis in HG. The normal growth of leaf wing may beinterfered by the low content of abscisic acid in HG and form a metamorphosed leaf. Withoutthe inhibition of abscisic acid, leaf wing grew excessively, and finally formed the peculiar shape of gall. The increase of abscisic acid content in HG was a signal to suppress gall growth,and was also a portent of gall maturity. The signal may be transmitted to S. Chinensis, andhave an impact on the wing dimorphism which made preparation for their migration.
     The composition of amino acid in HG, LWG and LNG was the same, all containing17kinds of the same amino acid, but the content of them is significantly different. The amino acidcontent in galled leaves (LWG) was higher than that in ungalled leaves (LNG), and that inhorned gallnut (HG) was obviously the lowest. That showed that the amino acid content inleaves was increase after the host plant stimulated by aphids, and formed the nutrition sink forthe galls. This result support the " source-sink hypothesis".
     (4) A preliminary study on Colletorichum from horned gallnut
     When studied gall development and clone dynamics of the galling aphid, we isolated apathogenic fungus from horned gallnut. Its damage status and mycelium characters on gall andmydium are described, and its morphological and molecular biological characteristics wereidentified. The pathogenic fungi is Colletorichum gloeosporioides (Penz.) Sacc belongs toMelanconiales (Deuteromycotina: Coelomycetes).
引文
白海艳,李后魂.传粉细蛾与大戟科植物专性授粉的互惠共生体系.昆虫知识,2008,45(1):166~169
    毕冰峰,文礼章,王文茂等.五倍子蚜虫的鉴定及倍子形态与倍蚜数量关系研究.江西植保,2010,33(4):159~166
    陈湖,郝宝锋,张鸿喜,李晓慧.梨瘿华蛾虫瘿研究.北方果树,2000,(5):4~6
    陈笳鸿.我国没食子单宁化学利用现状与展望.林产化学与工业,2000,20(2):70~82
    陈其瑚,俞水炎.蚜虫及其防治.上海:上海科学技术出版社,1988
    陈晓鸣,冯颖.资源昆虫学概论.北京:科学出版社,2009,43
    戴宝生,吕锐玲,李蔚.棉苗炭疽病菌研究初报.中国棉花,2009,(7):l4~16
    邓晓韶,曾玲,陆永跃.金脉刺桐叶片上刺桐姬小蜂虫瘿结构及变化规律.华南农业大学学报,2009,30(1):31~33
    杜永均,严福顺,唐觉.大豆蚜触角嗅觉感器结构及其功能.昆虫学报,1995,38(1):1~7
    范永山,刘海英,张亮等.唐山绿宝石炭疽病菌的分离与初步鉴定.河北农业大学学报,2005,28(6):64~67
    顾德兴.虫瘿-奇特的生物学现象.生物学通报,1990,(11):11~13
    顾人侠.分光光度法测定倍子单宁酸的研究.林产化学与工业,1985,5(4):12~23
    何春霞,李吉跃,张燕香等.5种绿化树种叶片比叶重、光合色素含量和13C的开度与方位差异.植物生态学报,2010,34(2):134~143
    胡以球.秋冬季盐肤木病虫害防治.安徽林业,2006,6:42~42
    贾春枫,刘志琦.奇特的虫瘿.昆虫知识,2004,41(6):603~606
    江正君,贾琳,蒋磊.漆树炭疽病病原鉴定及其生物学特性研究.中国农学通报,2010,26(23):286~290
    焦懿.角倍蚜在冬夏寄主上的分布规律.昆虫知识,1998,35(2):87~89
    赖永棋.虫瘿蚜性母及雌性蚜生殖和干母瘿外活动的观察.资源昆虫,1986,2(1-2):37~38
    赖永祺.五倍子丰产技术.北京:中国林业出版社,1987,1~66
    赖永棋,张燕平,李正洪等.人工培育虫瘿蚜的生物学基础.林业科学研究,l992,5(4):394~401
    李继变,任竹梅,马恩波.角倍蚜与其唯一夏寄主植物盐肤木种群遗传多样性比较.山西大学学报(自然科学版),2009,32(2):298~303
    李志国,杨文云,夏定久.中国五倍子研究现状.林业科学研究,2003,16(6):760~767
    林余霖,程惠珍,陈君.角倍的组织显微鉴定.中药材,1996,19(5):229~230
    林余霖,程惠珍,陈君等.五倍子及其寄生主植物的单宁酸含量分析.中国中药杂志,1997,22(1):16~17
    刘平,杨子祥,吕翔等.角倍蚜干母的刺探取食行为分析.应用昆虫学报,2011,4:997~1001
    刘世彪,张代贵,龚双姣.植物的虫瘿与成瘿昆虫.生物学通报,2008,43(6):17~20
    刘树生,吴晓晶.温度对桃蚜和萝卜蚜翅型分化的影响.昆虫学报,1994,37(3):292~297
    路虹,宫亚军,王军等.蚜虫报警信息素对桃蚜产生有翅蚜的影响.北京农业科学,1994,12(5):1~4
    吕利华,陈瑞鹿.大豆蚜有翅蚜产生的原因.昆虫学报,1993,3(2):143~149
    吕翔,杨子祥,邵淑霞等.角倍单宁酸和没食子酸含量的比较及影响因子分析.林业科学研究,2010,23(6):856~861
    马双敏,虞泓,李晨程等.植物虫瘿.昆虫知识,2008,45(2):30~335
    木梓.五倍子.药学通报,1955,8(8):272~273
    漆云庆,邱建生,杨光勇等.虫瘿蚜种群动态的研究.贵州林业科技,1990,18(4):14~24
    钦俊德.昆虫与植物的关系——论昆虫与植物的相互作用及其演化.北京:科学出版社,1987,79~83
    邱明生,赵志模.虫瘿蚜与其寄主间营养关系的研究.西南农业大学学报,1996,18(6):613~617
    邱明生,赵志模.角倍蚜干母种群的空间格局及其形成机理研究.华东昆虫学报,1999,8(1):66~69
    孙达旺.植物单宁化学.北京:中国林业出版社,1992
    唐景美,陈振毅,廖咏梅等.辣椒胶孢炭疽菌生物学特性初步研究.广西植保,2009,22(2):12~15
    唐觉,张传溪.虫瘿蚜性蚜生物学的研究——胚胎发生和性别决定.浙江农业大学学报,1987,13(2):137~143
    田泽君.五倍子培育技术.北京:金盾出版社,1996,1~46
    夏征民,罗竹风.辞海.上海:上海辞书出版社,1999,21~48
    王健,吴振廷,唐晓庆.角倍蚜对盐肤木叶片物质代谢的影响.昆虫知识,1995,32(6):363~366
    王凯,王海燕,李宕.蚜虫翅型分化研究进展.安徽农业科学,2008,36(20):8671~8672,8748.
    王梅英,张红,岳兰菊.砀山酥梨炭疽病的发生与防治.安徽农学通报,2007,13(18):28
    王培松,刘学卿,王英姿等.葡萄炭疽病菌的生物学特性研究.江苏农业科学,2009,(1):128~129
    魏道智,戴新宾,许晓明等.植物叶片衰老机理的几种假说.广西植物,1998,18(1):89~96
    吴芳芳,檀根甲,何德友.苹果采后炭疽病菌生物学特性的研究.菌物系统,2002,21(3):440~443
    吴猛耐,芶阳.四川省五倍子病虫种类调查.四川林业科技,1997,18(1):28~32
    吴文平,张志铭.炭疽菌属(Colletotrichum Cda.)分类学研究I.河北农业大学学报,1994a,17(2):24~30
    吴文平,张志铭.炭疽菌属(Colletotrichum Cda.)分类学研究Ⅲ.河北农业大学学报,1994b,17(4):19~23
    向春阳,张宝石,关义新.玉米氮素效率基因型差异的研究进展.玉米科学,2002,10(1):75~77.
    相建业.气候因子对小麦苗期蚜虫种群消长与有翅蚜发生的通径分析.陕西农业科学,1993,(6):4~5,42.
    严盈,刘万学,万方浩.唾液成分在刺吸式昆虫与植物关系中的作用.昆虫学报,2008,51(1):537~544
    杨集昆.森林与人类.北京:中国林业出版社,1985,12:22~23
    杨蕊,石明旺,赵荣艳等.蒜薹炭疽病病原鉴定及其生物学特性研究.中国农学通报,2011,27(04):160~164
    殷海娣,黄翠虹,薛堃等.昆虫唾液成分在昆虫与植物关系中的作用.昆虫学报,2006,49(5):843~849
    岳碧松,邹方东,孙奇志.有翅型萝卜蚜的产生及其生长繁殖研究.西南农业大学学报,2002,24(1):17~20
    张峰,张钟宁.各型桃蚜触角感器的比较研究.昆虫学报,2000,43:131~137
    张广学,钟铁森.中国经济昆虫志,第25册,同翅目,蚜虫类(一).北京:科学出版社,1983,78~80
    张合彩,乔格侠,张广学.瘿绵蚜科虫瘿的多样性研究.动物分类学报,2006,31(1):48~54
    张建光,李英丽,刘玉芳等.高温、强光对苹果树冠不同方位果皮的氧化胁迫研究.中国农业科学,2004,37(12):1976~1980
    张琴,张磊.豆科植物根瘤菌结瘤因子的感知与信号转导.中国农学通报,2005,21(7):233~238
    张燕平,廖声熙,赖永祺等.角倍蚜干母致瘿率与盐肤木复叶序数的相关性.林业科学研究,2000a,13(5):530~534
    张燕平,廖声熙,杨力真等.角倍蚜瘿内世代营养环境的初步研究.南京林业大学学报(自然科学版),2001,25(3):52—56
    张燕平,苏建荣,赖永祺等.角倍蚜干母发生期预测及应用.林业科学研究,2000b,13(2):192~196
    张燕平,郑兴峰,杨力真等.虫瘿及盐肤木叶片形态构造解剖分析.南京林业大学学报,2001,25(6):6~10
    张钟宁,涂美华,杜永均等.桃蚜对[反]-β-法尼烯的行为及电生理反应.昆虫学报,1997,40(1):40~44
    张宗和.五倍子加工及利用.北京:中国林业出版社,1987,1~303
    赵桂仿,刘立新,胡正海.盐肤木虫瘿的结构和发育.西北植物学报,1990,10(4):237~241
    赵立静,班丽萍.蚜虫触角感受器结构及功能研究进展.应用昆虫学报,2011,48(4):1077~1086
    邹运鼎,胡丽娟,孟庆雷等.“秦油2号”油菜植株内含物与萝卜蚜有翅率的关系.应用生态学报,1994,5(4):389~395
    邹运鼎,黄世祥,耿继光等.影响两种麦蚜成蚜有翅率的因子分析.应用生态学报,1997a,8(2):189~193
    邹运鼎,李甲林,陈高潮等.棉株内含物和外源JH对棉蚜成蚜有翅率及种群消长的影响.应用生态学报,1997b,8(6):617~622
    邹运鼎,杨义和,胡丽娟等.两种品系油菜植株成分与蚜虫种群消长及成蚜翅型的关系.昆虫学报,1992,35(2):178~186
    邹运鼎,杨义和,章炳旺等.棉花苗期棉株内含物与棉蚜种群消长动态及成蚜翅型分化的关系.昆虫知识,1991,28(1):14~17
    邹运鼎,周夏芝,王子迎等.外源JH对桃蚜种群消长及有翅率的影响.安徽农业大学学报,2001,28(3):223~226
    Abrahamson W G, Weiss A E. Evolutionary Ecology Across Three Trophic Levels: Goldenrods, Gallmakersand Natural Enemies. Monographs in Population Biology (29). Princeton NJ: Princeton UniversityPress,1997,456
    Agrawal A A. Herbivory and maternal effects: mechanisms and consequences of transgenerational inducedplant resistance. Ecology,2002,83:3408~3415
    Akimoto S. Shift in life-history strategy from reproduction to defense with colony age in the galling aphidHemipodaphis persimilis producing defensive first-instar larvae. Researches in
    Population Ecology,1992,34:359~372
    Akimoto S&Yamaguchi Y. Phenotypic selection on the process of gall formation of a Tetraneura aphid(Pemphigidae). Journal of Animal Ecology,1994,63:727~738
    Anderson M&Bromely A K. Sensory systems. Aphids——Their Biology, Natural Enemy and Control (ed.by Minks A K&Harrewijn P). Vol,2A. Amsterdam/New York: Elsevier,1987,153~162
    Andersen P C&Mizell R F. Physiological effects of galls induced by Phylloxera notablilis (Homoptera:Phylloxeridae) on pecan foliage. Environmental Entomology,1987,16:264~268
    Aoki S. Descriptions of the Japanese species of Pemphigus and its allied genera (Homoptera: Aphidoidea).Insecta Matsumurana NS,1975,5:1~63
    Arx J A Von.Die arten der guttung Colletotrichum. Phytopathol Zeitschrift,1957,29:413~468
    Arx J A Von.The genera of Fungi sporulating in pure culture. Amsterdam: Antiquariaat A.Kok&Zn. B.V,1970a:1~288
    Arx J A Von.A review of the fungi classified as Gloeosporium.Lehre: New York, S-H Service Agency,1970b:1~302
    Auclair J L. Aphid feeding and nutrition. Annual Review of Entomology,1963,8:439~491
    Auclair J L&Aroga R. Influence de l'effet de groupe et de la qualitéde la plante-h te sur le cycle evolutif dequatre biotypes du puceron du pois, Acyrthosiphon pisum. Canadian Journal of Zoology,1984,62:608~612
    Awram WJ. Effects of crowding on wing morphogenesis in Myzus persicae Sulz.(Aphididae; Homoptera).Quaestiones Entomologicae,1968,4:3~29
    Bagatto G, Paquette L C, Shorthouse J D. Influence of galls of Phanacis taraxaci on carbon partitioningwithin common dandelion, Taraxacum offcinale. Entomologia Experimentalis et Applicata,1996,79:111~117
    Banks C J&Macaulay E D M. Effects of Aphis fabae Scop. and of its attendant ants and insect predators onyields of field beans (Vicia faba L.). Annals of Applied Biology,1967,60:445~453
    Benton T G&Foster W A. Altruistic housekeeping in a social aphid. Proceedings of the Royal Society ofLondon Series B: Biological Sciences,1992,247:199~202
    Blackman R L&Eastop V F. Aphids on the World’s Trees. Cambridge, UK: CAB International UniversitiesPress,1994,986
    Blanche K R. Diversity of insect-induced galls along a temperature-rainfall gradient in the tropical savannahregion of the Northern territory, Australia. Austral Ecology,2000,25(4):311~318
    Blua M J&Perring T M. Alatae production and population increase of aphid vectors on virus-infected hostplants. Oecologia,1992,92:65~70
    Blum J L. Vascular development in three common goldenrod galls. Papers of the Michigan Academy ofScience, Arts and Letters,1952,38:23~34
    Bonnemaison L. Contribution a l'étude des facteurs provoquant l'apparition des formes ailées et sexuées chezles Aphidinae. Annales des Epiphyties,1951,2,1~380
    Bristow C M. Differential benefits from ant attendance to two species of Homoptera on New York ironweed.Journal of Animal Ecology,1984,53:715~726
    Bromely A K, Dunn J A, Anderson M. Ultrasructure of the antennal sensilla of aphids. I. Coeloconic andplacoid sensilla. Cell and Tissue Research,1979,203:427~442
    Bromely A K, Dunn J A, Anderson M. Ultrastructure of the antennal sensilla of aphids. Ⅱ. Trichoid,chordotonal and campaniform sensilla. Cell and Tissue Research,1980,205:493~551
    Bruce T J&Cork A. Electrophysiological and behavioral responses of female Helicoverpa armigera tocompounds identified in flowers of African marigold, Tagetes erecta. Journal of Chemical Ecology,2001,27:1119~1131
    Burstein M&Wool D. Gall aphids do not selectoptimal galling sites (Smynthurodes betae; Pemphigidae).Ecological Entomology,1993,18:155~164
    Burstein M, Wool D, Eshel A. Sink strength and clone size of sympatric, gall forming aphids. EuropeanJournal of Entomology,1994,91:57~61
    Byers J A, Brewer J W&Denna D W. Plant growth hormones in pinyon insect galls. Marcellia,1976,39:125~143
    Campbell C A M, Pettersson J, Pickett J A, et al. Spring migration of damson-hop aphid, Phorodon humuli(Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. Journalof Chemical Ecology,1993,19:1569~1576
    Chapman R F. The role of the leaf surface in food selection by acridids and other insects. Colloques InternatCNRS,1977,265:133~149
    Chapman R F. Chemoreception: the significance of receptor numbers. Advances in Insect Physiology,1982,16:247~356
    Chen B F. Gall and colony size of gall-inducing social aphid Colophina clematis and its biology. Dpartmentof Entomology National Chung Hsing University.2007
    Cherqui A, Tjallingii W F. Salivary proteins of aphids, a pilot study on identification, separation andimmunolocalisation. Journal of Insect Physiology,2000,46(8):1177~1186
    Christiansen-Weniger P&Hardie J. The influence of parasitism on wing development in male and femalepea aphids. Journal of Insect Physiology,2000,46:861~867
    Christiansen-Weniger P, Lilley R&Hardie J. Environmental stimuli influencing polyphenism in theblackberry-cereal aphid, Sitobion fragariae. Aphids in Natural and Managed Ecosystems (ed. by NafriaJ M&Dixon A F G). Universidad de Léon, Léon, Spain,1998,153~159
    Cornell H V. The secondary chemistry and complex morphology of galls formed by the Cynipinae(Hymenoptera): why and how? The American Midland Naturalist,1983,110:225~234
    Crespi B J, Carmean D A, Chapman T W. Ecology and evolution of galling thrips and their allies. AnnualReview of Entomology,1997,42:51~71
    Crespi B J&Worobey M. Comparative analysis of gall morphology in Australian gall thrips: the evolutionof extended phenotypes. Evolution,1998,52(6):1686~1696
    Dadd R H&Krieger D L. Dietary amino acid requirements of the aphid, Myzus persicae. Journal of InsectPhysiology,1968,14(6):741~764
    Danks H V. Modification of adverse conditions by insects. Oikos,2002,99(1):10~24
    David W&Ofra B Z. Population ecology and clone dynamics of the galling aphid GeoicaWertheimae(Sternorrhyncha: Pemphigidae: Fordinae). European Journal of Entomology,1998,95:509~518
    Dawson G W, Griffiths D C, Merritt L A. Aphid semiochemicals-a review, and recent advances on the sexpheromone. Journal of Chemical Ecology,1990,16:3019~3030
    De Barro P J. The role of temperature, photoperiod,crowding and plant quality on the production of alateviviparous females of the bird cherry-oat aphid, Rhopalosiphum padi. Entomologia experimentalis etapplicata,1992,65:205~214
    Dean G J. Observations on the morphs of Macrosiphum avenae and Metopolophium dirhodum on cerealsduring summer and autumn. Annals of Applied Biology,1978,89:1~7
    Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. The Plant Journal,1993,4:215~223
    Dixon A F G. The escape responses shown by certain aphids to the presence of the coccinellid Adaliadecempunctata (L.). Transaction of the Royal Entomological Society of London,1958,110:319~334
    Dixon A F G. Fecundity of brachypterous and macropterous alatae in Drepanosiphum dixoni (Callaphididae).Entomologia experimentalis et applicata,1972,15:335~340
    Dixon A F G. Aphid Ecology.2nd edn. London: Chapman&Hall,1998
    Dixon A F G&Agarwala B K. Ladybird-induced life-history changes in aphids. Proceedings of theRoyalSociety London B,1999,266:1549~1553
    Dixon A F G&Glen D M. Morph determination in the bird cherry-oat aphid, Rhopalosiphum padi L. Annalsof Applied Biology,1971,68:11~21
    Dixon A F G&Wratten S D. Laboratory studies on aggregation, size and fecundity in the black bean aphid,Aphis fabae Scop. Bulletin of Entomological Research,1971,61:97~111
    Dixon K A, Lerma R R, Craig T P, Hughes K A. Gall morphology and community composition inAsphondylia flocossa (Cecidomyiidae) galls on Atriplex polycarpa (Chenopodiaceae). EnvironmentalEntomology,1998,27(3):592~599
    Dreger J F, Shorthouse J D. Diversity of gall-inducing insects and their galls. Biology of Insect-inducedGalls. Oxford Universities Press,1992,8~33
    Duke M M. The genera Vermicularia fr. and Colletotrichum Cda.Transactions of the British MycologicalSociety,1928,13(3-4):156~184
    Dunn J A. Antennal sensilla of vegetable aphids. Entomologia Experimentalis et Applicata,1978,24:348~349
    Eastop V F. Worldwide importance of aphids as virus vectors. Aphids as Virus Vectors (ed. by Harris K F&Maramorosch K). London: Academic Press,1977,3~62
    El-Ziady S&Kennedy J S. Beneficial effects of the common garden ant, Lasius niger L., on the black beanaphid, Aphis fabae Scopoli. Proceedings of the Royal Entomological Society London A,1956,31:4~6
    El-Ziady S. Further effects of Lasius niger L. On Aphis fabae Scopoli. Proceedings of the RoyalEntomological Society London A,1960,35:1~3
    Fay P A, Hartnett D C, Knapp A K. Increased photosynthesis and water potentials in Silphium integrifoliumgalled by cynipid wasps. Oecologia,1993,93(1):114~120
    Fay P A, Preszler R W, Whitham T G. The functional resource of a gall-forming adelgid. Oecologia,1996,105:199~204
    Fernandes G W&Price P W. The adaptive significance of insect gall distribution: survivorship of species inxeric and mesic habitats. Oecologia,1992,90(1):14~20
    Fischer M K, Hoffmann K H&V lkl W. Competition for mutualists in an ant-homopteran interactionmediated by hierarchies of ant attendance. Oikos,2001,92:531~541
    Foster W A&Northcott P A. Galls and the evolution of social behaviour in aphids. Plant Galls: Organisms,Interactions, Populations. Clarendon Press,1994,161~182
    Gash A F, Carter N&Bale J S. The influence of nitrogen fertiliser applications on the cereal aphidsMetopolophium dirhodum and Sitobion avenae. Brighton Crop Protection Conference. British CropProtection Council, Brighton, U.K.,1996,209~214
    Gildow F E. Increased productionof alatae by aphids reared on oats infected by barley dwarf virus. Annals ofthe Entomological Society of America,1980,73:343~347
    Gut J, Harrewijn P, van Ooster A M et al. Additiona1function of a1arm pheromone in development processesof aphids. Weded. Fac. Landbouwwet. Rijksuniv. Gent.,1987,52:371~378
    Hardie J. Juvenile hormone mimics the photoperiodic apterization of the alate gynopera of the aphid, Aphisfabae. Nature,1980,286:602~604
    Hardie J, Hol oak M, Taylor N J et al.The combination of electronic monitoring and videoassistedobservations of plant penetration by aphid and behavioral effects of polygodial. EntomologiaExperimentalis et App1icata,1992,62:233~239
    Hazell S P, Gwynn D M, Ceccarelli S et al. Competition and dispersal in the pea aphid: Clonal variation andcorrelations across traits. Ecological Entomology,2005,30:293~298
    Hedin P A, WW Neel M L Burks&Grimley E. Evaluation of plant constituents associated with pecanphylloxera gall formation. Journal of Chemical Ecology,1985,11:473~483
    Hille Ris Lambers L. Polymorphism in the Aphididae. Annual Review of Entomology,1966,11:47~78
    H nek A. Nitrogen fertiliser and the abundance of the cereal aphids Metopolophium dirhodum and Sitobionavenae (Homoptera, Aphididae). Journal of Plant Diseases and Protection,1991,98,655~660
    Inayatullah C, Webster J A, Fargo W S. Variability in the number of antennal sensoria in Greenbug(Homoptera:Aphididae) biotypes. The Entomologist,1991,110(3):139~143
    Inbar M, Eshel A, Wool D. Interspecific competition among phloem-feeding insects mediated by inducedhost-plant sinks. Ecology,1995,76(5):1506~1515
    Ivey F L&Lucile W. Gall-Formation on Hamamelis virginiana Resulting from Material Injected by theAphid Hormaphis hamamelidis. Transaction of the American Microscopical Society,1958,77(2):146~200
    Johnson B. Effect of parasitization by Aphidius platensis Brèthes on the developmental physiology of itshost, Aphis craccivora Koch. Entomologia experimentalis et applicata,1959,2:82~99
    Johnson B. Wing polymorphism in aphids II. Interaction between aphids. Entomologia Experimentalis etApplicata,1965,8:49~64
    Janzen D H. When is it coevo1ution. Evolution,1980,34(3):611~612
    Johnson B. Wing polymorphism in aphlds III. The influence of the host plant. Entomologia experimentalis etapplicata,1966,9:2l3~222
    Johnson B&Birks P R. Studies on wing polymorphism in aphids I.The developmental process involvedin the production of the different forms. Entomologia experimentalis et applicata,1960,3:327~339
    Karley A J, Douglas A E&Parker W E. Amino acid composition and nutritional quality of potato leafphloem sap for aphids. Journal of Experimental Biology,2002,205:30090~33018
    Kavi Kishor P B, Hong Z, Miao G H et al. Overexpression of△1-pyrroline-5-carboxylate synthetaseincrease pronline production and confers osmotolerance in transgenic plants. Plant Physiology,1995,108:1387~1394
    Christiansen-Weniger P, Lilley R&Hardie J. Environmental stimuli influencing polyphenism in theblackberry-cereal aphid, Sitobion fragariae. Aphids in Natural and Managed Ecosystems (ed. by NafriaJ M&Dixon A F G). Universidad de Léon, Léon, Spain,1998,153~159
    Kawada K. Polymorphism and morph determination. Aphids: their biology, natural enemies and control (ed.by Minks A. K.&P. Harrewijn). Vol. A. Elsevier,Amsterdam,1989,255~268
    Kenten J. The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum (Harris) and onthe forms produced. Bulletin of Entomological Research,1955,46:599~624
    Kunkel H&Kloft W. Polymorphismus bei Blattl usen. Sozialpolymorphismus bei Insekten (ed. by SchmidtG H), Wissenschaftliche Verlagsgesellschaft: Stuttgart,1974,152~201
    Kurosu U&Aoki S. Long-lasting galls of Ceratoglyphina styracicola, a host-alternating subt-ropical aphidspecies. Aphids in Natural and Managed Ecosystems(ed. by Nieto Nafría J M, Dixon A F G).Universidad de León: Secretariado de Publicaciones,1998,227~234
    Küster E. Die Gallen der Pflanzen. Leipzig: S. Hirzel,1911,437
    Lalonde R G&Shorthouse J D. Developmental morphology of the gall of Urophora cardui (Diptera,Tephritidae) in the stems of Canada thistle (Cirsium arvense). Canadian Journal of Botany,1984,62(7):1372~1384
    Larson K C. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts.Oecologia,1998,115:161~166
    Larson K C&Whitham T G. Manipulation of food resources by a gall-forming aphid: the physiology ofsource-sink interactions. Oecologia,1991,88:15~21
    Larson K C&Whitham T G. Competition between gall aphids and natural plant sinks: plant architectureaffects resistance to galling. Oecologia,1997,109:575~582
    Lees A D. The control of polymorphism in aphids. Advances in Insect Physiology,1966,3:207~277
    Lees A D. The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with specialreference to the role of crowding. Journal of Insect Physiology,1967,13:289~318
    Liu S&Hughes R D. Effect of host age at parasitization by Aphidius sonchi on the development, survival,and reproduction of the sowthistle aphid, Hyperomyzus lactucae. Entomologiaexperimentalis etapplicata,1984,36:239~246
    Liu S S. Production of alatae in response to low temperature in aphids: a trait of seasonal adaptation. InsectLife-Cycle Polymorphism: Theory, Evolution, and Ecological Consequences for Seasonality andDiapause Control (ed. by Danks H V). Dordrecht: Kluwer Academic Publishers,1994,245~261
    Majid K, Ali R B&Saman H. Biochemical characterization of-amylase of the Sunn pest, Eurygasterintegriceps. Entomological Science,2005,8:371~377
    Marc G, Jerome A, Alain D et al. Seed predation in Philodendron solimoesense (Araceae) by chalcid wasps(Hymenoptera). International Journal of Plant Sciences (The University of Chicago),2002,163(6):1017~1023
    Macias W&Mink G I. Preference of green peach aphids for virus-infected sugarbeet leaves. Journal ofEconomic Entomology,1969,62:28~29
    Martinez J J I. Anti-insect effects of the gall wall of Baizongia pistaciae [L.], a gall-inducing aphid onPistacia palaestina Boiss. Arthropod-Plant Interactions,2010,4:29~34
    Mciver S, Siemicki R. Fine structure of antennal sensilla coeloconica of adult Toxorhynchites brevipalpis(Diptera: Culicidae). Journal of Medical Entomology,1978,14(6):673~676
    Merijn P K, Kai A, Maurice W S, et al. Differential timing of spider mite-induced direct and indirectdefenses in tomato plants. Plant Physiology and Biochemistry,2004,135:483~495
    Miles P W. Feeding process of aphidoidea in relation to effects on their food plants. Aphids, Their Biology,Natural Enemies and Control (ed. by Minks A K, Harrewijn P).Volume A. Amsterdam, Netherlands:Elsevier Science Publishers,1987,321~335
    Miles P W. Aphid saliva. Biological Reviews,1999,74(1):41~85
    Mittler T E&Dadd R H. Food and wing determination in Myzus persicae (Homoptera: Aphididae). Annalsof the Entomological Society of America,1966,59:1162~1166
    Mittler T E&Sutherland O R W. Dietary influences on aphid polymorphism. Entomologia Exp erimentalisApplicata,1969,12:703~713
    Miyazaki M. Forms and morphs of aphids. Aphids, Their Biology, Natural Enemies and Control (ed. byMinks A K,Harrewun P).1987,163~195
    Morris D C, Schwarz M P, Cooper S J B et al. Phylogenetics of Australian Acacia thrips: the evolution ofbehaviour and ecology. Molecular Phylogenetics and Evolution,2002,25(2):278~292
    Mtiller C B,Williams l S&Hardie J.The role of nutrition,crowding and interspecific interactions in thedevelopment of winged aphids. Ecological Entomology,2001,26:330~340
    Nault L R, Edwards L J, Styer W E. Aphid alarm pheromone: secretion and reception. EnvironmentalEntomology,1973,2:101~105
    Ngakan P O&Yukawa J. Gall site preference and intraspecific competition of Neothoracaphis yanonis(Homoptera: Aphididae). Applied Entomology and Zoology.1996,31:299~310
    Ngakan P O&Yukawa J. Synchronization with host plant phenology and gall site preference ofDinipponaphis autumna (Homoptera: Aphididae). Applied Entomology and Zoology.1997,32:81~90
    Noda I. The emergenc e of winged viviparous female in aphid. VII. On the rareness of the production of thewinged offsprings from the mothers of the same form. Japanese Journal of Applied Entomology andZoology,1959,3:272~280
    Nottingham S F, Hardie J, Dawson G W et al. Behavioral and electrophysiological responses of aphids tohost and nonhost plant volatiles. Journal of Chemical Ecology,1991,17:1231~1242
    Nyman T, Juikunen T R. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies.Proceeding of the National Academy of Sciences,2000,97:13184~13187
    Nyman T, Widmer A, Roininen H. Evolution of gall morphology and host-plant relation-ships inwillow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution,2000,54(2):526~533
    Nysterakis F. Nouvelle interpretation dela formation descecidies. Ibid,1946,222:1133~1134
    Ohta S, Kajino N, Hashimoto H et al. Isolation and identification of cell hypertrophy-inducing substances inthe gall forming aphid Colopha moriokaensis. Insect Biochemistry and Molecular Biology,2000,30(10):947~952
    Ozaki K. Inter-specific difference in budburst time and its consequences on egg hatch time and survival ofthe gall-making adelgid Adelges japonicus (Monzen)(Hom., Adelgidae). Journal of AppliedEntomology.1998,122:483~486
    Parr T J. Matsucoccus sp., a scale insect injurious to certain pines in the northeast(Hemiptera-Homoptera).Journal of Economic Entomology,1939,32:624~630
    Parr T J. Asterolecanium variolosum Ratzeburg, a gall-forming coccid and its effect upon the host trees.Bulletin, School of Forestry, Yale University,1940,46:1~49
    Petersen M K&Sandstr m J P. Outcome of indirect competition between two aphid species mediated byresponses in their common host plant. Functional Ecology,2001,15:525~534
    Pettersson J. An aphid sex attractant. I. Biological studies. Entomologica Scandinavica,1970,1(1):63~73
    Pettersson J. An aphid sex attractant. II. Histological, ethological and comparative studies. EntomologicaScandinavica,1971,2:81~93
    Pettersson J. Olfactory reactions of Brevicoryne brassicae (L.)(Hom.: Aph.). Swedish Journal ofAgricultural Research,1973,3:95~103
    Pickett J A, Wadhams LJ, Woodcock C M. The chemical ecology of aphids. Annual Review of Entomology,1992,37:67~90
    Plumb G H. The formation and development of the Norway spruce gall caused by Adelges abietis L. TheConnection Agricultural Experiment Station,1953,566:1~77
    Powell G, Hardie J, Pickett J A. Behavioural evidence for deception of the repellent polygodial by aphidantennal tip sensilla. Physiological Entomology,1995,20:141~146
    Price P W, Fernandes G W, Waring G L. Adaptive nature of insect galls. Environmental Entomology,1987,16(1):15~24
    Price P W, Waring G L, Fernandes G W. Hypotheses on the adaptive nature of galls. Proceedings of theEntomological Society of Washington,1986,88(2):361~363
    Rehill B J&Schultz J C. Hormaphis hamamelidis and gall size: a test of the plant vigor hypothesis. Oikos,2001,95:94~104
    Rehill B J&Schultz J C. Opposing survivorship and fecundity effects of host phenology on the gall-formingaphid Hormaphis hamamelidis. Ecological Entomology,2002,27:475~483
    Rilling G&Steffan H. Versuche uber die Carbon-Dioxide Fixierung und den Assimilatimport durchBlattgallen der Reblaus. Angewandte Botanik,1978,52:343~354
    Roghgarden J. Theory of Population Genetics and Evolutionary Ecology:an Introduction.New York:Macmillan,1979,1~685
    Rossi A M, Stiling P D, Strong D R et al. Does gall diameter affect parasitism rate of Asphondylia borrichiae(Diptera: Cecidomyiidae)? Ecological Entomology,1992,17(2):149~154
    Sandstr m J&Pettersson J. Amino acid composition of phloem sap and the relation to intraspecifc variationin pea aphid (Acyrthosiphon pisum) performance. Journal of Insect
    Physiology,1994,40:947~955
    Schaefers G A&Judge F D. Effect of temperature, photoperiod and host plant on alary polymoiphism in theaphid, Chae....acsosiphon jragae[olli(Cockerel1). Journal of Insect Physiology,1971,17:365~379
    Schaller G. Untersuchungen zur erzeugung kunstlicher Pflanzengallen. Marcellia,1969,35:131~153
    Sch norogge K, Harper L J, Brooks S E et al. Reprogramming plant development: two approaches to studythe molecular mechanism of gall formation. The Biology of Gall-inducing Arthropods (ed. by Csóka G,Mattson W J, Stone G N, Price P W). USDA Forest Service General Technical Report NC-1999,1998,153~160
    Seibert T F. A nectar-secreting gall wasp and ant mutualism: selection and counterselection shaping gallwasp phenology, fecundity and persistence. Ecological Entomology,1993,18(3):247~253
    Shambaugh G F, Frazier J L, Castell E M et al. Antennal sensilla of seventeen aphid species (Homoptera:Aphidinae). Journal of Insect Morphology and Embryology,1978,7(5/6):389~404
    Seibert T F. Mutualistic interactions of the aphid Lachnus allegheniensis (Homoptera: Aphididae) and itstending ant Formica obscuripes (Hymenoptera: Formicidae). Annals of the Entomological Society ofAmerica,1992,85:173~178
    Shorthouse J D, Rohfritsch O. Biology of Insect-induced Galls. Annals of the Entomological Society ofAmerica,1993,86(1):122~123
    Slifer E H, Sekhon S S, Lees A D. The sense organs on the antennal flagellum of aphids (Homoptera), withspecial reference to the plate organs. Quarterly Journal of Microscopical Science,1964,105:21~29
    Smironff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry,1989,28:1057~1060
    Smtth M A H, Mackay P A. Genetic variation in male alary dimorphism in populations of pea aphid,Acyrthosiphon pisum. Entomologia Experimentalis et Applicata,1989,51:125~132
    Solomon A, Beer S, Waisel Y et al. Effects of NaCl on the carboxylating activity of Rubisco from Tamarixjordanis in the presence and absence of proline-related compatible solutes. Physiologia Plantarum,1994,90:198~204
    Stadler B&Dixon A F G. Costs for ant attendance for aphids. Journal of Animal Ecology,1998,67:454~459
    Stechmann D H, V lkl W&Stary P. Ant-attendance as a critical factor in the biological control of thebanana aphid Pentalonia nigronervosa Cop.(Hom. Aphididae) in Oceania. Journal of AppliedEntomology,1996,120:119~123
    Stern D L. Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proceedings theRoyal of Society of London, B,1995,260:85~89
    Stevens M, Smith H G, Hallsworth P B et al. Detection of viruses and insecticide resistance in sugar beetaphids caught in suction traps. Brighton Crop Protection Conference, British Crop Protection Council,Brighton, U.K.1994,917~922
    Stone G N, Cook J M.The structure of cynipid oak galls: patterns in the evolution of an extended phenotype.Proceedings of the Royal Society of London, B,1998,265:979~988
    Stone G N, Sch nrogge K. The adaptive significance of insect gall morphology. Ecology&Evolution,2003,18(10):512~522
    Stone G N, Sch nrogge K, Atkinson R J et al. The population biology of oak gall wasps (Hymenoptera:Cynipidae). Annual Review of Entomology,2002,47:633~668
    Sutherland O R W. The role of crowding in the production of winged forms by two strains of the pea aphid,Acyrthosiphon pisum. Journal of Insect Physiology,1969a,15:1385~1410
    Sutherland O R W. The role of the host plant in the production of winged forms by two strains of the peaaphid,Acyrthosiphon pisum. Journal of Insect Physiology,1969b,15:2179~2201
    Sutton B C.The Coelomycetes-fungi imperfecti with pycinidia, acervuli and stromata.C. M. I.Kew, surrey,1980
    Tadaka H. Inheritance of body colours in Myzus persicae (Homoptera: Aphididae). Applied Entomology andZoology,1981,16:242~246
    Tilles D A&Wood D L. The influence of carpenter ant (Camponotus modec)(Hymenoptera: Formicidae)attendance on the development and survival of aphids (Cinara spp.)(Homoptera: Aphididae) in a giantsequoia forest. Canadian Entomologist,1982,114:1133~1142
    Tjallingii W F. Mechanoreceptors of the aphid labium. Entomologia Experimentalis Applicata,1978,24(3):731~737
    Tollrian R&Harvell C D. The Ecology and Evolution of Inducible Defenses. Princeton University Press,Princeton, New Jersey,1999
    Tsuji H&Kawada K. Development and degeneration of wing buds and indirect flight muscles in the peaaphid(Acyrtosiphon pisum(Harris)). Japanese Journal of Applied Entomology and Zoology,1987,31:247~252
    Urbanska A, Tjallingii W F, Dixon A F G, et al. Phenol oxidising enzymes in the grain aphids saliva.Entomologia Experimentalis et Applicata,1998,86(2):197~203
    Utako K&Shigeyuki A. Tuberaphis owadai (Homoptera), a new aphid species forming a large gall onStyrax tonkinensis in northern Vietnam. Entomological Science,2003,6:89~96
    Van Der Pers J N C, Thomas G, Den Otter C J.Interactions between plant odours and pheromone reception,in small ermine moths (Lepidoptera: Yponomeutidae). Oxford Journals,1979,5(4):171~182
    Van Rensburg L, Kruger C H J, Kruger H. Proline accumulation as drought-tolerance selection criterion: Itsrelationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. Journal ofPlant Physiology,1993,141:188~194
    Van Veen F J F, Müller C B, Adriaanse I C T et al. Spatial heterogeneity in risk of secondary parasitism in anatural population of an aphid parasitoid. Animal Ecology,200271(3):463~469
    Von Dohlen C D, Rowe C A, Heie O E. A test of morphological hypotheses for tribal and sub tribalrelationships of Aphidinae(Insecta: Hemiptera: Aphididae)using DNA sequences. MolecularPhylogenetics and Evolution,2006(38):316~329
    Wadley, F M. Factors affecting the proportion of alate and apterous forms of aphids. Annals of theEntomological Society of America,1923,16,279~303
    Waloff N. Absence of wing polymorphism in the arboreal, phytophagous species of some taxa of temperateHemiptera: an hypothesis. Ecological Entomology,1983,8:229~232
    Wang C H, Huber F. Morp horlogical study of the aphid antennae of Aphis nerii Boyer (Homoptera:Aphididae). I. Flagellar sensilla. Bulletin of the Institute of Zoology, Academica Sinica (Taipei),1976,15:47~46
    Wang Y, Li S S. Changes in Activity of Reactive-Oxygen-Scavenging Enzymes in RecalcitrantWanpee(Clausena lansium) Seeds During Desiccation. Acta Phytophysiologica sinica,2001,27(1):81~86
    Waring G L, Price P W. Parasitoid pressure and the radiation of a gall-forming group(Cecidomyiidae:Asphondylia spp.) on creosote bush (Larrea tridentata). Oecologia,1989,79:293~299
    Way M J. Mutualism between ants and honeydew producing Homoptera. Annual Review of Entomology,1963,8:307~344
    Weis A E. Use of a symbiotic fungus by the gall maker Asteromyia carbonifera to inhibit attack by theparasitoid Torymus capite. Ecology,1982,63(5):1602~1605
    Weis A E, Kapelinski A. Manipulation of host plant development by the gall-midge Rhabdophagastrobiloides. Ecological Entomology,1984,9:457~465
    Weis A E, Walton R, Crego C L. Reactive plant tissue sites and the population biology of gall makers.Annual Review of Entomology,1988,33:467~486
    Weisser W W. Predation and the evolution of dispersal. Insect movement: mechanisms and consequences (ed.by Woiwod I P, Reynolds D R&Thomas C D). New York: CABI,2001,261~280.
    Weisser W W, Braendle C&Minoretti N. Predator induced morphological shift in the pea aphid.Proceedings of the Royal Society London B,1999,266:1175~1181
    Wensler R J. The fine structure of distal receptors on the labium of the aphid, Brevicoryne brassicae L.(Homoptera). Cell and Tissue Research,1977,181(3):409~422
    White W S.The environmental conditions affecting the genetic mechanism of wing production in thechrysanthemum aphid. American Naturalist,1946,80:245~270
    Whitham T G. Habitat selection by Pemphigus aphids in response to resource limitation and competition.Ecology,1978,59:1164~1176
    Whitham T G. The theory of habitat selection: examined and extended using Pemphigus aphids. AmericanNaturalist,1980,115:449~466
    Whitham T G. Ecology of Pemphigus gall aphids. Biology of Insect induced Galls. Oxford University Press,1992,225~237
    Williams C T. Effects of plant age and condition on the population dynamics of Myzus persicae Sulz.onsugar beet in field plots. Bulletin of Entomological Research,1995,85:557~567
    Williams I S, Dewar A M, Dixon A F G et al. Alate production of Myzus persicae on sugar beet-how likelyis the evolution of sugar beet specific biotypes? Journal of Applied Ecology,2000,37:40~51
    Wool D. Galling aphids: specialization, biological complexity, and Variation. Annual Review of Entomology,2004,49:175~192
    Wool D&Manheim O. Population ecology of the gall-forming aphid, Aploneura Lentisci in Israel.Researches on Population Ecology,1986,28:151~162
    Wool D&Burstein M. A galling aphid with extra life-cycle complexity: population ecology andevolutionary considerations. Researches on Population Ecology,1991,33:307~322
    Wool D&Bar-El N. Population ecology of the galling aphid Forda formicaria von Heyden in Israel:abundance, demography and gall structure. Israel Journal of Zoology,1995,41:175~192
    Wool D&Ben Zvi O. Population ecology and clone dynamics of the galling aphid Geoica wertheimae(Sternorrhyncha, Pemphigidae, Fordinae). European Journal of Entomology,1998,95:509~518
    Yao L, Shibao H&Akimoto S. Costs and benefits of ant attendance to the drepanosiphid aphid Tuberculatusquercicola. Oikos,2000,89:3~10
    Yasuhiko T&Takayoshi N. Gall surface area is a simple and accurate measure of fitness in Nipponaphidinigalling aphids (Homoptera: Aphididae). Applied Entomology and Zoology,2007,42(2):217~221
    Yoshitaka Koyama, Izumi Yao, Shin-Ichi Akimoto. Aphid galls accumulate high concentrations of aminoacids: a support for the nutrition hypothesis for gall formation. The Netherlands Entomological SocietyEntomologia Experimentalis et Applicata,2004,113:35~44
    Zacharuk R Y&Shields V D. Sensilla of immature insects. Annual Review of Entomology,1991,36:331~354
    Zera A J&Fiebel K C. Brachypterizing effect of group rearing, juvenile hormone-II and methoprene cricket,Gryllus rubens. Journal of Insect Physiology,1988,34:487~498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700