用户名: 密码: 验证码:
微藻及其与煤的混合热解燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上生物质资源相当丰富,开发和利用生物质能不仅可以缓解由于经济发展所产生的能源危机问题,还可以缓解环境问题。然而,第一代生物燃料,主要来自于食用农作物和油料作物,由于生物产量较小、占用耕地,且随着天气变化越来越严重以及经济的快速增长对能源的需求越来越多,促使更多的专家和学者把精力集中到第二代生物燃料—微藻上。与传统生物燃料相比,藻类生物燃料具有油脂含量高、生长速度快、生长周期短、环境适应性强、不占用耕地、具有二氧化碳减排效应等优点,被公认为是在众多生物质资源中最有潜力替代化石燃料的生物质资源。目前世界各国都在致力于微藻能源化利用的研究。
     本文利用自行改进的干燥箱、以及热重分析仪和微波炉等实验设备对绿色淡水藻的一种—小球藻的特性进行实验研究和理论分析;利用生命周期评价方法,对燃煤电厂采用两种二氧化碳减排技术进行分析和评价,并对回收的二氧化碳用于微藻的培养进行探讨,从中得到多项具有重要意义的结论。
     通过对小球藻的含水率、干燥厚度以及干燥温度的研究,得出小球藻在不同干燥条件下的干燥规律;十种常用的薄层干燥模型中,Two term model模型的拟合效果最好;小球藻的有效湿份扩散系数为3.36×10~(-9)~2.23×10~(-8)m~2/s,随着温度的增大,其有效湿分扩散系数增大;小球藻扩散活化能的值为E_a=34.12kJ/mol,指前因子D0=5.30×10~(-4)m~2/s。
     通过研究微波功率、反应气氛、微波吸收剂、活性炭添加量、固体残渣添加量和原料用量6种因素对小球藻微波热解的影响,得出:在氮气气氛下,产油量最大且单位功率下的失重量也最大的功率为1500W,产气量最大的功率为2250W,残渣产量最大的功率为750W;无微波吸收剂的小球藻热解后产生的生物油产量最大,而添加微波吸收剂后,以活性炭的催化效果最好,氧化钙次之,碳化硅和残渣的催化效果接近;产油量最多的是添加3%活性炭,残渣量最大的是添加10%活性炭,产气量最大且失重量也最大的是添加5%活性炭;热解过程平均升温速率最大且热解产生的生物气的量也最大的是添加5%固体残渣,生物油产量最大的是无固体残渣的纯样,失重量最大的是添加20%固体残渣;产气量最大的小球藻用量为25g;残渣产量最小的小球藻用量为35g,残渣产量最大的小球藻用量为20g,失重量最大的小球藻用量为35g,单位物料固、液、气产量都是最大的小球藻用量为15g。在二氧化碳气氛下,固、液和气产量最大的功率为750W,添加5%碳化硅的产油量和残渣量都最大,无微波吸收剂的产气量最大。
     通过热重分析仪对纯小球藻与煤的混合热解特性的研究,得出:小球藻与煤的混合物的主要热解区域为172~600℃,接近纯小球藻的热解区域,但与煤的不同;小球藻与煤在固固相的混合热解中不存在协同作用,且当温度高于550℃时小球藻阻碍煤的热解;主要热解区域的平均反应速率、最终的残留物产量和混合物中小球藻的含量近似直线关系;采用KAS方法和FWO方法得到混合物活化能的范围分别为320.77~416.01kJ/mol和312.89~421.19kJ/mol,其中混合比为5:5时活化能最小。
     利用热重分析仪,研究小球藻在不同富氧气氛下的燃烧特性,得出:第二阶段是小球藻的主要燃烧段;燃烧的DTG曲线有三个明显的峰,第一个峰的失重速率最大;小球藻主要矿物质含量为硫、钾、磷、氯、镁和钙,矿物质含量对失重速率的影响较小;随着氧气浓度的增加,点燃温度、燃尽温度以及残渣产量都有减小的趋势,而最大失重速率却增大;随着升温速率的增加,点燃温度、峰值点所对应的升温速率以及残留物产量有增大的趋势;在氧气浓度为20vol.%~80vol.%时,小球藻的活化能为134.28~241.69kJ mol-1;小球藻燃烧的最佳氧气浓度为25vol~35vol.%。
     利用生命周期评价方法,通过对燃煤机组采用富氧燃烧技术与采用燃烧后回收CO_2技术进行发电的能源消耗和污染物排放进行比较和分析,并对回收的CO_2用于微藻的培养进行探讨,得出:采用富氧燃烧技术比燃烧后回收CO_2技术每发电1kWh的生命周期中多消耗0.065MJ的能量,系统的发电效率下降了0.17%;采用富氧燃烧技术发电1kWh的环境影响负荷为9.06382mPET2000,比采用燃烧后回收CO_2技术的负荷减小了4.61%;300MW富氧燃煤发电机组收集的CO_2用于微藻的培养,则每天可生产出1728.99吨的微藻。
There is an abundant of biomass resources on the earth. Exploiting and using biomassresources cannot only ease the energy crisis arising as a result of economic development, butalso mitigate environmental problems. The first generation biofuels, which are generated fromfood and oil crops, have some shortcoming, such as small biological yield, the occupation ofcultivated land. Besides, the weather is seriously than before and the rapid economic growthdemand more energy. All above mentioned promotes more experts and scholars to focus onsecond generation biofuels—microalgae.
     Compared with traditional biofuels, microalgae have high fat content, fast growth andshort growth cycle, a strong environmental adaptability, no occupation of cultivated land andreduction of carbon dioxide emission, etc. Thus, microalgae are recognized as the mostpotential alternative to fossil fuels. Many countries in the world are dedicated to study thetechnology of microalgae biomass.
     This paper studied the characteristics of a green freshwater microalgae—Chlorellavulgaris by an improved drying oven, thermal gravimetric analysis and microwave heatingequipment, etc. The two types of coal-fired power generation system with CO_2capturetechnology are analysis and evaluation by a life cycle assessment method, and using capturedCO_2captured to cultivate microalgae was explored. Many useful conclusions can be obtainedfrom this paper.
     Drying characteristics of Chlorella vulgaris under different moisture content, drythickness and the drying temperature were studied. The fitting results of ten common thin-layerdrying model showed that “Two term model” is the best one. The effective moisture diffusioncoefficient of Chlorella vulgaris is3.36×10~(-9)-2.23×10~(-8)m~2/s. With the increase of temperature,the effective moisture diffusion coefficient is increased. The values of activation energy andpre-exponential factor of Chlorella vulgaris are E_a=34.12kJ/mol and D0=5.30×10~(-4)m~2/s,respectively.
     The impact of microwave power, reaction atmosphere, microwave absorber, activatedcarbon addition, the solid residue addition and the amount of raw materials on the microwavepyrolysis of Chlorella vulgaris are studied. The results showed that, in N2atmosphere, themaximum oil production and weight loss per unit microwave power were obtained under thepower of1500W; The maximum gas production and residues production were obtained underthe power of2250W and750W, respectively; Without microwave absorbent, the bio-oil production was maximum, after adding microwave absorber, the best catalytic effect wasactivated carbon, followed by calcium oxide; The catalytic effect of the silicon carbide wasclose to the effect of solid residues; Oil production was maximum by adding3%activatedcarbon, residue production is maximum by adding10%activated carbon, the maximum gasproduction and weight loss is obtained by adding5%activated carbon; The maximum averagetemperature rising rate and the bio-gas production is obtained by adding5%solid residues, thelargest bio-oil production is obtained from pure samples, the maximum weight loss is obtainedby adding20%solid residue; The maximum gas production, the smallest residues production,the largest residue production and the maximum weight loss were obtained when using dosagesof Chlorella vulgaris sample were25g,35g,20g and35g, respectively; When the dosages ofChlorella vulgaris sample was15g, the unit solid, liquid and gas production was maximum. InCO_2atmosphere, maximum yield of solid, liquid and gas was at power of750W. Themaximum oil and residues productions were obtained by adding5%silicon carbide, themaximum gas production was obtained with no microwave absorber.
     Co-pyrolysis characteristics of Chlorella vulgaris and coal were studied by thermalgravimetric analysis. The results showed that the main pyrolysis zone of blends was172-600°C,which close to that of pure Chlorella vulgaris, but different from coal; Chlorella vulgaris andcoal did not exist synergy in the solid-solid phase during their co-pyrolysis. When thetemperature was higher than550°C, Chlorella vulgaris can hinder pyrolysis of coal; Theaverage reaction rate of the main pyrolysis stage and the final residue yield were approximatelystraight line relationship with the content of Chlorella vulgaris in the blend; The activationenergy of blends calculated by KAS method was in the range of320.77-416.01kJ/mol, and byFWO method,312.89-421.19kJ/mol. The activation energy of50%Chlorella vulgaris/50%coal is minimum.
     The combustion characteristics of Chlorella vulgaris under different oxygenconcentrations were studied by thermal gravimetric analyzer. The results showed that thesecond stage was the main de-volatilization and combustion stage; The DTG curves ofChlorella vulgaris had three obvious peaks, and the weight loss rate was maximum at the firstpeak; The main elemental constituents of Chlorella vulgaris minerals were sulfur, potassium,phosphorus, chlorine, magnesium and calcium, the influence of mineral matter content on theweight loss of Chlorella vulgaris is small; As the oxygen concentration increased, the ignitiontemperature, the final combustion temperature and the residue mass of Chlorella vulgaristended to decrease, while the maximum reaction rates increased; With the increase of theheating rate, the ignition temperature, the weight loss rate of the peaks and the residual mass of Chlorella vulgaris combustion tended to increase; When the oxygen concentrations rangingfrom20vol.%to80vol.%, the activation energy were134.28-241.69kJ mol-1; The optimaloxygen concentration for oxygen-enriched combustion of Chlorella vulgaris was25-35vol.%.
     Two CO_2capture technologies, oxy-fuel combustion technology and post combustioncapture technology used in the300MW coal-fired power generation units were studied by a lifecycle assessment method. The energy consumption and pollutant emissions of the powergeneration system with oxy-fuel capture technology in a life cycle were carried out, and theresults compared with post combustion capture technology. The CO_2captured from the powergeneration system with oxy-fuel capture technology used to culture microalgae was discussed.The results showed that the oxy-fuel combustion system to generate1kWh of electricity in alife cycle consumed more energy (0.065MJ) than post combustion capture system, and theefficiency of the system was less0.17%than post combustion capture system; Environmentalimpact load of oxy-fuel combustion system to generate1kWh of electricity was9.06382mPET2000, which was less4.61%than post combustion capture system; When CO_2capturedfrom300MW oxy-fuel combustion power generation system was used to cultivate microalgae,the production of microalgae was1728.99t/d.
引文
[1] Hossain A. K. and Badr O. Prospects of renewable energy utilisation for electricitygeneration in Bangladesh[J]. Renewable&Sustainable Energy Reviews,2007,11(8):1617-1649.
    [2] Haykiri-Acma H.Yaman, S.Kucukbayrak, S. Effect of heating rate on the pyrolysis yieldsof rapeseed[J]. Renewable Energy,2006,31(6):803-810.
    [3]赵由才.实用环境工程手册固体废物污染控制与资源化[M].化学工业出版社环境科学与工程出版中心,2002:618-622.
    [4]刘洪贞.小麦秸秆微波热解产物特性研究[J].山东大学硕士学位论文,2010,1-65.
    [5] Zou Shuping Wu Yulong, Yang Mingde,Et Al. Pyrolysis characteristics and kinetics ofthe marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer[J]. BioresourceTechnology,2010,101(1):359-365.
    [6] Sun Z. A., Shen J. Z., Jin B. S., et al. Combustion characteristics of cotton stalk in FBC[J].Biomass&Bioenergy,2010,34(5):761-770.
    [7]赵希强.农作物秸秆微波热解实验及机理研究[D].济南,山东大学博士学位论文,2010:1-173.
    [8] Shoujie Ren, Hanwu Lei, Lu Wang,et al. Biofuel production and kinetics analysis formicrowave pyrolysis of Douglas fir sawdust pellet [J]. Journal of Analytical and AppliedPyrolysis2012,1-7(In Press).
    [9]徐婧.生物质燃烧过程中碱金属析出的实验研究[D].浙江大学,硕士学位论文,2006:15.
    [10]陈洪章.生物质科学与工程[M].北京:化学工业出版社,2008:7.
    [11]王凤显.生物质(稻壳)微波热解研究[D].安徽理工大学,硕士学位论文,2008:1-97.
    [12]付祥钊.可再生能源在建筑中的应用[M].中国建筑工业出版社2009:223-224.
    [13]严宏强,程钧培,都兴有等.中国电气工程大典第4卷火力发电工程下[M].中国电力出版社,2009:1617.
    [14]田宜水主编.生物质发电[M].北京:化学工业出版社,2010:6-7.
    [15]北京土木建筑学会,北京科智成市政设计咨询有限公司.新农村建设生物质能利用[M].中国电力出版社,2008:45-46.
    [16]米铁,唐汝江,陈汉平,等.生物质能利用技术及研究进展[J].煤气与热力,2004,24(12):701-705.
    [17] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels andchemicals[J]. Energy Conversion and Management,2001,42(11):1357-1378.
    [18]闵凡飞.新鲜生物质热解气化制富氢燃料气的基础研究[M].中国矿业大学出版社,2008:11-12.
    [19]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003:
    [20]张晓东.生物质热解气化及热解焦油催化裂化机理研究[D].浙江大学,博士学位论文,2003.
    [21]赵由才,牛冬杰,柴晓利,等.固体废物处理与资源化[M].化学工业出版社,2006:243.
    [22]张建安,刘德华.生物质能源利用技术[M].化学工业出版社,2009:11.
    [23]蒋剑春.生物质能源应用研究生现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [24]姚向君,田宜水.生物质能资源清洁转化利用技术[M].化学工业出版社,2005:13.
    [25]程林.能量之源能源卷[M].山东科学技术出版社,2007:180-181.
    [26]杨德红,杨本勇,李慧等.绿色化学[M].黄河水利出版社,2008:180-181.
    [27] Amano K. Kita, S. Okada, H. Sekino,et al. Thermal pre-treatment of wet microalgaeharvest forefficient hydrocarbon recovery[J]. Applied Energy,2010,87(7):2420-2423.
    [28] Demirbas Ayhan. Competitive liquid biofuels from biomass[J]. Applied Energy,2011,88(1):17–28.
    [29]马帅,胡小文,付莉莉,等..不同碳、氮源对优势藻株Hhw总脂含量及脂肪酸成分的影响[J].中国农学通报,2011,27(12):232-237.
    [30]吕素娟,张维,彭小伟,等.城市生活废水用于产油微藻培养[J].生物工程学报,2011,27(3):445-452.
    [31]李玉芳,伍小明.利用微藻开发生物能源前景广阔[J].精细化工原料及中间体,2010,6):15-18.
    [32] Gouveia L, Oliveira A. C. Microalgae as a raw material for biofuels production[J].Journal of Industrial Microbiology&Biotechnology,2009,36(2):269-274.
    [33]童牧,周志刚.新一代生物柴油原料——微藻[J].科学研究,2009,of19-26.
    [34]郑洪立,张齐,马小琛,等.产生物柴油微藻培养研究进展[J].中国生物工程杂志,2009,29(3):110-116.
    [35] Zhenyi Du, Yecong Li, Xiaoquan Wang, et al.. Microwave-assisted pyrolysis ofmicroalgae for biofuel production[J]. Bioresource Technology,2011,102(7):4890–4896.
    [36]宋东辉,侯李君,施定基..生物柴油原料资源高油脂微藻的开发利用[J]..生物工程学报,2008,24(3):341-348.
    [37]李玉芳,伍小明.利用微藻开发生物能源前景广阔[J].精细化工原料及中间体,2010,6:15-18.
    [38] Phukan M. M., Chutia R. S., Konwar B. K., et al. Microalgae Chlorella as a potentialbio-energy feedstock[J]. Applied Energy,2011,88(10):3307-3312.
    [39] Dragone G., Fernandes B. D., Abreu A. P., et al. Nutrient limitation as a strategy forincreasing starch accumulation in microalgae[J]. Applied Energy,2011,88(10):3331-3335.
    [40] Huang G. H., Chen F., Wei D., et al. Biodiesel production by microalgal biotechnology[J].Applied Energy,2010,87(1):38-46.
    [41] Amaro H. M., Guedes A. C, Malcata F. X. Advances and perspectives in usingmicroalgae to produce biodiesel[J]. Applied Energy,2011,88(10):3402-3410.
    [42] Jae-Yon Lee, Chan Yoo, So-Young Jun, et al. Comparison of several methods foreffective lipid extraction from microalgae[J]. Bioresource Technology,2010,101(1): S75-S77.
    [43] Mata T. M. Martins, A. A. Caetano, N. S. Microalgae for biodiesel production and otherapplications: A review[J]. Renewable&Sustainable Energy Reviews,2010,14(1):217-232.
    [44]李环,王翠,王钦琪,等.高密度培养小球藻去除CO2的研究[J].环境科学与技术,2011,34(11):64-69.
    [45]刘振强,陆向红,晏荣军,等.高密度高含油率微藻培养研究进展[J].农业工程学报,2011,27(增1):210-217.
    [46]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源,2003,109):13-16.
    [47]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源,2003,109(3):13~16.
    [48]杨忠华,李方芳,曹亚飞,等.微藻减排CO2制备生物柴油的研究进展[J].生物加工过程,2012,10(1):70-76.
    [49]李健,张学成,胡鸿钧,等.微藻生物技术产业前景和研发策略分析[J].科学通报,2012,57(1):23-31.
    [50]李岩周文广,张晓东,等.微藻资源的综合开发与应用[J].山东科学,2010,23(4):84-87.
    [51]李健,王广策.微藻生物技术在二氧化碳减排和生物柴油生产中的应用研究进展[J].海洋科学,2011,35(7):122-129.
    [52]吴加武.试论煤化工发展中的C02减排[J].石油化工技术与经济,2011,27(6):53-56.
    [53]徐少琨,张峰,向文洲,等.微藻应用于煤炭烟气减排的研究进展[J].地球科学进展,2011,26(9):944-953.
    [54]梅洪,张成武,殷大聪,等.利用微藻生产可再生能源研究概况[J].武汉植物学研究,2008,26(6):650-660.
    [55]钱伯章..海藻生产乙醇和生物柴油燃料成新宠[J]..可再生能源,2007,25(3):101-105.
    [56] William J. Oswald Claeence G. Golueke. Biological transformations of solar energy [J].Advances in Applied Microbiology,1960,2(of223-262.
    [57]张璐瑶,李雪静.利用微藻制备生物燃料现状及应用前景[J].润滑油与燃料,2009,19(5-6):15-18.
    [58]康少锋李伟.微藻固碳研究现状及发展思路[J].生物产业技术,2011,6):22-27.
    [59] Chisti Y. Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology,2008,26(3):126-131.
    [60] Pencreach G., Poisson L., Soultani S., et al. Use of lipases for the production of aDHA-rich lipid fraction from the microalgae Isochrysis galbana[J]. Journal of Biotechnology,2007,131(2): S77-S78.
    [61] Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances,2007,25(3):294-306.
    [62]丹山市科技局. GreenFuel公司在燃煤电厂试验海藻系统[N].环球能源网,2008.
    [63]李臣.微藻生物柴油研究进展[J].安徽农业科学,2010,38(27):15208-15210.
    [64]钟春燕.美国国际能源公司启动“海藻变油”研发计划[N].环球能源网,2007.
    [65]任庆生,龙慧敏.微生物固碳制造新物质能源技术研究进展[J].天然气化工,2011,36(2):64-69.
    [66]顾永强,李艳.藻类能源将走出实验室[N].中国石化新闻网,2011.
    [67]黄英明,王伟良,李元广,等.微藻能源技术开发和产业化的发展思路与策略[J].生物工程学报,2010,26(7):907-913.
    [68]摘编.二氧化碳回收利用于微藻培养[J].化学工业与工程,2011,2):28.
    [69]毕新忠.二氧化碳的“绿色”前景[J].世界环境,2011,5:36-38.
    [70]高永钰.微藻将成为生物柴油的主要原料[N].第一财经日报,2010.07
    [71] Wahlund B., Yan J. Y. and Westermark M. A total energy system of fuel upgrading bydrying biomass feedstock for cogeneration: a case study of Skelleftea bioenergy combine [J].Biomass&Bioenergy,2002,23(4):271-281.
    [72] Liang T., Khan M. A, Meng Q. Spatial and temporal effects in drying biomass forenergy[J]. Biomass&Bioenergy,1996,10(5-6):353-360.
    [73] Bridgwater J.G, Brammer, A.V. The influence of feedstock drying on the performanceand economics of a biomass gasifier–engine CHP system [J]. Biomass and Bioenergy,2002,22(4):271-281.
    [74] Johansson A., Fyhr C. and Rasmuson A. High temperature convective drying of woodchips with air and superheated steam[J]. International Journal of Heat and Mass Transfer,1997,40(12):2843-2858.
    [75]曹崇文.农产品干燥机理、工艺与技术[M].北京:中国农业大学出版社,1998:177.
    [76]裴静.南瓜籽薄层干燥和振动流化干燥特性的试验研究[D].中国农业大学,硕士学位论文,2001:7.
    [77]吉永奇.金银花干燥特性及工艺参数研究[J].硕士学位论文,2008:1-49.
    [78] Togrul I. T. and Pehlivan D. Mathematical modelling of solar drying of apricots in thinlayers[J]. Journal of Food Engineering,2002,55(3):209-216.
    [79] Wang Z. F., Sun J. H., Chen F., et al. Mathematical modelling on thin layer microwavedrying of apple pomace with and without hot air pre-drying[J]. Journal of Food Engineering,2007,80(2):536-544.
    [80] Bruce D.M. Exposed-layer barley drying: Three models fitted to new data up to150°C[J].Journal of Agricultural Engineering Research,1985,32(4):337-348.
    [81] Page G. E. Factors influencing the maximum rates of air drying shelled corn in thinlayer [D].Purdue University, Masters.
    [82] White G. M., Ross, I. J.,&Ponelert, R. Fully exposed drying of popcorn[J]. Transactionsof the ASAE,1981,24:466–468.
    [83] Henderson S. M.,&Pabis, S. Grain drying theory. II. Temperature effects on dryingcoefficients[J]. Journal of Agricultural Engineering Research,1961,6:169–174.
    [84] Henderson S. M. Progress in developing the thin layer drying equation[J]. Transactionsof the ASAE,1974,17:1167–1168.
    [85] Yaldiz O., Ertekin C. and Uzun H. I. Mathematical modeling of thin layer solar drying ofsultana grapes[J]. Energy,2001,26(5):457-465.
    [86] Sharaf-Elden Y. I, Blaisdell Jl, Hamdy My. A model for ear corn drying[J]. Transactionsof the ASAE,1980,5:1261-1265.
    [87] Wang C. Y.,&Singh, R. P. Use of variable equilibrium moisture content in modeling ricedrying[J]. Transactions of American Society of Agricultural Engineers,1978,11:668–672.
    [88] Diamante L. M.,&Munro, P. A. Mathematical modeling of hot air drying of sweetpotato slices[J]. International Journal of Food Science and Technology,1991,26:99.
    [89] Meziane S. Drying kinetics of olive pomace in a fluidized bed dryer[J]. EnergyConversion and Management,2011,52(3):1644-1649.
    [90] Desmorieux H. and Decaen N. Convective drying of spirulina in thin layer[J]. Journal ofFood Engineering,2005,66(4):497-503.
    [91]徐娓,丁静,赵义,等.生姜低温吸附干燥特性及最佳工艺条件的研究[J].农产品加工·学刊,2007,6:24-26.
    [92]王补宣,著.传热学[M].北京:科学出版社,2002.
    [93] Tutuncu M. A. and Labuza T. P. Effect of geometry on the effective moisture transferdiffusion coefficient[J]. Journal of Food Engineering,1996,30(3-4):433-447.
    [94] Jaruk Srikiatden, John S. Roberts. Predicting moisture profiles in potato and carrotduring convective hot air drying using isothermally measured effective diffusivity [J]. Journalof Food Engineering,2008,84:516–525.
    [95] Buckle Ponciano S. Madamba,Robert H. Driscoll,Ken A. The Thin-layer DryingCharacteristics of Garlic Slices[J]. Journal of Food Engineering1996,29(1):75-97.
    [96]和进娜,徐庆,苏伟光,等.微波干燥技术的应用研究[J].机电信息,2006,29(137):55-56.
    [97]舒静,任丽丽,张铁珍,等.微波辐射在催化剂制备中的应用[J].化工进展,2008,27(3):352-357.
    [98]张倩林炜.微波辐照对生物质影响的研究进展[J].皮革科学与工程,2008,18(1):34-39.
    [99] Cristina Bilbao-Sáinz Michael Butler, Tony Weaver, Julian Bent. Wheat starchgelatinization under microwave irradiation and conduction heating[J]. Carbohydrate Polymers,2007,69(1):224-232.
    [100]王涛.整包桔秆微波热解特性试验研究[D].山东大学,硕士学位论文,2008:1-71.
    [101]赵希强,宋占龙,王涛,等.微波技术用于热解的研究进展[J].化工进展,2008,27(12):1873-1881.
    [102] L. Bilali M. Benchanaa, K. El Harfi, A. Mokhlisse, A. Outzourhit. A detailed study ofthe microwave pyrolysis of the Moroccan(Youssoufia) rock phosphate[J]. Journal ofAnalytical and Applied Pyrolysis,2005,73(1):1-15.
    [103] Huang Y. F., Kuan W. H., Lo S. L., et al. Hydrogen-rich fuel gas from rice straw viamicrowave-induced pyrolysis[J]. Bioresource Technology,2010,101(6):1968-1973.
    [104]罗爱香.竹废料微波裂解及其产物性质的研究[D].南昌大学,硕士研究生学位论文,2007:1-77.
    [105] A. Dom′Nguez,J.A. Mene′Ndez,Y. Ferna′Ndez,et al. Conventional and microwaveinduced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal ofAnalytical and Applied Pyrolysis,2007,79(1-2):128–135.
    [106] Parisa Monsef-Mirzai, Mythili Ravindran, William R. McWhinnie, e t al. Rapidmicrowave pyrolysis of coal [J]. Fuel,1995,74(1):20-27.
    [107] Masakatsu Miura, Harumi Kaga, Akihiko Sakurai, et al. Rapid pyrolysis of wood blockby microwave heating [J]. Journal of Analytical and Applied Pyrolysis,2004,71(1):187-199.
    [108] Rozita Omar A. Idris, R. Yunus, K. Khalid, et al.. Characterization of empty fruit bunchfor microwave-assisted pyrolysis[J]. Fuel,2011,90(4):1536-1544.
    [109]李瑞贞.竹废料微波辅助裂解制备生物柴油抗氧化剂的研究[D].南昌大学,硕士研究生学位论文:1-81.
    [110] J.A. Menéndez, A. Arenillas, B. Fidalgo, et al. Microwave heating processes involvingcarbon materials[J]. Fuel Processing Technology,2010,91(1):1-8.
    [111] R. Santaniello, A. Galgano, C. Di Blasi. Coupling transport phenomena and tar crackingin the modeling of microwave-induced pyrolysis of wood[J]. Fuel,2012,1-19(In Press).
    [112] Jia Guo, Aik Chong Lua. Preparation of activated carbons from oil-palm-stone charsmicrowave-induced carbon dioxide activation [J]. Carbon,2000,38:1985–1993.
    [113] Wei Zuo, Yu Tian, Nanqi Ren. The important role of microwave receptors in bio-fuelproduction by microwave-induced pyrolysis of sewage sludge[J]. Waste Management,2011,31(6):1321-1326.
    [114] K. El harfi, A. Mokhlisse, M.B. Chana a, et al. Pyrolysis of the Moroccan (Tarfaya) oilshales under microwave irradiation[J]. Fuel,2000,79:733–742.
    [115]杨昌炎,吴祯祯郑冬洁,等.玉米秸秆微波热解研究[J].武汉工程大学学报,2011,33(6):20-23.
    [116] Lou R. and Wu S. B. Products properties from fast pyrolysis of enzymatic/mildacidolysis lignin[J]. Applied Energy,2011,88(1):316-322.
    [117] Scott Grierson, Vladimir Strezov, Gary Ellem,et al. Thermal characterisation ofmicroalgae under slow pyrolysis conditions[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):118-123.
    [118] Xiaoling Miao, Qingyu Wu, Changyan Yang. Fast pyrolysis of microalgae to producerenewable fuels.[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):855-863.
    [119] Weimin Peng, Qingyu Wu, Pingguantu, et al. Pyrolytic characteristics of microalgae asrenewable energy source determined by thermogravimetric analysis[J]. bioresourcetechnology,2001,80(1):1-7.
    [120]邹树平,吴玉龙,杨明德,等.微藻热解特性及其动力学分析[J].燃烧科学与技术,2007,13(4):330-334.
    [121] Dong Kyoo Park,Sang Done Kim,See Hoon Lee,et al. Co-pyrolysis characteristics ofsawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology,2010,101(15):6151–6156.
    [122] H. Haykiri-Acma, S. Yaman. Interaction between biomass and different rank coalsduring co-pyrolysis[J]. Renewable Energy,2010,35(1):288–292.
    [123] Zhang L., Xu S. P., Zhao W., et al. Co-pyrolysis of biomass and coal in a free fallreactor[J]. Fuel,2007,86(3):353-359.
    [124] A.A. Zuru, S.M. Dangoggo, U.A. Birnin-Yauri, et al.. Adoption of thermogravimetrickinetic models for kinetic analysis of biogas production [J]. Renewable Energy,2004,29(1):97-107.
    [125] Xiao, H. M., Ma, X. Q., Lai, Z. Y. Isoconversional kinetic analysis of co-combustion ofsewage sludge with straw and coal [J]. Applied Energy,2009,86(9):1741-1745.
    [126] Junmeng Cai, Ronghou Liu. Kinetic analysis of solid-state reactions: Precision of theactivation energy obtained from one type of integral methods without neglecting the lowtemperature end of the temperature integral [J]. Solid State Sciences,2008,10(5):659-663.
    [127] Tanaka Haruhiko. Thermal analysis and kinetics of solid state reactions[J].Thermochimica Acta,1995,267(1):29-44.
    [128] Banjong Boonchom, Spote Puttawong. Thermodynamics and kinetics of thedehydration reaction of FePO4.2H2O [J]. Physica B,2010,405(9):2350-2355.
    [129] A. Aboulkas, K. El harfi, M. Nadifiyine, A. El bouadili. Investigation on pyrolysis ofMoroccan oil shale/plastic mixtures by thermogravimetric analysis [J]. Fuel processingTechnology,2008,89(11):1000-1006.
    [130] Aboulkas A,El Harfik,El Bouadilia. Pyrolysis of olive residue/low densitypolyethylene mixture: Part I Thermogravimetric kinetics [J]. Journal of Fuel Chemistry andTechnology,2008,36(6):672-678.
    [131] Zhou L. M., Wang Y. P., Huang Q. W., et al. Thermogravimetric characteristics andkinetic of plastic and biomass blends co-pyrolysis [J]. Fuel Processing Technology,2006,87(11):963-969.
    [132] Darmstadt H., Garcia-Perez M., Chaala A., et al. Co-pyrolysis under vacuum of sugarcane bagasse and petroleum residue-Properties of the char and activated char products [J].Carbon,2001,39(6):815-825.
    [133] Idris S. S., Rahman N. A., Ismail K., et al. Investigation on thermochemical behaviourof low rank Malaysian coal, oil palm biomass and their blends during pyrolysis viathermogravimetric analysis (TGA)[J]. Bioresource Technology,2010,101(12):4584-4592.
    [134] Vuthaluru H. B. Thermal behaviour of coal/biomass blends during co-pyrolysis[J]. FuelProcessing Technology,2004,85(2-3):141-155.
    [135] Vuthaluru H. B. Investigations into the pyrolytic behaviour of coal/biomass blendsusing thermogravimetric analysis [J]. Bioresource Technology,2004,92(2):187-195.
    [136] Kakaras E. Kastanaki, D. Vamvuka, P. Grammelis, E. Thermogravimetric studies of thebehavior of lignite–biomass blends during devolatilization [J]. Fuel Processing Technology,2002,77-78:159-166.
    [137] Anup Kumar Sadhukhan, Parthapratim Gupta, Tripurari Goyal, et al. Modelling ofpyrolysis of coal–biomass blends using thermogravimetric analysis[J]. BioresourceTechnology,2008,99(17):8022–8026.
    [138] Scott S. A., Dennis J. S., Davidson J. F., et al. Thermogravimetric measurements of thekinetics of pyrolysis of dried sewage sludge[J]. Fuel,2006,85(9):1248-1253.
    [139] Jeguirim M. and Trouve G. Pyrolysis characteristics and kinetics of Arundo donax usingthermogravimetric analysis[J]. Bioresource Technology,2009,100(17):4026-4031.
    [140] Park Y. H., Kim J., Kim S. S., et al. Pyrolysis characteristics and kinetics of oak treesusing thermogravimetric analyzer and micro-tubing reactor [J]. Bioresource Technology,2009,100(1):400-405.
    [141] Maiti S., Purakayastha S. and Ghosh B. Thermal characterization of mustard straw andstalk in nitrogen at different heating rates [J]. Fuel,2007,86(10-11):1513-1518.
    [142] Demirbas M. F. Biorefineries for biofuel upgrading: A critical review[J]. AppliedEnergy,2009,86: S151-S161.
    [143] Fang M. X., Shen D. K., Li Y. X., et al. Kinetic study on pyrolysis and combustion ofwood under different oxygen concentrations by using TG-FTIR analysis [J]. Journal ofAnalytical and Applied Pyrolysis,2006,77(1):22-27.
    [144] Luo S. Y., Xiao B., Hu Z. Q., et al. Experimental study on oxygen-enriched combustionof biomass micro fuel[J]. Energy,2009,34(11):1880-1884.
    [145] Yu Z. S., Ma X. Q. and Liu A. Thermogravimetric analysis of rice and wheat strawcatalytic combustion in air-and oxygen-enriched atmospheres [J]. Energy Conversion andManagement,2009,50(3):561-566.
    [146] Yu Z. S., Ma X. Q. and Ao L. Kinetic studies on catalytic combustion of rice and wheatstraw under air-and oxygen-enriched atmospheres, by using thermogravimetric analysis [J].Biomass&Bioenergy,2008,32(11):1046-1055.
    [147] Sanchez M. E., Otero M., Gomez X., et al. Thermogravimetric kinetic analysis of thecombustion of biowastes [J]. Renewable Energy,2009,34(6):1622-1627.
    [148]马孝琴.秸秆燃烧过程中碱金属问题研究的新进展[J].水利电力机械,2006,28(12):28-34.
    [149] K. Raveendran, Anuradda Ganesh and Kartic C. Influence of mineral matter on biomasspyrolysis characteristics[J]. Fuel,1995,74(12):1812-1822.
    [150] Xiaolin Wei, Uwe Schnell, Klaus R.G. Hein. Behaviour of gaseous chlorine and alkalimetals during biomass thermal utilization[J]. Fuel2005,84(7-8):841-848.
    [151]余春江,骆仲泱,张文楠,等.碱金属及相关无机元素在生物质热解中的转化析出[J].燃料化学学报,2000,28(5):420-425.
    [152] Liao Yanfen, Ma Xiaoqian. Thermogravimetric analysis of the co-combustion of coaland paper mill sludge [J]. Applied Energy,2010:1-7.
    [153] Liu N. A., Fan W. C., Dobashi R., et al. Kinetic modeling of thermal decomposition ofnatural cellulosic materials in air atmosphere [J]. Journal of Analytical and Applied Pyrolysis,2002,63(2):303-325.
    [154] Munir S., Daood S. S., Nimmo W., et al. Thermal analysis and devolatilization kineticsof cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres [J].Bioresource Technology,2009,100(3):1413-1418.
    [155] Liu G. H., Ma X. Q. and Yu Z. S. Experimental and kinetic modeling ofoxygen-enriched air combustion of municipal solid waste [J]. Waste Management,2009,29(2):792-796.
    [156]王春波陈传敏.循环流化床富氧燃烧下飞灰的碳酸化[J].中国电机工程学报,2008,28(29):54.
    [157]段伦博,赵长遂,李英杰,等. O2/CO2气氛下烟煤燃烧过程中S的析出特性[J].中国电机工程学报,2008,28(35):8-13.
    [158] Sjostrom S. and Krutka H. Evaluation of solid sorbents as a retrofit technology for CO2capture [J]. Fuel,2010,89(6):1298-1306.
    [159]张树伟,刘德顺.碳固存技术的现状与发展[J].环境科学动态,2005(4):25-27.
    [160] Keywan Riahi,Edward S. Rubin,Leo Schrattenholzer. Prospects for carbon capture andsequestration technologies assuming their technological learning [J]. Energy,2004,29(9-10):1309-1318.
    [161]张炜李义连.二氧化碳储存技术的研究现状和展望[J].环境污染与防治,2006,28(12):950-953.
    [162]杨闯,岳丽宏,康阿青.微生物固定高浓度CO2技术的研究进展[J].青岛理工大学学报,2012,33(1):75-79.
    [163]杨忠华,陈明明,曾嵘,等.利用微藻技术减排二氧化碳的研究进展[J].现代化工,2008,28(8):15-19.
    [164]苏鸿洋,周雪飞,夏雪芬,等.二氧化碳减排产柴油微藻培养体系研究进展[J].生物工程学报,2011,27(9):1268-1280.
    [165] Wall T., Liu Y. H., Spero C., et al. An overview on oxyfuel coal combustion-State of theart research and technology development [J]. Chemical Engineering Research&Design,2009,87(8A):1003-1016.
    [166] Hao Liu Ramlan Zailani, Bernard M. Gibbs. Comparisons of pulverized coalcombustion in air and in mixtures of O2/CO2[J]. Fuel,2005,84(7-8):833–840.
    [167] Hao Liua Ramlan Zailanib, Bernard M. Gibbs. Pulverized coal combustion in air and inO2/CO2mixtures with NOx recycle [J]. fuel,2005,84(16):2109–2115.
    [168] Huang Jyh-Cherng Chen,Zhen-Shu Liu,Jian-Sheng. Emission characteristics of coalcombustion in different O2/N2,O2/CO2and O2/RFG atmosphere [J]. Journal of HazardousMaterials2007,142(1-2):266-271.
    [169] Sofia Ahlroth, M ns Nilsson, G ran Finnveden, et al. Weighting and valuation inselected environmental systems analysis tools-suggestions for further developments [J].Journal of Cleaner Production,2011,19(2-3):145-156.
    [170] Pehnt M. and Henkel J. Life cycle assessment of carbon dioxide capture and storagefrom lignite power plants [J]. International Journal of Greenhouse Gas Control,2009,3(1):49-66.
    [171] Odeh N. A. and Cockerill T. T. Life cycle analysis of UK coal fired power plants [J].Energy Conversion and Management,2008,49(2):212-220.
    [172] Odeh N. A. and Cockerill T. T. Life cycle GHG assessment of fossil fuel power plantswith carbon capture and storage [J]. Energy Policy,2008,36(1):367-380.
    [173] Koornneef J., Van Keulen T., Faaij A., et al. Life cycle assessment of a pulverized coalpower plant with post-combustion capture, transport and storage of CO2[J]. InternationalJournal of Greenhouse Gas Control,2008,2(4):448-467.
    [174] Anna Korre Zhenggang Nie, Sevket Durucan. Life cycle modelling of fossil fuel powergeneration with post combustion CO2capture [J]. Energy Procedia,2009,1(1):3771-3778.
    [175] Azapagic Adisa. Life cycle assessment and its application to process selection, designand optimization [J]. Chemical Engineering Journal,1999,73(1):1-21.
    [176]孙启宏,万年青,范与华.国外生命周期评价LCA综述[J].世界标准化与质量管理,2002,12:24-25.
    [177] ISO14040. ISO14040Environment Management-Life Cycle Assessment-Principlesand Framework [M]. International Organization for Standardization,1997.
    [178] Kl pffer Walter. The role of SETAC in the development of LCA [J]. The InternationalJournal of Life Cycle Assessment,2006,11:116-122.
    [179] ISO. Environmental Management. Life Cycle Assessment. Principle and Framework.ISO14040:2006[M]. Geneva, CH.:2006:
    [180] Liu Y. X., Langer V., Hogh-Jensen H., et al. Life Cycle Assessment of fossil energy useand greenhouse gas emissions in Chinese pear production [J]. Journal of Cleaner Production,2010,18(14):1423-1430.
    [181]米翠丽,阎维平,孔凡卓.富氧燃烧技术在锅炉节能方面的应用探讨[J].洁净煤技术,2009,15(1):63-66.
    [182] Yan Wei-Ping, Mi Cui-Li. Economic Analysis of a300MW Utility Boiler withOxygen-enriched Combustion [J]. Journal of Chinese Society of Power Engineering,2010,30(3):184-191.
    [183] Christopher A. Bolin, Stephen Smith. Life cycle assessment of ACQ-treated lumberwith comparison to wood plastic composite decking [J]. Journal of Cleaner Production,2011,19(6-7):620-629.
    [184] EN ISO14040. Environmental management-Life cycle assessment-Principles andframework (ISO14040:2006)[S]. Worldwide for CEN national Members,2006.
    [185] Wang Yun, Zhao Yongchun, Zhang Junying, et al. Technical-economic evaluation ofO2/CO2recycle combustion power plant based on life-cycle [J]. Science China TechnicalSciences,2010,53(12):3284–3293.
    [186]Liang Z. Y, Ma, X. Q, Lin, H, et al. The energy consumption and environmental impactsof SCR technology in China [J]. Applied Energy,2011,88(4):1120-1129.
    [187]姜子英.我国核电与煤电的外部成本研究[D].清华大学,工学博士学位论文,2008:1-195.
    [188]张智慧李小冬,王帅,等.预拌混凝土生命周期环境影响评价[J].土木工程学报,2011,44(1):132-138.
    [189] Imo Pfaff, Alfons Kather. Comparative Thermodynamic Analysis and Integration Issuesof CCS Steam Power Plants Based on Oxy-Combustion with Cryogenic or Membrane BasedAir Separation [J]. Energy Procedia,2009,1(1):495-502.
    [190]冯超,马晓茜.秸秆直燃发电的生命周期评价[J].太阳能学报,2008,29(6):711-715.
    [191]余艳春,虞明远.我国公路营运汽车污染物排放量总量及预测[J].公路交通科技,2008,25(6):154-158.
    [192]徐雨晴,何吉成,王长科.33年来中国铁路运输行业的大气[J].环境科学,2011,32(5):1217-1223.
    [193] Sivaji Seepana, Sreenivas Jayanti. Optimized enriched CO2recycle oxy-fuelcombustion for high ash coals [J]. Fuel,2009:1-9.
    [194] Yang Jian-Xin, Nielsen, Per H. Chinese life cycle impact assessment factors [J]. Journalof Environmental Sciences,2001,13(2):205-209.
    [195] Yang, Jian-xin, Xu, Cheng, Wang, Ru-song. Methodology and application of life cycleassessment[M]. Beijing China Meteorological Press,2002:
    [196]杨建新,徐成.生命周期环境影响类型分类体系研究[J].上海环境科学,1999,18(6):246-257.
    [197]杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J].环境科学学报,2001,21(2):234-237.
    [198]杨建新徐成,王如松.产品生命周期评价方法及应用[M].北京::气象出版社,2002.
    [199] H. Lepaumier, D. Picq, P.L. Carrette. Degradation study of new solvents for CO2capture in post-combustion [J]. Energy Procedia,2009,1(1):893-900.
    [200]李小冬,王帅,孔祥勤,等.预拌混凝土生命周期环境影响评价[J].土木工程学报,2011,44(1):132-138.
    [201] Rao A. B., Rubin E. S., Keith D. W., et al. Evaluation of potential cost reductions fromimproved amine-based CO2capture systems [J]. Energy Policy,2006,34(18):3765-3772.
    [202] Pulz O. Photobioreactors. Production systems for phototrophic microorganisms [J].Applied Microbiology and Biotednology,2001,57(3):287-293.
    [203] Yun Y S, Park J S, Yang J W. Enhance of CO2tolerance of Chloerlla vulgaris bygradual increase of CO2concentration [J]. Biotechnology Techniques,1996,10(9):713-716.
    [204] Watanabe Y, Ohmura N, Saiki H. Isolation and de-termination of cultural characteristicsof microalgae which functions under CO2enriched atmosphere [J]. Conversion andManagement,1992,33(5-8):545-552.
    [205] K.D. Sung, J.S. Lee, C.S. Shin, et al. Isolation of a new highly CO2tolerant fresh watermicroalga Chlorella sp KR-1[J]. Renewable Enengy,1999,16(1):1019-1022.
    [206]陈明明杨忠华,吴高明,等.利用微藻技术减排CO2的研究[J].武汉科技大学学报,2009,32(4):436-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700