用户名: 密码: 验证码:
固定化活性污泥与白腐菌处理焦化废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水COD高、毒性大、可生化性差,是一种成分极其复杂的难处理废水。目前,焦化废水处理工艺主要有A/O、A~2/O、A~2/O~2、SBR、MBR等。但这些方法COD、氨氮处理效果不稳定,出水色度高,工艺复杂、成本高,不能满足处理与回用要求。课题研究了基于催化微电解、固定化活性污泥及固定化白腐菌技术的处理工艺,并进行了现场中试研究。
     根据焦化废水的特点,开发了HD TMAB改性沸石强化Fe-Cu催化微电解预处理方法,并确定了最佳工艺条件:Fe:Cu:沸石质量比为5:1.25:0.5,pH为4.0,HRT为45min,曝气量为15 L/(L废水min)(以下用L/(L min)表示)。该法氮杂环化合物去除率达68.5%,硫杂环化合物可被完全去除。预处理对后继生化处理具有很好的促进作用。有效解决了传统微电解法适用pH范围窄、易板结问题。
     为实现焦化废水同时脱氮除碳,分别在SBR和UASB反应器中选育了适应于焦化废水的高效好氧活性污泥和厌氧活性污泥。探索了基于PVA-SA包埋技术的好氧、厌氧活性污泥联合固定化体系:PVA 10%,SA2%,CaC03投加量0.5%,Si02投加量2%,活性炭投加量2%,污泥包埋量1:1(W/W),饱和H3B03+2%CaCl2作为交联剂,交联时间4h,采用1 mol/L KH_2PO_4硬化1 h。固定化活性污泥处理焦化废水的最佳条件:适宜的pH为7.5~8.5,HRT为21~27 h,曝气量为7.5~10.0 L/(h L),液固比为4:1~6:1。GC/MS分析表明,该法可将焦化废水中主要有机物均降解到未检出水平。固定化活性污泥为多孔结构,机械性能好,使用寿命长达2年以上。解决了焦化废水中氨氮、酚、硫氰酸盐、氰化物等有毒物质的抑制问题。固定化活性污泥对焦化废水中有机物降解动力学方程为S=(2426+32.30113t)/(1+0.61873t),固定化活性污泥SND脱氮动力学方程为
     固定化白腐菌对焦化废水中难降解有机物具有独特的降解优势。以焦炭为填料,采用白腐菌BAF深度处理焦化废水,并确定了最佳工艺条件:pH为5.5~6.5,温度为30~40℃,HRT为24 h。该法COD去除率稳定在60~70%,酚的去除率稳定在95~98%,出水水质可稳定达到《污水综合排放标准》一级标准。采用PVA+SA谎酸铵+氯化钙法固定化白腐菌,生物量高,孔隙率高,传质效果好,性能稳定,易于活化。深度处理焦化废水适宜的pH为5.0~6.5,温度为30~40℃,HRT为18~24h。出水可达到《污水综合排放标准》一级标准。
     通过比较研究确定了焦化废水回用工艺。催化微电解-固定化活性污泥-固定白腐菌MBR-RO工艺出水COD和氨氮浓度分别为28 mg/L和0.12 mg/L,挥发酚已降至未检出水平(<0.002 mg/L),可回用于循环冷却水、锅炉水、城市杂用水等。
     现场中试结果表明:催化微电解-固定化活性污泥工艺出水COD在100~150mg/L,酚<0.5 mg/L,氨氮<5 mg/L,分别达到了《污水综合排放标准》二级和一级标准。催化微电解-UASB-固定化活性污泥中试工艺出水达到《污水综合排放标准》一级标准。新开发的工艺耐硫化物、氨氮和酚冲击负荷,无需进行混合液回流、污泥回流,流程短,占地少,剩余污泥少,运行成本比现行A~2/O工艺低。
Coking wastewater is a typical refractory wastewater which composed of toxic, highly concentrated contaminants. To date, many processes have been applied to coking wastewater treatment, such as A/O, A~2/O, A~2/O~2, SBR and MBR. Due to the instable removal effect of COD, NH_4~+-N and color, most of these expensive and complex processes could not meet the need of emission and recycle. The process based on catalytic micro-electrolysis, immobilized activated sludge and immobilized white rot fungus were studied for coking wastewater treatment in this study. The field pilot scale test was also conducted to investigate the treatment effect.
     Fe-Cu catalytic micro-electrolysis by HD TMAB modified zeolite strengthening was applied for coking wastewater pretreatment. The optimal pH, HRT, material ratio (W/W) and aeration rate for catalytic micro-electrolysis were 4.0,45 min, 5(Fe):1.25(Cu):0.5(zeolite) and 15 L/(L min), respectively. The GC-MS analysis results indicated that,68.5 percent nitrogen-containing heterocyclic compounds were removed and sulfur-containing heterocyclic compounds were degraded completely. Fe-Cu catalytic micro-electrolysis had many advantages such as wider pH range in application, anti impulsion load, low running cost, not agglomerate and etc.
     The high efficient anaerobic activated sludge and aerobic activated sludge were selected and bred in SBR and UASB reactors, respectively. To prepare immobilized activated sludge, a method based on PVA-SA embedding technique was excogitated as follows:10% PVA (W/W),2% SA,0.5% CaCO_3,2% SiO_2,2% powdered activated carbon (PAC) and 50% concentrated aerobic activated sludge were mixed together. The mixture was dropped into cross-linking agent, which composed of saturated boric acid and 2% CaCl_2(w/v) solution, and kept for 4 h to form spherical beads, then transferring to 1 mol/L KH_2PO_4 solution and immersing for 1 h. For biodegradation of coking wastewater by immobilized activated sludge, pH ranging from 7.5 to 8.5, HRT ranging from 21 h to 27 h, aeration rate ranging from 7.5 L/(h L) to 10.0 L/(h L) and liquid-solid ratio ranging from 4:1 to 6:1 created suitable conditions, respectively. The results of GC/MS analysis indicated that the main organic contaminants were entirely degraded. The immobilized activated sludge gels formed in porous structure had good mechanical properties, intensity, elasticity, aeration endurance and a service life more than 2 years. The inhibitory effects of toxic compounds such as phenols, ammonia, free cyanide and thiocyanate, on coking wastewater biodegradation were reduced significantly by immobilization technology. The kinetic equation for organic compounds in coking wastewater biodegradation by immobilized activated sludge could be expressed as S=(2426+32.30113t)/(1+0.61873t). And the kinetic equation for SND could be expressed as [ln(S_0/S_e)]/S_0-S_e=0.12648·(t/S_0-S-e)+0.00192.
     The white rot fungus immobilized had a strong ability to degrade the refractory and toxic organic compounds in coking wastewater. The white rot fungus immobilized on coke was applied for coking wastewater advanced treatment in a BAF reactor. And pH ranging from 5.5 to 6.5, temperature ranging from 30℃to 40℃, and 24 h of HRT create suitable conditions, respectively. The removal rates of COD and phenol were about 70% and 98%, respectively. Parameters of the effluent could meet first class discharge standard of Integrated Wastewater Discharge Standard (GB8978-96). The white rot fungus immobilized in PVA+SA-(NH_4)_2SO_4+CaCl_2 gels had many advantages such as porous structure, high porosity, good mechanical properties, high biomass and good mass-transfer performance and etc. The effluent of this process could meet first class discharge standard of Integrated Wastewater Discharge Standard under the suitable condition as follows:pH ranging from 5.0 to 6.5, temperature ranging from 30℃to 40℃, and HRT ranging from 18 h to 24 h.
     Process composed of catalytic micro-electrolysis, immobilized activated sludge, white rot fungus MBR and RO was ideal treatment schemes for coking wastewater recycle. COD, NH4~+-N and phenol in final effluent were 28 mg/L,0.12 mg/L and not detected (below 0.002 mg/L), respectively. The effluent could be recycled for industrial circulating cooling water, industrial boiler water and urban miscellaneous water.
     The field pilot scale test was conducted for coking wastewater treatment. The effluent of catalytic micro-electrolysis and immobilized activated sludge process could meet second class discharge standard of Integrated Wastewater Discharge Standard. And final concentrations in the effluent of 100~150 mg/L COD,< 5 mg/L NH_4~+-N and <0.5 mg/L phenol were obtained.The effluent of catalytic micro-electrolysis, UASB and immobilized activated sludge process could meet first class discharge standard of Integrated Wastewater Discharge Standard. And final concentrations in the effluent of 80 mg/L COD,4 mg/L NH_4~+-N and 0.2 mg/L phenol were obtained. These processes had many such as short flow, small floor area, easy operation, no sludge or wastewater return, impact load resistance, low construction and operating cost.
引文
[1]王绍文,钱雷,秦华,等.焦化废水无害化处理与回用技术[M].北京:冶金工业出版社,2005:5-88.
    [2]Luthy RG, Stamoudis VC, Campbell JR and et al. Removal of organic contaminants from coal conversion process condensates[J]. J. Water Pollut. Control Fed.,1983,55 (2):196-207.
    [3]Qian Y, Wen Y, Zhang H. Efficiency of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater [J]. Water Res.,1994,28(3):701-710.
    [4]Zhang M, Tay JH, Qian Y and et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH_3-N removal[J]. Water Res.,1998,32 (2):519-527.
    [5]Kim YM, Park D, Lee DS and et al. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer [J]. J. Hazard.Mater.,2007,141(1):27-32.
    [6]Kumar MS, Vaidya AN, Shivaraman N and et al. Performance evaluation of a full-scale coke oven waste water treatment plant in an integrated steel plant[J]. Ind. J. Environ. Health,2003,45(1):29-38.
    [7]Chakraborty S, Veeramani H. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic-anoxicaerobic continuous system [J]. Process Biochem.,2006,41(1):96-105.
    [8]Lim BR, Hu HY, Fujie K. Biological degration and chemical oxidation characteristics of coke-oven wastewater [J]. Water Air Soil Pollut.,2003,146 (1-4):23-33.
    [9]Azhar NG, Stuckey DC. The influence of chemical structure on the anaerobic catabolism of refractory compounds:a case study of instant coffee waste[J]. Water Sci. Technol.,1994,30(12):223-232.
    [10]Li YM, Gu GW, Zhao JF and et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge[J]. Process Biochem.,2001,37(1):81-86.
    [11]Littleton X, Ren Z. The treatment of wastewater from coke oven and chemical recovery plants by means of bioferric process—An innovative technique[J]. Wat. Sci. Tech.,1992,25(3):143-156.
    [12]Qian Y, Wen Y, Zhang H. Efficiency of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater[J]. Wat. Res.,1994,28(3):701-710.
    [13]Stamoudis VC, Luthy RG. Determination of biological removal of organic constituents in quench waters from high-BTU coal gasification pilot plants[J]. Wat. Res.,1980,14(8):1143-1156.
    [14]Maranon E, Vazquez I, Rodfiguez-Iglesias J and et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol.,2008,99(10):4192-4198.
    [15]Li YM, Gu GW, Zhao JF and et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere,2003,52(6):997-1005.
    [16]Vazquez I, Rodriguez-Iglesias J, Maranon E and et al. Study of aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. J. Hazard.Mater.,2006,137(3):1681-1688.
    [17]Qi R, Yang K, Yu ZX. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. J. Environ. Sci.,2007,19(2):153-159.
    [18]Kim SS, Kim HJ. Impact and threshold concentration of toxic materials in the stripped gas liquor on nitrification[J]. Korean J. Chem. Eng,2003,20(6):1103-1110.
    [19]Anthonisen AC, Loehr RC, Prakasam TBS and et al. Inhibition of nitrification by ammonia and nitrous acid[J]. J. Water Pollut. Contr. Fed.,1976,48(5):835-852.
    [20]Sharma B, Ahlert RC. Nitrification and nitrogen removal [J]. Water Res.,1977,11:897-925.
    [21]Kim YM, Park D, Lee DS and et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. J. Hazard.Mater.,2008,152(3):915-921.
    [22]Fux C, Velten S, Carozzi V and et al. Efficient and stable nitrification and denitrification of ammonium-rich sludge dewatering liquor using an SBR with continuos loading[J]. Water Res.,2006,40(14):2765-2775.
    [23]Philips S, Verstraete W. Effect of repeated addition of itrite to semi-continuous activated sludge reactors[J]. Bioresour. Technol.,2001,80(1):73-82.
    [24]Bernet N, Sanchez O, Cesbron D and et al. Modeling and control of nitrite accumulation in a nitrifying biofilm reactor[J]. Biochem. Eng. J.,2005,24(2):173-183.
    [25]Lay-Son M, Drakides C. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste:pH as key factor[J]. Water Res.,2008,42(3):774-780.
    [26]Vazquez I, Rodriguez-Iglesias J, Maranon E and et al. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J]. J.Hazard.Mater.,2006,137(3):1773-1780.
    [27]Kelly II RT, Henriques IDS, Love NG. Chemical inhibition of nitrification in activated sludge[J]. Biotechnol. Bioeng.,2004,85(6):683-694.
    [28]Neufeld R, Greenfield J, Rieder B. Temperature, cyanide and phenolic nitrification inhibition[J]. Water Res.,1986,20(55):633-642.
    [29]Wood AP, Kelly DP, McDonald IR and et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources [J]. Arch. Microbiol.,1998,169(2):148-158.
    [30]Youth JB. Studies on the metabolism of Thiobacillus thiocyanoxidants[J]. J Gen Microbiol,1954,11:139-149.
    [31]Hung C, Pavlostathis SG. Aerobic biodegradation of thiocyanate [J]. Water Res.,1997,31(11):2761-2770.
    [32]Staib C, Lant P. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochem. Eng. J.,2007,34(2):122-130.
    [33]Neufeld RD, Mattson L, Lubon P. Thiocyante bio-oxidation kinetics[J]. J Environ Eng,1984,107(5):1035-1049.
    [34]Paruchuri YL, Shivaraman N, Kumaran P. Microbial transformation of thiocyanate[J]. Environ. Pollut.,1990,68(1-2):15-28.
    [35]Jeong YS, Chung JS. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers[J]. Process Biochem.,2006,41(3):701-707.
    [36]Lim BR, Hu HY, Huang X and et al. Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater[J]. Process Biochem.,2002,37(9):943-948.
    [37]Toh SK, Ashbolt NJ. Adaptation of anaerobic ammonium-oxidising consortium to synthetic cokeovens wastewater[J]. Appl. Microbiol. Biotechnol.,2002,59(2-3):344-352.
    [38]Li Y, Zhao G, Yu J and et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge[J]. Process Biochem.,2001,37(1):81-86.
    [39]Zhang ZJ, Fukagawa M, Ukita M. Treatment of high salinity and high strength organic wastewater consisting of sulfanilamide by two-stage contact oxidation process[J]. Japan Soci Wat Env.,1995,18(9):711-716.
    [40]Chao YM, Tseng IC, Chang JS. Mechanism for sludge acidification in aerobic treatmentof coking wastewater[J]. J. Hazard.Mater.,2006,137(3):1781-1787.
    [41]Ceskova P, Mandl M, Helanova S and et al. Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans:sulfure limitation and activity of free and adsorbed bacteria[J]. Biotechnol. Bioeng.,2002,78(1):24-30.
    [42]Rojas-Chapana JA, Giersig M, Tributsch H. The path of sulfur during the bio-oxidation of pyrite by Thiobacillus ferrooxidans [J]. Fuel,1996,75(8):923-930.
    [43]Kuenen LG, Robertson LA, Tuovinen OH. The genera Thiobacillus, Thiomicrospia and Thiosphaera, in:A. Ballows, H.G. Truper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.)[J].The Prokaryotes,1992,3:2638-2657.
    [44]Lim BR, Hu HY, Huang X. Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater[J]. Process Biochem.,2002,37(9):943-948.
    [45]肖文胜.复合式厌氧生物滤池处理焦化废水实验研究[J].化学与生物工程,2006,23(2):247-249.
    [46]Ning P, Bart HJ, Jiang Y and et al. Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge[J]. Sep. Purif. Technol.,2005,41(2):133-139.
    [47]陈雪松,许惠英,李成平.SBR用于焦化废水生物处理的试验研究[J].环境污染治理技术与设备,2005,6(6):57-60.
    [48]陈长松,李天增,张宝林,等.A/O工艺处理焦化废水的工程实践[J].环境科学与技术,2006,29(10):85-87.
    [49]管福征.APO法在焦化废水处理中的应用[J].环境工程,2006,24(1):36-38.
    [50]Park D, Kim YM, Lee DS and et al. Chemical Treatment for Treating Cyanides-Containing Effluent from Biological Cokes Wastewater Treatment Process[J]. Chem. Eng.J.,2008,143(1-3):141-146.
    [51]李亚新,周鑫,赵义.A~2/O工艺各段对焦化废水中难降解有机物的去除作用[J].中国给水排水,2007,23(14):4-7.
    [52]Wang JL, Quan XC, Wu LB and et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater [J]. Process Biochem.,2002,38(5):777-781.
    [53]邱贤华,李明俊,曹群,等.A~2/O生物膜系统处理焦化废水工艺参数研究[J].合肥工业大学学报(自然科学版),2006,29(5):556-558.
    [54]王文举,闫晓红,吕永康,等.A1-A2-O-M工艺处理焦化废水的实验研究[J].煤化工,2006,1:54-57.
    [55]周鑫,李亚新,贾东杰.A/O~2工艺处理焦化废水[J].环境工程,2007,25(2):36-39.
    [56]贾鹏,牛继勇,李君敏.A/O~2工艺处理焦化废水[J].给水排水,2007,33(3):69-70.
    [57]裴亮,董波,姚秉华,等.PAC-MBR组合工艺处理焦化废水的试验研究[J].中国给水排水,2007,23(13):60-62.
    [58]张文艺,王健.微电解法预处理焦化废水试验[J].煤炭科学技术,2003,31(9):11-14.
    [59]王庆生,郭春禹,李靖,等.微电解-膜生物反应器组合工艺处理焦化废水[J].环境工程,2006,23(3):26-29.
    [60]Lai P, Zhao HZ, Wang C, and et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. J. Hazard.Mater.,2007,147(1-2):232-239.
    [61]赖鹏,赵华章,王超,等.铁炭微电解深度处理焦化废水的研究[J].环境工程学报,2007,1(3):15-21.
    [62]Ma LM, Ding ZG, Gao TY and et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system [J]. Chemosphere,2004,55(9):1207-1212.
    [63]何小娟,李旭东,汤明皋,等.Ni/Fe双金属降解四氯化碳和四氯乙烯的对比试验验[J].环境污染与防治,2006,28(3):173-175.
    [64]徐飞高,游达,屈芸,等.固定化细胞小球降解三氟甲苯的特性研究[J].工业安全与环保,2005,31(6):11-13.
    [65]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J].工业微生物,1998,28(2):35-39.
    [66]李花子,王建龙,文湘华,等.聚乙烯醇-硼酸固定化方法的改进[J].环境科学研究,2002,15(5):24-27.
    [67]覃昊,孟晓静,邹飞.聚乙烯醇-硼酸固定化方法优化改进的研究[J].环境科学研究,2006,5(8):1023-1024.
    [68]王剑锋,安立超,张文成.PVA铝盐法固定微生物技术用于焦化废水脱氮的研究[J].工业水处理,2005,1,25(1):39-42.
    [69]Chen KC, Lee SC, Chin SC and et al. Simultaneous carbon nitrogen removal wastewater using phosphorylated PVA-immobilized microorganisms [J]. Enzyme and Microbial Technology,1998,23:311-320.
    [70]王玉建,李红玉.PVA-Ca(NO_3)_2法包埋固定氧化亚铁硫杆菌研究[J].微生物学报,2006,46(3):456-459.
    [71]陈元彩,蓝惠霞,陈中豪.固定化好氧菌和厌氧颗粒污泥在不同供氧条件下降解氯酚的研究[J].环境科学学报,2005,25(2):172-175.
    [72]Amanda KY. Cell immobilization using PVA cross linked with boric acid[J]. Biotechnol. Biotechnol.,1992,39(44):447-449.
    [73]刘蕾,李杰,王亚娥.生物固定化技术中的包埋材料[J].净水技术,2005,24(1):40-42.
    [74]雷乐成.污水厌氧处理微生物的固定化方法及硬化处理[J].水处理技术,1992,18(1):46-51.
    [75]Pan XL, Wang JL, Zhang DY and et al. Biosorption of Pb(Ⅱ) by Pleurotus ostreatus immobilized in calcium alginate gel[J]. Process Biochemistry,2005,40:2799-2803.
    [76]Gulay B, Ilhami T, Gokce C and et al. Biosorption of mercury(Ⅱ), cadmium(Ⅱ) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads[J]. Int. J. Miner. Process.,2006,81:35-43.
    [77]许振文,张甲耀,陈兰洲,等.固定化外源降解菌强化生物降解作用研究[J].环境科学与技术,2007,30(3):19-22.
    [78]Kazuichi I, Sachiko Y, Tatsuo S and et al. Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures[J]. Biochemical Engineering Journal, 2007,37:49-55.
    [79]葛晓虹,张振家,王毅军.固定化包埋硝化菌去除源水中氨氮研究[J].中国给水排水,2006,22(3):51-54.
    [80]Chiu YC, Lee LL, Chang CN and et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. Int. Biodeterior. Biodegrad.,2007,59:1-7.
    [81]Fu ZM, Yang FL, Zhou FF and et al. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor [J]. Bioresour. Technol.,2009,100:136-141.
    [82]Zhang HM, Wang XL, Xiao JN and et al. Enhanced biological nutrient removal using MUCT-MBR system[J]. Bioresour. Technol.,2009,100(3):1048-1054.
    [83]曹国民,赵庆祥.新型固定化细胞膜反应器脱氮研究[J].环境科学学报,2001,21(2):189-193.
    [84]安立超,孙静,薛涛.混合固定细菌单级生物脱氮技术[J].污染防治技术,2003,16(3):5-7.
    [85]李慧蓉.白腐菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [86]金敏,李君文.白腐菌处理染料废水的研究进展[J].环境污染治理技术与设备,2003,4(3):54-58.
    [87]Kim SJ, Ishikawa K, Hirai M and et al. Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes[J]. J. Ferment. Bioeng.,1995,79:601-607.
    [88]高航,徐宏勇,刘勇弟.白腐菌附着式生物膜反应器处理垃圾渗沥液技术研究[J].环境科学学报,2004,24(2):309-314.
    [89]Sammaiah P, Robert PC. Reactor development for biodegradation of pentachlorophenol[J]. Catal. Today,1998,40:103-111.
    [90]Alessandro DA, Silvia RS, Vittorio V and et al. Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment[J]. Process Biochem.,1999,34:697-706.
    [91]Wu J, Yu HQ. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions[J]. Bioresour. Technol.,2007,98:253-259.
    [92]Mohammadi A, Nasernejad B. Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse [J]. J. Hazard. Mater.,2009,161(1):534-537.
    [1]Vazquez I, Rodriguez-Iglesias J, Maranon E and et al. Study of aerobic biodegradation of coke wastewater in a two and three-step activated sludge process[J]. J. Hazard.Mater.,2006,137(3):1681-1688.
    [2]Kelly II RT, Henriques IDS, Love NG. Chemical inhibition of nitrification in activated sludge[J]. Biotechnol. Bioeng.,2004,85(6):683-694.
    [3]Neufeld R, Greenfield J, Rieder B. Temperature, cyanide and phenolic nitrification inhibition[J]. Water Res.,1986,20(55):633-642.
    [4]Wood AP, Kelly DP, McDonald IR and et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources[J]. Arch Microbiol.,1998,169(2): 148-158.
    [5]Lim BR, Hu HY, Fujie K. Biological degration and chemical oxidation characteristics of coke-oven wastewater [J]. Water Air Soil Pollut.,2003,146(1-4):23-33.
    [6]全燮,杨风林.铁屑粉在处理工业废水中的应用[J].工业水处理,1989,9(6):7-10.
    [7]Jia Y, Breedveld GD, Aagaard P. Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent iron barrier[J]. Chemosphere,2007, 69:1409-1418.
    [8]Jou CJ. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy[J]. J. Hazard.Mater.,2008,152(2):699-702.
    [9]Li F, Ni JR, Wu YJ and et al. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter[J]. J. Hazard.Mater., 2009,162:1204-1210.
    [10]Amin MN, Kaneco S, Kato T and et al. Removal of thiobencarb in aqueous solution by zero valent iron[J]. Chemosphere,2008,70:511-515.
    [11]Yao TL, Weng CH, Chen FY. Effective removal of AB24 dye by nano/micro-size zero-valent iron[J]. Sep. Purif. Technol.,2008,64:26-30.
    [12]Ma LM, Ding, ZG, Gao TY and et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system[J]. Chemosphere,2004,55:1207-1212.
    [13]Gritini C, Malcomson M, Fernando Q and et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system [J].Environ. Sci. Technol.,1995,29(11):2898-2900.
    [14]何小娟,李旭东,汤明皋,等.Ni/Fe双金属降解四氯化碳和四氯乙烯的对比试 验验[J].环境污染与防治,2006,28(3):173-175.
    [15]Kallel M, Belaid C, Boussahel R and et al. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide[J]. J. Hazard. Mater., 2009,163(2-3):550-554.
    [16]Kim H, Hong H, Lee Y and et al. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane[J]. Desalination,2008,223:212-220.
    [17]魏翔,朱琨.改性沸石对2,4-二氯苯酚的吸附性能研究[J].安全与环境学报,2003,6(3):57-59.
    [18]张小勇,王新伟,刘锐,等.煤基炭膜在处理高浓度焦化废水中的应用[J].化工进展,2009,28(增):95-97.
    [19]郭浩磊,吉亚鹏,唐铭,等.海绵铁预处理焦化废水的实验研究[J].甘肃科技,2009,25(8):59-62.
    [20]成泽伟,苍大强,唐卓,等.超声-微电解法预处理焦化废水[J].环境工程,2008,26(增):27-29.
    [21]李豪,汪晓军.Fenton-曝气生物滤池深度处理焦化废水[J].净水技术2009,28(5):39-42.
    [22]郑志军,王奎涛,张炳烛,等.焦化废水催化氧化处理工艺的研究[J].上海化工,2009,34(4):1-3.
    [23]卢永,严莲荷,李兵,等.镀铜铁内电解预处理焦化废水的研究[J].精细化工,2008,25(3):269-272.
    [24]Li YM, Gu GW, Zhao JF and et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere,2003,52: 997-1005.
    [25]陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):24-27.
    [26]Yao X, Kang Y, Lee D and et al. Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron[J]. Chemosphere, 2008,73:1436-1441.
    [27]曾常华,林波,周百林.内电解-两级生化法处理医药化工废水[J].工业水处理,2007,27(2):84-85.
    [28]Bell LS, Devlin JF, Gillham RW and et al. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene [J]. J.Contam. Hydrol.,2003,66:201-217.
    [29]Wang SM, Tseng SK. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles [J]. Bioresour. Technol., 2009,100:111-117.
    [30]Kim YM, Park D, Lee DS and et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. J. Hazard. Mater., 2008,152:915-921.
    [31]Kim SS, Kim HJ. Impact and threshold concentration of toxic materials in the stripped gas liquor on nitrification[J]. Korean J. Chem. Eng.,2003,20:1103-1110.
    [32]Chakraborty S, Veeramani H. Response of pulse phenol injection on an anaerobic-anoxic-aerobic system[J]. Bioresour. Technol.,2005,96:761-767.
    [33]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998,1:509-511.
    [34]Qian Y, Wen Y, Zhang H. Efficiency of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater[J]. Wat. Res.,1994,28(3): 701-710.
    [35]Stamoudis VC, Luthy RG Determination of biological removal of organic constituents in quench waters from high-BTU coal gasification pilot plants[J]. Wat. Res., 1980,14(8):1143-1156.
    [36]Zhang M, Tay JH, Qian Y and et al. Coke plant wastewater treatment by fixed biofilm system for COD andNH3-N removal[J]. Wat. Res.,1998,32(2):519-527.
    [1]Kuo WC, Shu TY. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells[J]. J. Hazard. Mater.,2004,B113:147-155.
    [2]Oliverira SVWB, Moraes EM, Adorno MAT and et al. Formaldehyde degradation in an anaerobic pack-bed bioreactor[J]. Water Res.,2004,38:1685-1694.
    [3]Dursun AY, Tepe O. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha[J]. J. Hazard. Mater.,2005, B126:105-111.
    [4]Zhang LS, Wu WZ, Wang JL. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel[J]. J. Environ. Sci.,2007,19:1293-1297.
    [5]Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater[J]. Chemosphere,2008,71:133-139.
    [6]Annaduri G, Babu SR, Mahesh KPO and et al. Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonoas putida (NCICM 2174) [J]. Bioprocess Biosyst. Eng.,2000,22:493-501.
    [7]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [8]Lettinga G Use of the up-flow sludge blanket(UASB)reactor concept for biological wastewater treatment, especially for anaerobic treatment biotechnology[J]. Bioengin,1980,22:699-734.
    [9]谢海宁,刘秀.UASB厌氧处理工艺的现状与发展[J].环境科学与技,2002,4(23):12-16.
    [10]Speece RE.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.
    [11]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [12]胡威夷.常温UASB反应器在淀粉废水处理中的应用[J].废水处理,2000,31(2):31-33.
    [13]陈陶声,居乃琥,陈石根.固定化酶理论与应用[M].北京:轻工业出版社,1987.
    [14]Ha J, Engler CR, Wild JR. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads[J]. Bioresour. Technol.,2009,100:1138-1142.
    [15]El-Naas MH, A1-Muhtaseb SA, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel[J], J. Hazard. Mater., 2009,164:720-725.
    [16]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J].工业微生物,1998,28(2):35-39.
    [17]李花子,王建龙,文湘华,等.聚乙烯醇-硼酸固定化方法的改进[J].环境科学研究,2002,15(5):24-27.
    [18]覃昊,孟晓静,邹飞.聚乙烯醇-硼酸固定化方法优化改进的研究[J].环境科学研究,2006,5(8):1023-1024.
    [19]Chen KC, Lee SC, Chin SC and et al. Simultaneous carbon nitrogen removal wastewater using phosphorylated PVA-immobilized microorganisms [J]. Enzyme Microb. Technol.,1998,23:311-320.
    [1]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006:27-85.
    [2]Jeong YS, Chung JS. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers [J]. Process Biochemistry,2006,41:701-707.
    [3]李绍峰,崔崇威,刘玉强.影响膜生物反应器同步硝化反硝化因素研究[J].南京理工大学学报,2007,31(3):394-398.
    [4]Ghose MK. Complete physico-chemical treatment for coke plant effluents[J]. Water Res.,2002,36:1127-1134.
    [4]Zhang M, Tay JH, Qian Y and et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Res.,1998,32:519-527.
    [6]Maranon E, Vazquez I, Rodriguez J and et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol., 2008,99:4192-4198.
    [7]Park DH, Lee DS, Kim YM and et al. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility[J]. Bioresour. Technol., 2008.99:2092-2096.
    [8]Kim YM, Park DH, Jeon CO and et al. Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater[J]. Bioresour. Technol.,2008,99:8824-8832.
    [9]Lai P, Zhao HZ, Ye ZF and et al. Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms[J]. Process Biochem.,2008,43:229-237.
    [10]Li YM, Gu GW, Zhao JF and et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003,52:997-1005.
    [11]Kim YM, Park D, Lee DS and et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. J. Hazard. Mater., 2008,152:915-921.
    [12]Kuo WC, Shu TY. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells[J]. J. Hazard. Mater.,2004,B113:147-155.
    [13]Oliverira SVWB, Moraes EM, Adorno MAT and et al. Formaldehyde degradation in an anaerobic pack-bed bioreactor[J]. Water Res.,2004,38:1685-1694.
    [14]Ha J, Engler CR, Wild JR. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads[J]. Bioresour. Technol.,2009,100:1138-1142.
    [15]El-Naas MH, Al-Muhtaseb SA, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel[J]. J. Hazard. Mater., 2009,164:720-725.
    [16]Annaduri G, Babu SR, Mahesh KPO and et al. Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonoas putida (NCICM 2174) [J]. Bioprocess Biosyst. Eng.,2000,22:493-501.
    [17]Kim SS, Kim HJ. Impact and threshold concentration of toxic materials in the stripped gas liquor on nitrification[J]. Korean J. Chem. Eng.,2003,20:1103-1110.
    [18]Qi R, Yang K, Yu ZX. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. J. Environ. Sci.,2007,19:153-159.
    [19]Chakraborty S, Veeramani H. Response of pulse phenol injection on an anaerobic-anoxic-aerobic system[J]. Bioresour. Technol.96 (2005) 761-767.
    [20]Paruchuri YL, Shivaraman N, Kumaran P. Microbial transformation of thiocyanate[J]. Environ. Pollut.,1990,68:15-28.
    [21]Papadimitriou CA, Samaras P, Sakellaropoulos GP. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors[J]. Bioresour. Technol.,2009,100:31-37.
    [22]Staib C, Lant P. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochem. Eng. J.,2007,34:122-130.
    [23]谢朝霞.焦化废水中氰化物和色度处理的试验研究[D].太原理工大学,2004:2.
    [24]熊春梅.活性污泥法动力学模型评价[J].宁波工程学院学报,2007,19(2):40-42,47.
    [25]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007:128-167.
    [26]Carrera J, Jubany I, Carvallo L and et al. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems [J]. Process Biochem.,2004,39:1159-1165.
    [27]Cao GM, Zhao QX, Sun XB and et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme and Microbial Technology,2002,30:49-55.
    [28]戚以政,汪叔雄.生物反应器动力学与反应器[M].北京:化学工业出版社,2007:120-128.
    [29]曹国民,赵庆祥,孙贤波,等.固定化细胞单级生物脱氮动力学模型研究[J].环境工程,2001,19(5):12-15.
    [30]曹国民,赵庆祥,孙贤波,等.氨氮、硝酸盐氮和亚硝酸盐氮在PVA凝胶膜中的扩散性能[J].环境科学,2002,23(2):65-68.
    [31]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007:136-137.
    [32]McCarty PL. Stoichiometry of biological reaction[J]. Process in Water Technology, 1975,71:157-172.
    [33]彭永臻,孙洪伟,杨庆.短程硝化的生化机理及其动力学[J].环境科学学报,2008,28(5):817-824.
    [1]Luthy RG, Stamoudis VC, Campbell JR and et al. Removal of organic contaminants from coal conversion process condensates[J]. J. Water ollut. Control Fed.,1983,55 (2):196-207.
    [2]Lim BR, Hu HY, Fujie K. Biological degration and chemical oxidation characteristics of coke-oven wastewater[J]. Water Air Soil Pollut.,2003,146:3-33.
    [3]Azhar NG, Stuckey DC. The influence of chemical structure on the anaerobic catabolism of refractory compounds:a case study of instant coffee waste[J]. Water Sci. Technol.,1994,30:223-232.
    [4]Li YM, Gu GW, Zhao JF and et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge[J]. Process Biochem.,2001,37:81-86.
    [5]Lai P, Zhao HZ, Wang C and et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. J. Hazard.Mater.,2007,147(1-2):232-239.
    [6]Sun WL, Qu YZ, Yu Q and et al. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash[J]. J. Hazard.Mater.,2008,154:595-601.
    [7]左晨燕,何苗,张彭义,等.Fenton氧化/混凝协同处理焦化废水生物出水的研究[J].环境科学,2006,27(11):2201-2205.
    [8]邓金泉.BAF深度处理焦化废水的试验研究[D].太原理工大学,2007.
    [9]Hickeya WJ, Fustera DJ, Lamarb RT. Transformation of atrazine in soil by Phanerochaete chrysosporium[J]. Soil Biol. Biochem.,1994,26:1665-1671.
    [10]Akena BV, Stahlb JD. Naveaua H and et al. Transformation of 2,4,6-Trinitrotoluene (TNT) reduction products by lignin peroxidase (H8) from the white-rot basidiomycete phanerochaete chrysosporium[J]. Biorem. J.,2000,4:135-145.
    [11]Zheng ZM, Obbard JP. Removal of surfactant solubilized polycyclic aromatic hydrocarbons by phanerochaete chrysosporium in a rotating biological contactor reactor[J]. J. Biotechnol.,2002,96:241-249.
    [12]Tekere M, Read JS, Mattiasson B. Polycyclic aromatic hydrocarbon biodegradation in extracellular fluids and static batch cultures of selected sub-tropical white rot fungus[J]. J. Biotechnol.,2005,115:367-377.
    [13]Denizli A, Cihangir N, Rad AY and et al. Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium[J]. Process Biochem.,2004,39: 2025-2030.
    [14]Chung N, Aust SD. Degradation of pentachlorophenol in soil by Phanerochaete chrysosporium[J]. J. Hazard. Mater.,1995,41:177-183.
    [15]Wu J, Yu HQ. Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia[J]. Process Biochem.,2006,41:44-49.
    [16]Vyas BRM, Bakowski S, Sasek V and et al. Degradation of anthracene by selected white rot fungus[J]. FEMS Microbiol Lett.,1994,14:65-70.
    [17]Iqbal M, Saeed A. Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium[J]. Process Biochem.,2007,42:1160-1164.
    [18]Bayramoglu G, Bekta S, Anca MY. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor[J]. J. Hazard. Mater.,2003, B 101:285-300.
    [19]Iqbal M, Saeed A. Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium[J]. Process Biochem.,2007,42:1160-1164.
    [20]Ehlers GA, Rose PD. Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation[J]. Bioresour. Technol.,2005,96:1264-1275.
    [21]Mohammadi A, Nasernejad B. Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse[J]. J. Hazard. Mater.2009,165(1):534-537.
    [22]Kirk TK, Schultz E, Connors WJ and et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium[J]. Arch. Microbiol.,1978,117:225-227.
    [23]方华,黄俊,陈矍,等.白腐菌分泌漆酶的培养条件研究[J].化学与生物工程,2008,25(8):30-33.
    [24]Libra JA, Borchert M, Banit S. Competition strategies for the decolorization of a textile reactive dye with the white rot fungi Trametes versicolor under non-sterile conditions[J]. Biotechnol. Bioeng.,2003,82(6):736-744.
    [25]Gao DW, Wen XH, Qian Y. Decolorization of reaetive brilliant red K-ZBP with the White rot fungi under non-sterile conditions[J]. Chin. Sci. Bull.,2004,49(9):981-982.
    [26]浦跃武,甄浩铭,冯书庭,等.白腐真菌产锰过氧化物酶条件的研究[J].菌物系统,1998,17(3):251-255.
    [27]Couto SR, Gundin M, Lorenzo M and et al. Screening of supports and inducers for laccase production by Trametes versivolor in semi-solid-state conditions [J]. Process Biochem.,2002,38:249-255.
    [28]Arora DS, Gill PK. Effects of various media and supplements on laccase production by some white rot fungi[J]. Bioresour. Technol.,2001,77:89-91.
    [29]Eggert C, Temp U, Eriksson KEL. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus:purification and characterization of the laccase[J]. Appl. Environ. Microbiol.,1996,62:1151-1158.
    [30]Lorenzo M, Moldes D, Rodriguez CS and et al. Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versiocolor[J]. Bioresour. Technol.,2002,82:109-113.
    [31]Palmieri G, Giardina P, Bianco C. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus[J]. Appl. Environ. Microbiol,2000,66:920-924.
    [32]高大文,文湘华,周晓燕,等.微量元素对白腐真菌的生长影响的抑制酵母菌效果的研究[J]..环境科学,2006,27(8):1623-1626.
    [33]张晶,李翠珍,文湘华.天然浸出液对自分离白腐真菌产木质素降解酶的影响[J].清华大学学报(自然科学版),2005,45(12):1629-1632.
    [34]卢永.白腐真菌的固定化及其处理焦化废水的实验研究[D].南京理工大学,2007.
    [35]Yahaya YA, Don MM, Bhatia S. Biosorption of copper (Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution:Equilibrium and kinetic studies[J]. J. Hazard. Mater.,2009,161(1):189-195.
    [36]Wu J, Yu HQ. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions [J]. Bioresour. Technol., 2007,98:253-259.
    [1]Wu J, Yu HQ. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions [J]. Bioresour. Technol., 2007,98:253-259.
    [2]Yus AY, Mashitah MD, Subhash B. Biosorption of copper (Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution:Equilibrium and kinetic studies[J]. J. Hazard. Mater.,2009,161(1):189-195.
    [3]Gulay B, Sema B, Arica MY. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor[J]. J. Hazard. Mater.,2003,B101:285-300.
    [4]Anna M, Stanislaw L, Rene U and et al. Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor[J]. Dyes and Pigments,2008,77:295-302.
    [5]Alam MZ, Mansor MF, Jalal KCA. Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium[J]. J. Hazard. Mater.,2009,162(2-3):708-715.
    [6]Ernest MU, Teodor P, Xavier G and et al. Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor[J]. Chemosphere, 2008,70:404-410.
    [7]Dirk W, Irene K, Spiros NA. White-rot fungi and their enzymes for the treatment of industrial dye effluents [J]. Biotechnol. Adv.,2003,22:161-187.
    [8]Erkurt EA, Unyayar A, Kumbur H. Decolorization of synthetic dyes by white rot fungus, involving laccase enzyme in the process[J]. Process Biochem.,2007,42: 1429-1435.
    [9]Boyle D. Effects of pH and cyclodextrins on pentachlorophenol degradation (mineralization) by white-rot fungus[J]. J. Environ. Manage.,2006,80:380-386.
    [10]Zacchi L, Burla G, Ding ZL and et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase [J]. J. Biotechnol.,2000,78:185-192.
    [11]Hai FI, Yamamoto K, Fukushi K. Development of a submerged membrane fungus reactor for textile wastewater treatment[J]. Desalination,2006,192:315-322.
    [12]Radha KV, Regupathi I, Arunagiri A and et al. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics[J]. Process Biochem., 2005,40:3337-3345.
    [13]Mielgo I, Moreira MT, Feijoo G and et al. Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium[J]. Water Res., 2002,36:1896-1901.
    [14]李慧蓉.白腐菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [15]郑振晖,王红梅,高宝玉.PDMDAAC-膨润土对焦化废水的深度吸附处理研究[J].洁净煤技术,2006,12(4):76-78.
    [16]Sun WL, Qu YZ, Yu Q and et al. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash[J]. J. Hazard. Mater.,2008,154:595-601.
    [17]户朝帅,胡开林,王正兴,等.粉煤灰合成沸石及其处理焦化废水A/O出水的试验[J].工业用水与废水,2009,40(2):68-71.
    [18]Vazquez I, Rodriguez-Iglesias J, Maranon E and et al. Removal of residual phenols from coke wastewater by adsorption[J]. J. Hazard. Mater.,2007,147:395-400.
    [19]蒋文新,张巍,常启刚,等.强化活性炭吸附技术深度处理焦化废水的可行性研究[J].环境污染与防治,2007,29(4):265-271.
    [20]Zhu X, Ni J, Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes [J]. Water Res., 2009,43(17):4347-4355.
    [21]Lai P, Zhao HZ, Wang C and et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. J. Hazard.Mater.,2007,147(1-2):232-239.
    [22]Park D, Kim YM, Lee DS and et al. Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process[J]. Chem. Eng.J.,2008,143:141-146.
    [23]刘卫平.Fenton氧化/凝深度处理焦化废水的实验研究[J].中国资源综合利用,2008,26(4):7-9
    [24]杨学,杨云龙,刘晓慧.曝气生物滤池深度处理焦化废水试验研究[J].山西建筑,2009,35(3):20-21
    [25]黄廷林,张晓磊,苏俊峰.固定化微生物技术处理微污染水源水的试验研究[J].供水技术,2008,2(3):7-9.
    [26]Subramanyam R, Mishra IM. Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor[J]. Chemosphere,2007,69:816-824.
    [27]吴耀国,王秋华,张娟,等.基于共代谢原理改善TNT炸药废水的可生化性[J].火炸药学报,2007,30(6):33-37.
    [28]Mufaddal IE, James M. Lynch.Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. [J]. Enzyme Microb. Technol.,2005,36:849-854.
    [29]蒋文新,张巍,常启刚,等.强化活性炭吸附技术深度处理焦化废水的可行性研究[J].环境污染与防治,2007,29(4):265-271.
    [30]李豪,汪晓军.Fenton-曝气生物滤池深度处理焦化废水[J].净水技术,2009,28(5):39-42.
    [1]Maranon E, Vazquez I, Iglesias JR and et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol., 2008,99(10):4192-4198.
    [2]Li YM, Gu GW, Zhao JF and et al.Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere,2003,52(6):997-1005.
    [3]Park D, Kim YM, Lee DS and et al. Chemical Treatment for Treating Cyanides-Containing Effluent from Biological Cokes Wastewater Treatment Process[J]. Chem. Eng.J.,2008,143(1-3):141-146.
    [4]李亚新,周鑫,赵义.A2/O工艺各段对焦化废水中难降解有机物的去除作用[J].中国给水排水,2007,23(14):4-7.
    [5]Lai P, Zhao HZ, Wang C and et al. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes[J]. J. Hazard.Mater.,2007,147(1-2):232-239.
    [6]Sun WL, Qu YZ, Yu Q and et al. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash[J]. J. Hazard.Mater.,2008,154:595-601.
    [7]左晨燕,何苗,张彭义,等.Fenton氧化/混凝协同处理焦化废水生物出水的研究[J].环境科学,2006,27(11):2201-2205.
    [8]GB\T18920-2002,城市杂用水水质标准[S].
    [9]GB50050-2007,工业循环冷却水处理设计规范[S].
    [10]GB1576-2001,工业锅炉水质[S].
    [11]Behling E, Diaz A, Colina G and et al. Domestic Wastewater Treatment Using a UASB Reactor [J]. Bioresour. Technol.,1997,61:239-245.
    [12]Lopes SIC, Dreissen C, Capela MI and et al. Comparison of CSTR and UASB reactor configuration for the treatment of sulfate rich wastewaters under acidifying conditions [J]. Enzyme Microb. Technol.,2008,43:471-479.
    [13]Delia TS. Anaerobic granule formation and tetrachloroethylene (TCE) removal in an up-flow anaerobic sludge blanket (UASB) reactor [J]. Enzyme Microb. Technol.,2001,29:417-427.
    [14]Gangagni Rao A, Reddy TSK, Prakash SS and et al. Biomethanation of poultry litter leachate in UASB reactor coupled with ammonia stripper for enhancement of overall performance [J]. Bioresour. Technol.,2008,99:8679-8684.
    [15]Subramanyam R, Mishr IM. Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor [J]. Chemosphere,2007,69:816-824.
    [16]Chavez PC, Castillo LR, Dendooven L and et al. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor[J]. Bioresour. Technol.,2005,96:1730-1736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700