用户名: 密码: 验证码:
废轮胎胶粉再燃脱硝性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤粉燃烧过程中生成的氮氧化物(NO_x)是电站锅炉排放的主要污染物之一,严重威胁着大气环境和人类健康。为了解决电站锅炉排放的NO_x对环境的污染问题,许多控制NO_x的技术应运而生,其中再燃脱硝是一种很有效的方法。常规的再燃燃料为天然气和低阶煤粉。天然气的价格昂贵,煤粉也是化石能源,且效率难以突破,主要原因是煤中赋存于杂环结构中的N以char-N的形式存在,在燃烬段重新生成NO_x导致总效率不能提高。寻找一种高效的能够取代天然气和煤粉的替代再燃燃料具有学术意义和工程应用价值。
     随着我国经济的迅速发展,我国每年生产和消费的轮胎快速增加。同时,废轮胎作为一种难以处理的固体废弃物,也正在以很高的速度增加,带来环境污染问题和资源浪费问题。废轮胎为不熔或难熔性高分子弹性材料,具有很强的抗热、抗生物、抗机械性,并难以降解,废旧轮胎的处理已经成为一个全球性的环境问题。废轮胎的主要成分橡胶和碳都是宝贵的资源,而且废轮胎具有非常高的热值,挥发份含量高达60%以上,含N、S相对很低,理论上是一种非常好的再燃燃料。为此本文选用废旧轮胎胶粉作为研究对象,研究其作为再燃燃料的再燃脱硝性能。
     首先通过热重实验,通过TG/DTG,DSC与质谱仪联用等方法研究了废轮胎胶粉、煤粉在氮气气氛下的热解特性和挥发份释放特性。结果发现废轮胎胶粉的最大失重率可达64.3%,其热解行为比神华煤粉的热解行为更加容易进行、热解挥发份析出特性更好、热解温度更低、热解温度范围更小。同时废轮胎胶粉热解时释放出来的气体以对NO_x具有较强还原性C_mH_n和H_2为主,C_mH_n先释放出来,H_2后释放出来,因此废轮胎胶粉是一种非常好的再燃燃料。本文同时对废轮胎胶粉进行了热解动力学的研究,用模型计算了有关热解动力学参数,分析了热解过程中试样的反应机理。
     随后在小型热态炉中对废轮胎胶粉进行了再燃实验。对再燃燃料化学计量比SR2、初始NO浓度、停留时间和炉膛温度等因素对废胶粉再燃脱硝性能的影响进行了研究。再燃实验结果发现:1).废轮胎胶粉在一定条件下脱硝效率高达95%左右,与同条件下天然气的再燃脱硝效率一样好,因此废轮胎胶粉完全可以取代天然气作为大型电厂燃煤锅炉的再燃燃料。2).废轮胎胶粉再燃的最佳再燃区化学计量比SR2在0.8~0.9,废胶粉在炉内达到最佳脱硝效率时的停留时间要比一般的煤粉所需的停留时间短,在0.30s时达到最佳脱硝效率,最佳再燃温度为1150℃。3).废轮胎胶粉2段再燃脱销实验表明,随着三次风的加入,炉膛出口NO浓度升高,但仍然能够在一定条件下达到85.0%左右的脱硝效率。
     最后采用计算流体力学软件FLUENT分别模拟废旧轮胎胶粉和煤粉小型多功能热态炉中的燃烧过程,研究了化学计量比、炉膛温度、燃料粒径和燃料量等对NO排放规律的影响。实验结果发现:1).废轮胎胶粉比神华煤粉更加容易燃烧,两种燃料的NO在小型热态实验炉中的析出特性,出现一个先增加后减少的趋势。2).随着温度的增加,神华煤粉的NO生成量缓慢升高,而废轮胎胶粉的NO生成量降低;随着化学计量比的增加,废轮胎胶粉和神华煤粉的NO生成量增加;废轮胎胶粉的细度对NO生成量影响较大,细度越细,NO生成量越少。
     研究结果发现,基于废轮胎胶粉的燃料纯再燃条件下具有和天然气一样优良的再燃脱硝效果,和某种物质混合燃烧时,在2段燃烧条件下,最终的NO脱除率可高达85.0%,接近于相同条件下天然气的2段再燃燃烧结果,而远远高于相同条件下低阶煤粉的再燃燃烧结果。它表明,本文研究的废轮胎胶粉可以取代天然气和煤粉,是一种优良的替代再燃燃料。本文的研究结果对于高品位利用废轮胎具有重要的工程指导价值。
Nitrogen oxides (NO_x) is one of the major pollutant emission from coal-fired power plant boilers and gives a serious threat to the atmosphere and man-kind's health. The research on NO_x control has been one of the hot topics around the world in the past 2 decades. Many technologies have been developed to reduce NO emission, among which reburning is one of the most promising technologies. Usually natural gas and low-rank coal are used as the typical reburning fuel. But natural gas is very expensive and coal is a fossil fuel that is not renewable. Therefore, it's important to find a new and efficient alternate reburning fuel for boilers taking place of natural gas and low-rank coal.
     Waste tires are increasing rapidly as solid waste disposal and it's difficult to carry out the management problems associated with the waste tire disposal. It's necessary to investigate new techniques for its utilization as resources. After reviewing briefly on the present techniques for the recycle of waste tires, the author proposed the use of waste tires as a fuel to reduce both air emission and solid waste by applying them as a reburning fuel for NO_x reduction. Ultimate analysis of typical waste tire showed that it contains more than 80% carbon content, less than 2% nitrogen and sulfur, very little moisture and ash. The heating value of waste tires per kilogram is 69% more than that of wood, 10% more than that of bituminous and 4% more than that of coke. Waste tires meet the volatility and reactivity requirements and are low in both nitrogen and sulfur. Beyond its good combustion characteristics, it's also very attractive using waste tires as an alternative fuels for reburning because there are large mass of waste tires requiring disposal. These properties make waste tires a potentially good fuel for reburning NO_x control. This technology can dispose waste tires at a maximum extent by clean utilization of waste tire as a useful energy resource.
     First, a thermo-gravimetric analyzer (TGA) was used to study the pyrolysis performance experimentally at the beginning step. In a thermo-gravimetric analyzer, a series of experiments were conducted. The pyrolysis tests of pulverized waste tire and pulverized coal in an inert atmosphere of nitrogen gas were conducted respectively to study their pyrolysis characteristics. The results show that the lost of weight of pulverized waste tire is as high as 64.3%. Compared to pulverized coal, the pyrolysis of pulverized waste tire is much easier, it can be carried out at relatively lower temperature. A DSC combined with a mass-spectrum was used to study the volatile release during the tire's pyrolysis. It's found that the yield of volatile gases is about 40% during pyrolysis of waste tires and the content of the volatile gases are mainly CO,H_2,CH_4,C_2H_4 etc, which are all good reburning fuels. A mathematical model was established to calculate the parameters of its pyrolysis.
     Second, experiments were carried out on an ceramic flow reactor to study the reburning performance of waste tire powder at 1150℃. The results show that under the typical reburning conditions, the NO reduction efficiency of pulverized waste tire can achieve about 95%, which is as high as that by nature gas at the same conditions. The best stoichiometric ratio in the reburning zone of waste tire is 0.8~0.9, the residence time of waste tire is much shorter than pulverized coal's, the best reduction efficiency of waste tire appears at residence time is 0.3s, and the best temperature of waste tire reburning is 1150℃. In order to study the burnout of waste tire, a 2-stage test rig was established and several mixed fuel based on waste tire were experimentally investigated. The results showed that the NO emission increased when the OFA add to the furnace for tire only, which is also true for natural gas and coal reburning due to the burnout of HCN and/or coal char-N. When special matters were added to the tire, the mixes fuel gave very good results. At the typical reburning and burnout conditions, the reduction efficiency for one mixed fuel was as high as 85%, which is far beyond that by coal and similar to that by natural gas. The results showed that waste tire can be used as a new and efficient reburning fuel for NO reduction..
     Finally, the author used FLUENT software to simulate the combustion process of pulverized waste tire and coal. Compared to pulverized coal, the combustion of waste tire can be much easier, the NO separate out characteristics of both fuel is resemble, the NO concentration will increases firstly, and decreases later along the axis of the furnace. 2). When the temperature increases, the NO concentration increases a little bit when pulverized coal is burned, while the NO concentration decreases when waste tire is burned. The NO concentration of both fuel increase when the stoichiometric ratio increase; When the particle diameter decreases, the NO concentration of waste tire decreases.
     The conclusion could be drawn from this thesis as the following: the waste tire powder is as good as natural gas for reburning NO control. When mixed with a special matter, the final NO reduction ratio can be as high as 85% during the reburning and burnout 2-stage combustion experiment, which is similar to that by natural gas and much high than that by typical coal reburning. The results suggested that waste tire powder can be used as a new and efficient reburning fuel for NO reduction.
引文
1.毕玉森,电站锅炉NOx排放现状、预测及技术政策,中国电力,1998,31:59-62
    2.徐文彬,NOx大气化学概论及全球NOx释放源综述,地质地球化学,1999,27:86-91
    3.中国能源统计年鉴,1991,中国统计出版社,1992
    4.吴京,发展我国煤炭工业的若干问题,煤炭科学技术,1995,1
    5.2001年中国能源发展报告,北京:中国计量出版社,2002。
    6.毛健雄,毛健全,赵树民,煤的清洁燃烧,北京:科学出版社,1998
    7. Molina, E. G. Eddings, D. W. Pershing, Progress in Energy and Combust. Sci., 2000, Vol.26, pp507-531
    8.苏亚欣,毛玉如,徐璋,燃煤氮氧化物排放控制技术,北京:化学工业出版社,2005
    9. Gulyrtlu I, Esparteiro H, Cabrita I. N_2O Formation during Fluidized Bed combustion of Chars. Fuel,1994,73(7): 1098-1102
    10. Kilpinen Pia, Hupa Mikko, Homogeneous N_2O chemistry at fluidized bed combustion conditions: a kinetic modeling study. Combustion and Flame, 1991, 85:94~104
    11. L.D Smoot, S.C Hill, H.Xu, NOx Control through reburning[J], Progress in Energy and Combustion on Science, 1998, 385-408;
    12. Takahashi, etc. in Proceedings of the 1982 Joint Symposium on Stationary NOx control. EPRI Report NO. CS-3182, July(1983)
    13. Babcock & Wilcox Company, demonstration of coal reburning for cyclone boiler NOx control. Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, February(1990)
    14. Glass,J.W.,Wendt,J.O.L,19th Symposium (International)on Combustions,The combustion Institute,Pittsburgh,1982,pp 1243-1251
    15. Pratapas, J.and Bluestein,J., Natural gas reburn: cost effective NOx control. Power Eng., 1994,98,47-50
    16. Kicherer, H. Spliethoff, H. Maier and K. R. G. Hein, The effect of different reburning fuels on NOx reduction. Fuel, 1994, 73(9):1443-1446
    17. Bonnie Courtemanche, Yiannis A.Levendis, A laboratory study on the NO, NO2, SO2,CO and CO2 emissions from the combustion of pulverized coal, municipal wasteplastics and tires. Fuel, 77(3): 183-196, 1998;
    18. D. K. Moyeda, B. Li, P. Maly and R. Payne, Experimental/modeling studies of the use of coal-based reburning fuels for NOX control. In Pittsburgh Coal Conference, Pittsburgh, PA, 1995, pp1119-1124
    19. J. Brouwer, M. P. Heap, F. E. Bales, et al, The use of wood as a reburning fuel in combustion systems. Proc. 6th National Bioenergy Conference, Bioenergy '94, 1994,vol. 1, pp123-130
    20. J. Brouwer, et al, Co-firing waste bio-fuels and coal for emissions reduction. Proc. 2nd Biomass Conference of the Americas: Energy, Environment, Agriculture and Industry, National Renewable Energy Lab., 1995, pp390-399
    21. N. Stanley Harding and Bradley R. Adams, Biomass as a reburning fuel: a specialized co-firing application. Biomass and Bioenergy, 2000, 19:429~445
    22. Philippe Dagaut, Franck Lecomte, Sebastien Chevailler and Michel Cathonnet, Mutual sensitization of the oxidation of nitric oxide and simple fuels over an extended temperature range: experimental and detailed kinetic modeling. Combust. Sci. and Tech, 1999., 148: 27-57
    23. P. Dagaut, J. Luche and M. Cathonnet, Reduction of NO by propane in a JSR at 1 atm: experimental and kinetic modeling. Fuel, 2001, 80:979-986
    24. P. Dagaut, J. Luche and M. Cathonnet, Reduction of NO by n-butane in a JSR: experimental and kinetic modeling. Energy & Fuels, 2000, 14:712-719
    25. P. Dagaut, J. Luche and M. Cathonnet, Experimental and kinetic modeling of reduction of NO by isobutane in a JSR at 1 atm. Int. J. Chemical Kinetics, 2000, 32(6): 365-377
    26. Philippe Dagaut, Franck Lecomte, Sebastien Chevailler and Michel Cathonnet, The reduction of NO by ethylene in a JSR at 1 atm: experimental and kinetic modeling. Combustion and Flame, 1999, 119:494-504
    27. P. Dagaut, J. Luche and M. Cathonnet, Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. Combustion and Flame, 2000,121:651-661
    28. P. Glarborg, P. G. Kristensen and K. Dam-Johansen, Nitric oxide reduction by non-hydrocarbon fuels. Implications for reburning with gasification gases. Energy & Fuels, 2000, 14:828-838
    29. U.S Department of Energy, Clean Coal Technology Demenstration Program, Program Update, April 2000
    30. Zamansky. etc. Reburning promoted by nitrogen-and-sodium-containing compounds. In Twenty-Sixth Symposium on Combustion. The Combustion Institute, Pittsburgh, PA, 1996
    31. 黄皓鹏, Research & Development of Energy and Pollution Prevent at Combustion & Heat Transfer Laboratory,2002.5内部交流资料
    32. New York Electric & Gas Corporation, Micronized Coal Reburning Demonstration for NOx Control Final Report,Cooperative Agreement DE-FC22-93PC92642.
    33.钱敏,朱雅雄,杜清华,废旧轮胎综合利用前途无限,中国资源综合利用,2002年11月
    34. http://www.epa.gov/garbage/tires/tdf.htm
    35.文军,齐春松,王月明等,细煤粉再燃技术在我国燃煤锅炉上的首次工程应用。热力发电,33(8):29-31,2004
    36.崔洪,杨建丽,刘振宇.废旧轮胎热解行为的TG/DTA研究.化工学报.1999,50(6):826-833
    37.李鑫,严建华,顾介元等,废轮胎流化床热解H_2S、HCN、NH_3动态析出特性研究,浙江大学学报(工学版),2002,36(4):393-396
    38. Marks,John, Thermal value makes tires a decent fuel for utilities, Power Engineering (Barrington, Illinois),1991,95(8):35-37
    39. C. Abdrew Mill, Paul M. Lemienk and A. Touati, Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning. J. Air & Waste Management Association, 1998, 48: 729-735
    40.顾介元,李鑫,严建华等,国外废轮胎焚烧处理技术。能源工程,2002年第1期,29-31
    41.唐兰,黄海涛,吴创之,等离子体热解处理废轮胎实验研究。环境科学与技术,2004,27(6):82-83,89
    42.金余其,严建华,顾介元等,废轮胎流化床热解半焦结构特性。环境科学,2004,25(6):159—162
    43.张志宵,池涌,严建华等,利用废轮胎热解制取活性炭的试验研究。浙江大学学报(工 学版),2004,38(6):773-778
    44. J.S. Chang,B. W. Gu, P.C. Loopy et al, Thermal plasma pyrolysis of used old tires for production of syngas. Environ Sci Health, 1996, A31(7):1781-1799
    45. Knappe S,Urso C.Thermochimica Acta,1993,227(1):35
    46. Williams P T, Besler S. Fuel,1995,74(9):1227
    47. Kawakami S,Lnoue K, Tenaka H,et al.Thermal Convernsion of Solid Wasters and Biomass,American Chemical Society Symposium Series 130.Washington D C,1980,423,557
    48. Morten Boberg Larsen, Lars Schultz, et al, Devolatilization characteristics of large particles of tyre rubber under combustion conditions, 2006, fuel, 85,1335-1345
    49.文丽华,王树荣等,木材热解特性和动力学研究,消防科学与技术,2004,23(1):2—5
    50.张妮,曾凡桂,降文萍,中国典型动力煤种热解动力学分析,太原理工大学学报,2005,Vol36(5):449-552
    51.赵增立等,蔗渣的热解与燃烧动力学特性研究,燃料化学学报,2005,Vol33(3):314-319
    52.宋春财,胡浩权,朱盛维,生物质秸杆热重分析及几种动力学模型结果比较,燃料化学学报,2003,31(4):311-315
    53.陈桑,生物质热解特性及热解动力学研究[D],南京理工大学硕士学位论文,2005
    54.李斌,谷月华,严建华等,城市生活垃圾典型组分的热解动力学模型研究,环境科学学极,1999,19(5):562-566
    55. Maschio G, Koufopanos C, Lucchesi A. Pyrolysis a promising rout for biomass utilization, Biore-source Technology,1992,42:219-231.
    56.刘阳生,白庆中等,废轮胎的热解及其产物分析,环境科学,21卷,第六期,85-88
    57. Chang J S,Gu B W,Looy P C, et al. Thermal Plasma Pyrolysis of Used Old Tires for Production of Syngas.Environ Sci Health, 1996, A31(7);1781-1799
    58. J.S. Chang,B. W. Gu, P.C. Loopy et al, Thermal plasma pyrolysis of used old tyres for production of syngas. Environ Sci Health, 1996, A31(7):1781-1799
    59.陈镜泓,李传儒,热分析及其应用,北京:科学出版社,1985,96—158
    60. Flynn J H. The 'Temperature Integral' —Its use and abuse. Theemochimica Acta,1997,300:83-92
    61.傅献彩等,物理化学,第4版,北京:高等教育出版社,1990
    62. Li Chung-Hsing. An integral approximation for mula for kinetic analysis of nonisothermal TGA data. AIChE Journal,1985,31(6):1036-1038
    63.唐万军等。非等温热解动力学参数求算及其机理函数判定的研究,中南民族学院学报(自然科学版),2000,Vol20(4):72-78
    64.刘生玉,田亚峻,高挥发分烟煤的热解、燃烧特性研究.燃料化学学报,2002,30(1):41-44
    65. M. Patry and G. Engel, Formation of HCN by the reaction of nitric oxide on methane at atmospheric pressure, 1. general conditions of formation. Compt. Rend., 231: 1302-1304, 1950
    66. L. Myerson, Ignition limits and products of the multistage flames of propane-nitrigen dioxide mixtures. 6th Symposium (Int.)on Combustion, The Combustion Institute, p154-163, 1957
    67. L.J. Drummond, Shock induced reactions of methane with nitrous and nitric oxide. Bull. Chem. Soc. Japan, 42: 285, 1969
    68. J.O. Wendt, C. V. Sternling and M. A. Matovich, Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. 14th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, pp897-904, 1973
    
    69. Y. Takahashi, M. Sakai, T. Kunimoto, S. Ohme, H. Haneda, T. Kawamata and S. Kaneko, Development of MACT in furnace NOx removal process for steam generators. Proc. 1982 Joint Symposium on Stationary Combustion NO_x Control, vol. 1, Electric Power Research Institute, No. CS-3128, 198
    
    70. S. L. Chen, et al, NOx reduction by reburning with gas and coal-bench scale studies. Proc. 1982 Joint Symposium on Stationary Combustion NO_x Control, vol. 1, Electric Power Research Institute, 1983
    
    71. S. L. Chen, et al, Bench and pilot scale process evaluation of reburning for in-fumace NO_x reduction. 21~(st) Symposium (Int.)on Combustion, The Combustion Institute, pp897-904,1986
    
    72. B. J. Overmoe et al, Pilot scale evaluation of NOx control from pulverized coal combustion by reburning. Proc. 1985 Joint Symposium on Stationary Combustion NOx Control, vol. 1, Electric Power Research Institute, 1986
    
    73. R. Payne et al, The use of pulverized coal and coal-water-slurry in reburning NOx control. Proc. 1995 Joint Symposium on Stationary Combustion NOx Control, vol. 4, Electric Power Research Institute, 1995
    
    74. B. R. Adams and N. S. Harding, Reburning using biomass for NO_x control. Fuel Processing Technology, 54: 249-263,1998
    
    75. Wei-Yin Chen and Long Ma, Effect of heterogeneous mechanisms during reburning of nitrogen oxide. AIChE Journal, 42(7): 1968-1976,1996
    
    76. Wei-Yin Chen and Lin Tang, Variables, Kinetics and mechanisms of heterogeneous reburning. AIChE Journal, 47(12): 2781-2797, 2001
    
    77. Peter M. Maly, Vladimir M. Zamansky, Loc Ho and Roy Payne, Alternative fuel reburning. Fuel, 78: 327-334,1999
    
    78. L. D. Smoot, S. C. Hill and H. Xu, NO_x control through reburning. Prog. Energy Combust. Sci., 24: 385-408,1998
    
    79. P. Glarborg, P. G Kristensen and K. Dam-Johansen, Nitric oxide reduction by non-hydrocarbon fuels. Implications for reburning with gasification gases. Energy & Fuels, 14: 828-838, 2000
    
    80. J. P. Smart and D. J. Morgan, The effectiveness of multi-fuel reburning in an internally fuel-staged burner for NO_x reduction. Fuel, 73(9):1437-1442,1994
    
    81. Kicherer, H. Spliethoff, H. Maier and K. R. G. Hein, The effect of different reburning fuels on NOx reduction. Fuel, 73(9):1443-1446, 1994
    
    82. D. K. Moyeda, B. Li, P. Maly and R. Payne, Experimental/modeling studies of the use of coal-based reburning fuels for NOx control. In Pittsburgh Coal Conference, Pittsburgh, PA, pp1119-1124, 1995
    
    83. J. Brouwer, M. P. Heap, F. E. Bales, et al, The use of wood as a reburning fuel in combustion systems. Proc. 6~(th) National Bioenergy Conference, Bioenergy '94,vol. 1, ppl23-130, 1994
    
    84. J. Brouwer, et al, Co-firing waste bio-fuels and coal for emissions reduction. Proc. 2~(nd) Biomass Conference of the Americas: Energy, Environment, Agriculture and Industry, National Renewable Energy Lab., pp390-399, 1995
    
    85. C. Abdrew Mill, Paul M. Lemienk and A. Touati, Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning. J. Air & Waste Management Association, 48: 729-735, 1998
    86. Clean Coal Technology Program Demonstration Program, Program Update 1994, DOE/FE0330, US Department of Energy, Washington, DC, April, 1995
    87. PETC Review, Update on NOx control technologies. Office of Fossil Energy, US Dept. of Energy, Pittsburgh Energy Technology Center, P. O. Box 10940, Pittsburgh, PA 15236-0940, pp28-29, 1995
    88. N. Stanley Harding and Bradley R. Adams, Biomass as a reburning fuel: a specialized co-firing application. Biomass and Bioenergy, 19: 429~445, 2000
    89. Philippe Dagaut, Franck Lecomte, Sebastien Chevailler and Michel Cathonnet, Mutual sensitization of the oxidation of nitric oxide and simple fuels over an extended temperature range: experimental and detailed kinetic modeling. Combust. Sci. and Tech., 148: 27-57, 1999
    90. P. Dagaut, J. Luche and M. Cathonnet, Reduction of NO by propane in a JSR at 1 atm: experimental and kinetic modeling. Fuel, 80: 979-986, 2001
    91. P. Dagaut, J. Luche and M. Cathonnet, Reduction of NO by n-butane in a JSR: experimental and kinetic modeling. Energy & Fuels, 14: 712-719, 2000
    92. P. Dagaut, J. Luche and M. Cathonnet, Experimental and kinetic modeling of reduction of NO by isobutane in a JSR at 1 atm. Int. J. Chemical Kinetics, 32(6): 365-377, 2000
    93. Philippe Dagaut, Franck Lecomte, Sebastien Chevailler and Michel Cathonnet, The reduction of NO by ethylene in a JSR at 1 atm: experimental and kinetic modeling. Combustion and Flame, 119: 494-504, 1999
    94. P. Dagaut, J. Luche and M. Cathonnet, Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. Combustion and Flame, 121: 651-661, 2000
    95. Burch T E, Conway R B, Chen Wei-Yin, A practical feeder for bench-scale combustion requiring low feed rates. Review of Scientific Instruments, 62(2):480-483, 1991
    96. Tang, L., and W.Y. Chen, Improvements on A Particle Feeder for Experiments Requiring Low Feed Rates, Review of Scientific Instruments, 70(7), 3143-3144,1999
    97.李戈,超细煤粉再燃机理及细粉分离技术研究,2003,4
    98. Rafael Bilbao,Maria U. Alzueta,and Angela Millera,Experimental study of the influence of the operationg variables on natural gas reburning efficiency, Ind. Eng.Chem. Res. 34, 4531-4539,1995
    99.王智化,燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究,浙江大学博士学位论文,2005,10
    100. Babcock & Wilcox Company, demonstration of coal reburning for cyclone boiler NOx control. Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, February(1990)
    101. L.D Smoot, S.C Hill, H.Xu, NOx Control through reburning[J], Progress in Energy and Combustion on Science, 1998, 385-408;
    102. Fujima,Y.;Takahashi,Y. et al.Field Application of MACT. Proceedings of Reburning Workshop. Orenas Slott,Sweden,Nov 1990;Nordic Gas Technology Centre:Horsholm,Denmark;1990,7-25
    103. Laksa,B; Magnussen, B.F.; et al. Modeling of Reburning. Proceedings of the Reburning Workshop, Orenas Slott,Sweden,Nov 1990;Nordic Gas Technology Centre: Horsholm, Denmark; 1990,170-189
    104. Lanier, W.S. et al. Reburning Thermal and Chemical Processes in a Two-Dimensiona Pilot-Scale System.Proceedings of the 21st Symposium(International)on Combustion;The Combustion Insitute:Pittsburgh,PA,1986,1171-1179
    105. Pia Kilpinen, et al. Reburning Chemistry: A Kinetic Modeling Study, Ind. Eng. Chem. Res. 1992,31,1477-1490
    106. Babcock & Wilcox Company, demonstration of coal reburning for cyclone boiler NOx control. Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, February(1990)
    107. BILBAO R, ALZUETA M, MILLERAA. Experimental study of the influence of operating variables on natural gas reburning efficiency[J]. Ind. Eng. Chem. Res., 1995, 34: 4531-4539
    108.金晶,李瑞阳,超细煤粉燃烧氮氧化物释放特性的研究。动力工程,24(5):716-720,2004
    109.金晶,张忠孝,李瑞阳,超细煤粉再燃的模拟计算与试验研究。中国电机工程学报,24(10):215-218,2004
    110.李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent.水动力学研究与进展,Ser.A,2001,16(2):254-258
    111.刘霞,葛新锋,Fluent软件及其在我国的应用.能源研究与利用,2003,(2):36-38
    112.姚征,陈康民.CFD通用软件综述,上海理工大学学报,2002,24(2):137-144
    113.Fluent用户帮助手册,Fluent公司,2001
    114. Launder B. E., Spalding D. B., Mathematical Models of Turbulence, Academaic Press,1972
    115. Hinze J. O.. Turbulence. 2nd Edition. McGraw-Hill Book Co. Inc.. 1975
    116.周力行.湍流气粒两相流动和燃烧的理论与数值模拟,北京:清华大学出版社.1994,153
    117.张会强,陈兴隆,周力行等.湍流燃烧数值模拟研究的综述,力学进展.1999.29(4):567-575
    118. Libby P. A., Williams F. A.. Fundamental aspects and review. Turbulent Reacting Flows.Academic Press, 1993, 1-62
    119. Givi P.. Model free simulation of turbulent reactive flows. Progress in Energy and Combustion Science. 1989, 15:1~107
    120. Pope S. B.. Computations of turbulent combustion: progress and challenges. In: 23rd symposium (Int) on combustion. 1990, 591-612
    121.王应时,范维澄,周力行,徐旭常.燃烧过程数值计算.北京:科学出版社.1986
    122. Spalding D. B.. Mathernatical models of turbulent flames: a review. Combustion Science and Technology. 1976. 13:3-25
    123. Spalding D. B.. Mixing and chemical reaction in steady confined turbulent flames. In:13th Symposium (International) on combustion. The combustion Insitute, Pittsburgh, 1971.649-657
    124. Spalding D. B.. A General theory of turbulent combustion. In: AIAA 15th Aerospace Meeting. Los Angeles, AIAA paper, 1977. 77-141
    125. Spalding D. B.. The influence of laminar transport and chemical kinetics on the time-mean reaction rate in a turbulent flow. In:17th Symposium (International) on combustion. The Combustion Institute, 1978.431-440
    126.岑可法,樊建人,工程气固多相流动的理论及计算,浙江大学出版社,杭州,1990.3
    127. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington D.C., 1992
    128. P. Cheng, Two-Dimensional Radiating Gas Flow by a Moment Method, AIAA Journal, No.2, pp1662-1664, 1964
    129. M.M. Baum, P. J. Street. Predicting the Combustion Behavior of Coal Particles. Combustion Science Technology. 1971, 3(5):231-243
    130. Stanley Badzioch, Peter. G. W. Hawksley. Kinetics of Thermal Decomposition of Pulverized Coal Particles. Ind. Eng. Chem. Process Design and Development. 1970,9(4):521-530
    131. H. Kobayashi, J. B. Howard, A. F. Sarom. Coal Devolatilization at High Temperatures. In: 16th Symposium (International) on Combustion. The Combustion Institute, 1976
    132. W. Smith. The Combustion Rates of Coal Chars: A Review. In: 19th Symposium (International) on Combustion. The Combustion Institute, 1982. 1045-1065.
    133.傅维标等,燃烧学,高等教育出版社,1992
    134. M.A. Field., Rate of Combustion Of Size-Graded Fractions of Char from a Low Rank Coal between 1200K-2000K, Combust. Flame, No.13, pp237-252, 1969
    135. S.C. Hill, L. Douglas Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems, Progress in Energy and Combustion Science, No.26, pp417-458, 2000
    136. R.K. Hanson and S. Salimian, Survey of Rate Constants in H/N/O Systems, In W. C. Gardiner, editor, Combustion Chemistry, pp361, 1984
    137. L.D. Smoot and P. J. Smith, NOx Pollutant Formation in a Turbulent Coal System, Coal Combustion and Gasification, pp 373, Plenum, NY, 1985
    138.北京大学数学力学系概率统计组,正交设计法,石油化学工业出版社,1976
    139. FLUENT 6.1 Tutorial Guide Volume 2, FLUENT Inc. 2003,1
    140.韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用,北京理工大学出版社,2004,6
    141.陆斌,废旧轮胎胶粉燃烧特性分析及其燃烧数值模拟,南京理工大学硕士学位论文,2004,5
    142.霍然,工程燃烧概论,中国科学技术大学出版社,2001,9
    143. B. Courtemanche and Y. Levendis, A laboratory study on the NO,NO_2,SO_2,CO and CO_2 emissiongs from the combustion of pulverized coal, municipal waste plastics and tires, Fuel, Vol.77.No.3:183-196,1998
    144.茅建波,沉降炉中不同煤种NOx生成特性实验研究,浙江大学硕士学位论文,2001,12
    145.徐璋,超细粉再燃降低NOx排放的热态试验研究与数值模拟,浙江大学博士学位论文,2003,6
    146.李绚天,骆仲泱,倪明江,岑可法,煤燃烧过程中加石灰石脱硫对NOx排放影响的研究,料化学学报,1991,19:71-76
    147.李绚天,倪明江,岑可法,煤的燃烧过程中燃料NOx的析出特性,工程热物理学报,1990,11:338—341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700